随机共振及其在神经动力学模型中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随机共振是指由于系统、系统的噪声以及系统的输入信号三者之间的协同作用,当输入噪声达到某个强度时,系统的微弱输入信号得到放大,从而使系统的输出信噪比达到最大值这样一种非线性现象。广义随机共振指系统的输出信号(信噪比、输出平均幅度等)是噪声、系统或信号的某个参数的非单调函数。相干共振指受到噪声作用的可激发系统中,存在最优噪声强度使放电序列更规整这样一种非线性现象。
     本文研究色噪声作用下线性系统和非线性双稳态系统的随机共振现象,以及随机共振和相干共振在整合放电模型和FitHugh-Nagumo模型中的应用。
     本文的主要成果和创新为:
     1.研究了加性双值噪声和乘性双值噪声作用下一阶线性系统的随机共振现象。根据噪声特性和线性系统理论,得到了系统输出信噪比的表达式。研究表明,系统输出信噪比是加性双值噪声和乘性双值噪声的相关时间、乘性双值噪声的强度、激励周期信号频率的非单调函数。
     2.研究了双值噪声作用下的二阶过阻尼线性系统的随机共振现象。研究表明,系统的输出幅度增益是双值噪声的强度和相关率、系统固有频率、系统阻尼系数,以及激励信号的频率的非单调函数,适当的噪声参数可以使系统的输出幅度增益大于无噪声时的输出幅度增益。
     3.研究了双稳系统受双值噪声作用下的随机共振现象。研究表明,信噪比是双值噪声相关时间的非单调函数,且出现两个极大值,功率谱增益是双值噪声强度的非单调函数。
     4.研究了非对称双稳势中受周期力和乘性色噪声作用的过阻尼布朗粒子的随机共振现象。得到了系统的准稳态概率分布函数。研究表明,系统从噪声中吸取的能量(输入能量)出现随机共振现象,其吸取的能量是噪声强度、相关时间以及系统的非对称势的非单调函数。
     5.研究了色噪声作用下FitHugh-Nagumo模型的相干共振和随机共振现象。研究表明,变差系数和信噪比是色噪声相关时间、色噪声强度的非单调函数。
     6.研究了神经递质以泊松点序列释放和电压门控离子通道噪声共同作用下线性整合放电模型的相干共振现象。研究表明,神经元放电的峰峰间隔是神经递质的达到强度、离子通道噪声强度的非单调函数。
     7.研究了电压门控离子通道噪声和突触噪声共同作用下非线性整合放电模型的相干共振现象。研究表明,首次放电概率分布、放电率是离子通道噪声和突触噪声强度的非单调函数,适当的噪声强度可以使神经元自发放电。
Because of the cooperation between a system, the input noise and input signal of the system, at some mediate noise intensity, the input signal is amplified, thus the output signal-to-noise ratio (SNR) reaches a maximum. This nonlinear phenomenon is called stochastic resonance (SR). Stochastic resonance in a broad sense means the output signal of the system is a non-monotonic function of some parameter of the noise, of the system or parameter of the input signal. Coherence resonance (CR) characterizes a nonlinear phenomenon that a noisy excitable system responds with an excitation sequence called a "spike train", at an optimum noise intensity the spike sequence is much more regular.
     In this paper, the SR phenomena of some linear and nonlinear systems are investigated. The application of the SR and CR in integral-and-fire model and FitHugh-Nagumo model is researched. The main contributions are listed below:
     1. The SR in a first-order linear system subject to additive and multiplicative dichotomous-noise (DN) is investigated. By using the properties of the DN and linear-response theory, the expressions have been found for the output SNR of the system. It is shown that the SNR is a non-monotonic function of the correlation time of the additive and multiplicative DN, and it varies non-monotonously with the intensity of the multiplicative DN as well as with the external field frequency.
     2. The SR phenomenon of an over-damped second-order linear system subject to the DN is investigated. Result shows that the output amplitude gain (OAG) is a non-monotonic function of the strength, the correlation rate of the DN, as well as the damping coefficient and frequency of the driving signal. In addition, by choosing appropriate parameters of the noise, the OAG of the noisy system can be larger than that of the noise-free system.
     3. The SR in a bistable system subject to the DN is investigated. It is found that the SNR is a non-monotonic function of the correlation time of the DN, two peaks can occur on the curve of the SNR. The spectral power amplification (SPA) is a non-monotonic function of the strength of the DN.
     4. The SR phenomenon of an overdamped Brown particle in an asymmetric bistable potential, driven by external periodical signal and multiplicative noise is investigated. The expressions have been obtained for the quasi-steady-state probability distribution function. It is found that the input energy (IE) pumped into the system by the external driving shows a SR-like behavior as a function of the strength and correlation time of the noise and as a function of the asymmetry potential of the system.
     5. The CR and the SR phenomenon in the FitzHugh-Nagumo model induced by colored noise are investigