基于半导体光放大器(SOA)的波长转换技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波长转换技术在光纤通信中有着广泛的应用,尤其是在基于波分复用的全光网络中将发挥关键性的作用。通过波长转换技术,可以提高波长的利用率,有效地解决网络中的阻塞问题,简化网络管理,增强网络对故障的适应能力。基于半导体光放大器的波长转换器具有结构简单、容易实现等优点,因此成为近年来研究的热点。
     本文针对半导体光放大器交叉增益调制型、交叉相位调制型和四波混频型波长转换技术进行了深入的理论和实验研究,具体工作如下:
     1、分析了进行波长转换技术研究的重要意义,较为全面地概述了波长转换器的种类和发展状况。
     2、详细分析了半导体光放大器用于波长转换的理论基础,建立了比较完善的半导体光放大器用于模拟交叉增益调制型、交叉相位调制型和四波混频型波长转换的静态和动态分段模型,为数值模拟研究奠定了坚实的基础。
     3、深入研究了半导体光放大器的增益特性,对半导体光放大器交叉增益调制型波长转换的消光比特性、转换效率和输出信噪比等进行了全面的仿真和实验研究,为实现参数优化提供了详细的理论依据。成功实现了1.25Gb/s的波长转换。
     4、数值模拟了半导体光放大器交叉相位调制型的同相和反相波长转换,重点研究了其输出消光比特性和输入功率动态范围,并提出了有效的优化参数的新方案。
     5、对半导体光放大器四波混频型波长转换进行了仿真研究,全面考虑了共轭光对四波混频过程的影响,深入研究了其转换效率和输出消光比特性,获得了对四波混频型波长转换技术的更客观的评价与结论。
     6、首次提出了半导体光放大器交叉增益调制和交叉相位调制级联的波长转换新方案,并进行了数值模拟,所得结果证明了该方案能够同时获得很高的消光比和很大的输入功率动态范围,并且具有很宽的波长转换范围和能实现无波长转换等众多优点。
     本文的主要创新工作如下:
     1、首次提出了半导体光放大器交叉增益调制和交叉相位调制级联的波长转换新方案,该方案能够同时获得很高的消光比和很大的输入功率动态范围,并且具有很宽的波长转换范围和能实现无波长转换等众多优点。
     2、提出了两路探测光输入功率不相等的理论与方案,获得了半导体光放大器交叉相位调制型的波长转换的优化参数,该方案比传统的交叉相位调制型波长转换具有更高的输出消光比和更大的输入功率动态范围。
     3、采用半导体光放大器交叉增益调制型波长转换的输入输出特性曲线来分析交叉增益型波长转换的输出消光比特性,该方法较其它方法更能直观地揭示交叉增益型波长转换输出消光比退化的现象及其原因。
Wavelength conversion technology could be widely used in optical fiber communication, it will play the key role especially in the all-optical network based on wavelength division multiplexing (WDM). Wavelength conversion can increase the utilization efficiency of wavelengths, efficiently solve the blocking problem in the networks, simplify the management of the networks, enhance the adaptability to failure of the networks. Wavelength converter based on semiconcuctor optical amplifiers (SOAs) has become a research hotspot in recent years due to its advantages of simple configuration and easy realization.
     In this dissertation, we focus on the wavelength conversion based on cross-gain modulation (XGM), cross-phae modulation (XPM) and four-wave mixing (FWM), several theoretical and experimental studies has been carried out as follows:
     1. The research signification of wavelength convertion is analyzed. Many kinds of wavelength converters and their development status are summarized.
     2. The theoretical basis of wavelength conversion based on SOAs is investigated. The static and dynamic model of SOA, which are used to simulate the wavelength conversion based on XGM, XPM and FWM, is established.
     3. An in-depth study on the gain characteristics of SOA is carried out. Several properties of wavelength conversion based on XGM in SOA, such as output extinction ratio (ER), conversion efficiency, output signal-to-noise ration (SNR), are studied theoretically and experimentally. The results provide detail gists for parameters optimization. 1.25Gb/s wavelength conversion based on XGM in SOA is achieved.
     4. Numerical simulation of both in-phase and out-of-phase wavelength conversion based on XPM in SOA is carried out, the study focus on the output ER characteristic and the input power dynamic range. An effective new scheme to optimize the parameters is proposed.
     5. Numerical simulation of the wavelength conversion based on FWM in SOA is carried out, and the effects of the satellite light are considered. An in-depth study on the conversion efficiency and the output ER characteristic is carried out. More impersonal evaluations and conclusions are obtained.
     6. A new scheme of wavelength conversion based on the cascade of XGM and XPM in SOAs is proposed for the first time. The new scheme has many advantages, such as both high ER and large input power dynamic range, broad conversion band and can realize no-conversion operation, which are proved by the simulation results.
     The innovations of this dissertation are as follows:
     1. A new scheme of wavelength conversion based on the cascade of XGM and XPM in SOAs is proposed for the first time. The new scheme has many advantages, such as both high ER and large input power dynamic range, broad conversion band and can realize no-conversion operation.
     2. A new theory and scheme in which the iuput powers of the two probe beam are not the same is proposed. Based the scheme, the parameters optimization is achieved and results in larger ER and larger input power dynamic range.
     3. The output ER characteristic of the wavelength coversion based on XGM in SOA is analysed throuth the in-out characteristic curve. This method can open out the degeneration of ER and its causation more intuitively than other methods.
引文
[1]原荣.光纤通信[M].北京:电子工业出版社,2006:1-5.
    [2]黄章勇.光纤通讯用新型光无源器件[M].北京:北京邮电大学出版社,2003:304-305.
    [3]C.A.Brackett,A.S.Acampora,J.Scheweitzer et al.A scalable multiwavelength multihop optical network:A proposal for research on all-optical networks[J].Lightwave Technology,11(5):1993,736-740.
    [4]廖先炳.全光网络及其关键技术和器件[J].飞光通信技术,1(4),2001:227-233.
    [5]B.Ramamurthy,B.Mukherjee.Wavelength conversion in WDM networking[J].IEEE Journal on Selected Areas in Communications,1998,16(7):1061-1073.
    [6]K.E.Stubjaer.Wavelength conversion technology[C].Proc.OFC' 98,1998:96.
    [7]S.B.Alexander.A precompetitive consortium on wide-band all-optical networks[J].Lightwave Technology,11(5),1993:714-732.
    [8]E.lannone,R.Sabella.Optical path technologies:A comparison among different cross-connect architectures[J].Lightwave Technology,14(5),1996:2184-2196.
    [9]Kuo-Chun Lee.A wavelength-convertible optical network[J].Lightwave Technology,11(5/6),1993:962-970.
    [10]S.L.Danielsen.Traffic analysis and signal processing in high-capacity optical networks[D].Technical university of Dnemark,1997:LD-133.
    [11]张新亮.半导体光放大器用作全光波长转换器的研究[D].武汉,华中科技大学,2001:1-3.
    [12]伍浩成,原荣.DWDM系统中波长变换技术的实现.光通信技术,25(1),2001:26-29.
    [13]T.Durhnus,B.Mikkelsen,C.Joergensen et al.All-optical wavelength conversion by semiconductor optical amplifiers[J].Lightwave Technology,14(6),1996:942-954.
    [14]S.J.B.YOO.Wavelength conversion technologies for WDM network applications[J].Lightwave Technology,14(6),1996:955-965.
    [15]R.A.Barry and P.A.Humblet.Models of blocking probability in all-optical networks with and with out wavelength changers[J].IEEE Journal on Selected Areas in Communications,14(5),1996:858-867.
    [16]K.Obermann.All-optical wavelength conversion based on cross-gain modulation and four-wave mixing in semiconductor optical amplifiers[D].Berlin,rechnische University,1998.
    [17]J.M.Wiesenfeld,B.Glance,J.S.Perino et al.Wavelength conversion at 10Gbit/s using a semiconductor optical amplifier[J].IEEE Photonics Technology Letters,5(10),1993:1300-1303.
    [18]S.L.Danielsen,C.Joergensen,M.Vaa et al.Bit error rate assessment of 40Gbit/s all-optical polarization independent wavelength converter[J].Electronics Letters,32(18),1996:1688-1689.
    [19]C.Joergensen,S.L.Danielsen,M.Vaa et al.40Gbit/s all-optical wavelength conversion by semiconductor optical amplifiers[J].Electronics Letters,32(4),1996:367-368.
    [20]A.D.Ellis,A.E.Kelly,D.Nesset et al.Error free 100Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2mm long semiconductor amplifier[J].Electronics Letters,34(20),1998:1958-1959.
    [21]Y.Liu,E.Tangdiongga et al.Error-free 320 Gb/s All-optical Wavelength Conversion Using a Single Semiconductor Optical Amplifier[J].Lightwave Technology,25(1),2007:103-107.
    [22]董建绩.基于单端耦合的全光波长转换器的理论和实验研究[D].武汉,华中科技大学,2005.
    [23]de Oliveira Ribeiro R.,Pontes M.J.et al.Characterisation of all-optical wavelength conversion by cross-gain modulation of ASE on a SOA[C].2005 SBMO/IEEE MTT-S International Conference on Microwave and Optoelectronics,2005:218-221.
    [24]Xueyan Zheng,Fenghai Liu,Allan Kloch.Experimental Investigation of the Cascadability of a Cross-Gain Modulation Wavelength Converter[J].Photonics technology letters,12(3),2000:272-274.
    [25]S.L.Danielsen,P.B.Hansen,K.E.Stubkjaer et al.All-optical wavelength conversion schemes for increased input power dynamic range[J].Photon technology letters,10(1),1998:60-62.
    [26]J.-Y.Kim and S.-K.Han.Novel automatic control for the optimum optical gain and phase differences in SOA-MZI wavelength converter:Theory and experiment[J].Optics Communications,261(1),2006:130-140.
    [27]M.Hattori,K.Nishimura,R.Inohara and M.Usami.New operation scheme of SOA-MZI all-optical wavelength converter cancelling cross gain modulation[C].2006Optical Fiber Communication Conference and the 2006 National Fiber Optic Engineers Conference,2006:OWS5.
    [28]孙军强,张新亮,陈娟,黄德修,易河清.基于半导体光放大器四波混频波长转换的理论研究[J].电子学报,27(11),1999:18-20.
    [29]Taotao Yang et al.Depolarization technique for wide-band polarization insensitive four-wave mixing wavelength conversion in a semiconductor optical amplifier[C].The 18th Annual Meeting of the IEEE,2005:305-306.
    [30]Gupta S et al.Experimental Characterization of SOA-Based Wavelength Converters for DPSK Signals[C].The First International Conference on Communications and Networking in China,2006:1-5.
    [31]Politi C.et al.Waveband converters based on four-wave mixing in SOAs[J].Lightwave Technology,24(3),2006:1203-1217.
    [32]He Wen,Huan Jiang et al.Synchronous Clock Pumping to Improve Performance of All-optical Wavelength Conversion for RZ-DPSK Based on Four-Wave Mixing in SOA[C].OFC/NFOEC,2007:1-3.
    [33]Simos H.,Stamataki I.,Syvridis D..Relative Intensity Noise Performance of Wavelength Converters Based on Four-Wave Mixing in Semiconductor Optical Amplifiers[J].Quantum Electronics,43(5),2007:370-377.
    [34]Lu Z.,G.Bock P.et al.Ultrabroad tunable wavelength conversion in a semiconductor optical amplifier[J].Microwave and Optical Technology Letters,48(11),2006:2139-2142.
    [35]He Wen,Huan Jiang et al.Performance Enhancement of Multiwavelength Conversion of RZ-DPSK Based on Four-Wave Mixing in Semiconductor Optical Amplifier[J].Photonics Technology Letters,19(18),2007:1377-1379.
    [36]黄黎蓉,黄德修,缪庆元.基于半导体光放大器交叉偏振调制的波长转换分析[J].半 导体学报, 24(8), 2003:882-885.
    [37] W. Chia Chien, H. Ming Fang and J. Chen. Enhancing the frequency response of cross-polarization wavelength conversion[J]. IEEE Photonics Technology Letters, 17(8),2005:1683-1685.
    [38] I. Fazal, S. Kumar et al. Data-polarization-insensitive wavelength conversion in a PPLN waveguide by cross-polarization-modulation of the pump using an SOA[J]. Optical Fiber Communication Conference and the 2006 Nationa Fiber Optic Engineers Conference, 2006:OThB4.
    [39] G. H. Duan. 1Gbit/s operation of optically triggered MQW bistable lasers incorporating a proton bombarded absorber[C]. CLEO, 1993:CThH5.
    [40] B. Mikkelsen, R. J. S. Pedersen, T. Durhuus et al. Wavelength conversion of high speed data signals[J]. Electronics Letters, 29(18), 1993:1716-1718.
    [41] T. Durhuus, R. J. S. Pedersen, B. Mikkelsen et al. Optical wavelength conversion over 18nm at 2. 5Gbit/s DBR laser[J]. Photonics Technology Letters, 5(1), 1993: 86-88.
    [42] B. Mikkelsen, T. Durhuus, R. J. S. Pedersen et al. Penalty free wavelength conversion of 2. 5Gbit/s signal using a tunable DBR laser[C]. ECOC, 1992:441-444.
    [43] Yasaka H., Ishii H.,Yoshikuni Y. , Oe K. . Repeated wavelength conversion of 10Gbit/s signal using wavelength-tunable semiconductor lasers[J]. IEEE Photonics Technology Letters, 7(2), 1995:161-163.
    [44] Yasaka H., Ishii H. et al. Broad-range tunable wavelength conversion of high-bit-rate signals using super structure grating distributed Bragg reflector lasers[J]. IEEE Quantum Electronics,32(3), 1996:463-470.
    [45] Astar W. , Lenihan A. S. , Carter G.M.. Polarization-Insensitive Wavelength Conversion by FWM in a Highly Nonlinear PCF of Polarization-Scrambled 10-Gb/s RZ-OOK and RZ-DPSK Signals[J]. IEEE Photonics Technology Letters,19(20), 2007:1676-1678.
    [46] Jianjun Y., P. Jeppesen. 80-Gb/s wavelength conversion based on cross-phase modulation in high-nonlinearity dispersion-shifted fiber and optical filtering[J]. IEEE Photonics Technology Letters, 13(8), 2001:833-835.
    [47]C.H.Kwok,C.W.Chow,H.K.Tsang,L.Chinlon and A.Bjarklev.S/C/L-band wavelength conversion by cross-polarization modulation in a dispersion-flattened nonlinear photonic-crystal fiber[C].Optical Fiber Communication Conference and the 2006 Nationa Fiber Optic Engineers Conference,2006:OThA4.
    [48]余建军,管克俭,郑学彦,杨伯君.单个波长到多个波长的变换实验[J].光子学报,27(8),1998:729-733.
    [49]Galili M.,Huettl B et al.320 Gbit/s DQPSK All-Optical Wavelength Conversion using Four Wave Mixing[C].OFC/NFOEC,2007:1-3.
    [50]K.Tsuji,T.Yamaguchi,N.Onodera and M.Saruwatari.Filter-free wavelength converter using Sagnac loop and delayed interferometer[J].Optics Express,14(2),2006:575-580.
    [51]Y.Yang,C.Lou,J.Wang,L.Huo and Y.Gao.Experimental study of NRZ format wavelength conversion using electroabsorption modulator[J].Optics Communications,260(2),2006:571-576.
    [52]H.Li,Y.Yanfu et al.A study on the wavelength conversion and all-optical 3R regeneration using cross-absorption modulation in a bulk electroabsorption modulator[J].Lightwave Technology,24(8),2006:3035-3044.
    [53]N.E.Dahdah,R.Coquille et al.All-optical wavelength conversion by EAM with shifted bandpass filter for high bit-rate networks[J].IEEE Photonics Technology Letters,18(1),2006:61-63.
    [54]S.Gao,C.Yang et al.Bandwidth enhancement and response flattening of cascaded sum- and difference-frequency generation-based wavelength conversion[J].Optics Communications,266(1),2006:296-301.
    [55]H.Furukawa,A.Nirmalathas et al.Tunable all-optical wavelength conversion of 160 Gbit/s RZ signals based on cascaded SFG-DFG in PPLN waveguide[C].OFCC and NFOEC,2006:OWW5.
    [56]J.Wang,J.Sun,C.Luo.Experimental demonstration of novel cascaded SFG+DFG wavelength conversion of picosecond pulses in LiNbO_3 waveguides[J].Proc of SPIE,Vol.6344,2006:63441D-2.
    [57]J.Wang,J.Sun et al.Tunable Wavelength Conversion of ps-Pulses Exploiting Cascaded Sum- and Difference Frequency Generation in a PPLN-Fiber Ring Laser[J].IEEE Photonics Technology Letters,18(20),2006:2093-2095.
    [58]J.Wang,J.Sun.All-optical single-to-dual channel wavelength conversion based on sum-frequency generation and difference-frequency generation[J].Microwave and Optical Technology Letters,48(10),2006:2057-2060.
    [59]J.J.Ju,S.K.Park et al.Wavelength conversion in nonlinear optical polymer waveguides[J].Applied Physics Letters,88(24),2006:1-3.
    [60]J.Sun,D.Huang,D.Liu.Simultaneous wavelength conversion and pulse compression exploiting cascaded second-order nonlinear processes in LiNbO_3waveguides[J].Optics Communications,259(1),2006:321-327.
    [61]Y.Wang,J.Fonseca-Campos et al.Picosecond-pulse wavelength conversion based on cascaded second-harmonic generation-difference frequency generation in a periodically poled lithium niobate waveguide[J].Applied Optics,45(21),2006:5391-5403.
    [62]J.Wang,J.Sun et al.Single-to-dual channel wavelength conversion of picosecond pulses using PPLN-based double-ring fibre laser[J].Electronics Letters,42(4),2006:236-238.
    [63]谢光.基于半导体光放大器交叉增益调制的高速全光波长转换研究[D].武汉,信息产业部武汉邮电科学研究院,2001:14.
    [64]G.P.Agrawal著,胡国绛译.非线性光纤光学[M].天津大学出版社,天津,1992.
    [65]A.Uskov,J.Mork,J.Mark.Wave-mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning[J].IEEE Quantum Electronics,30(8),1994:1769-1781.
    [66]M.Asada,Y.Suematsu.Density matrix theory of semiconductor lasers with relaxation broadening model-gain and gain suppression in semiconductor laser[J].IEEE Quantum Electronics,21(5),1985:434-442.
    [67]范琦康,吴存恺,毛少卿.非线性光学[M].江苏,江苏省科学技术出版社和电子工业出版社,1989.
    [68]G.P.Agrawal.Population pulsations and nondegenerate four-wave mixing in semiconductor optical amplifier[J]. Journal of the Optical Society of America B. ,5(1), 1988:147-159.
    [69] J. Mork, A. Mecozzi. Theory of the ultrafast optical response of active semiconductor waveguides [J]. Journal of the Optical Society of America B. , 13(8), 1996:1803-1816.
    [70] D. Marcuse. Computer model of an injection laser amplifier[J]. IEEE J. Quantum Electronics, 19(1), 1983:63-73.
    [71] Martin T. Hill, E. Tangdiongga et al. Carrier recovery time in semiconductor optical amplifiers that employ holding beams[J]. Optics Letters, 27(18), 2002:1625-1627.
    [72] Durhnuus T, Mikkelsen B et al. Detailed dynamic model for semiconductor optical amplifiers and their crosstalk and intermodulation distortion[J]. Journal of Lightwave Technology, 10(8), 1992:1056-1065.
    [73] Agrawal G, P. Olsson N A. Self-phase modulation and spectral broadening of optical pulse in semiconductor laser amplifiers[J]. IEEE J. Quantum Electronics, 25(11), 1989:2297-2306
    [74] N. C. Kothari et al. Influence of gain saturation, gain asymmetry, and pump/probe depletion on wavelength conversion efficiency of FWM in semiconductor optical amplifiers [J]. IEEE J. Quantum Electron, 32(10), 1996:1810-1816.
    [75] H. Simos, A. Bogris, D. Syvidis. Investigation of a 2R all-optical regenerator based on four-wave mixing in a semiconductor optical amplifier[J]. Lightwave Technology, 22(2), 2004:595-604.
    [76] S. I. Pegg, M. J. Fice, M. J. Adams et al. Noise in wavelength conversion by cross-gain modulation in a semiconductor optical amplifier[J]. IEEE Photonics Technology Letters, 11(6), 1999:724-726.
    [77] M. Shtaif, G. Eisenstein. Improved Bit-Error-Rate performance in Frequency conversion of High-Bit-Rate data based on cross gain compression in semiconductor optical amplifiers[J]. IEEE Photonics Technology Letters, 8(11), 1996:1474-1476.
    
    [78] A. E. Willner, W. Shieh. Optimal spectral and power parameters for all-optical wavelength shifting:Single Stage,Fanout,and Cascadabilty[J].Lightwave Technology,13(5),1995:771-781.
    [79]W.Shieh,A.E.Willner.Optical Conditions for high-speed all-optical SOA-based wavelength shifting[J].IEEE Photonics Technology Letters,7(11),1995:1273-1275.
    [80]S.Chelles,F.Devaux,D.Meichenin et al.Extinctin ratio of cross-gain modulated multistage wavelength converters:model and experiments[J].IEEE Photonics Technology Letters,9(6),1997:758-760.
    [81]G.P Agrawal 著,贾东方 等译.非线性光纤光学原理及应用[M].北京,电子工业出版社,2002.
    [82]张新亮,孙军强,刘德明等.基于半导体光放大器的交叉增益型波长转换器转换特性的研究[J].物理学报,49(4),2000:741-746.
    [83]Singh.Surinder,Kaler.R.S.All optical wavelength converters based on cross phase molulation in SOA-MZI configuration[J].Optik,118(8),2007:390-394.
    [84]Zhou Enbo,Zhang Xinliang.Theoretical investigation and experimental demonstration of nonlinear patterning suppression in bulk semiconductor optical amplifiers for transient cross phase modulation[C].Proc SPIE Int Soc Opt Eng,vol 6782,2007:678233.
    [85]Dong JianJi,Zhang XinLiang.Investigation on inverted and non-inverted wavelength conversion based on transient cross phase modulation of semiconductor optical amplifier[J].Wuli Xuebao,56(4),2007:2250-2255.
    [86]Wen He,Jiang Huan et al.Performance enhancement of multiwavelength conversion of RZ-DPSK based on four-wave mixing in semiconductor optical amplifier[J].IEEE Photonics Technology Letters,19(18),2007:1377-1379.
    [87]Politi C.T.et al.Concatenation performance of optical packet switches that incorporate wavelength converters based on four-wave mixing in semiconductor optical amplifiers[J].IET Optoelectronics,1(3),2007:101-109.
    [88]Kennedy.B.F.et al.Pulse pedestal suppression using four-wave mixing in an SOA[J].IEEE Photonics Technology Letters,20(5),2008:327-329.
    [89]S.Gupta,N.Calabretta et al.Experimental characterization of SOA-based wavelength converters for DPSK signals[C]. First International Conference on Communications and Networking in China, 2007:1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700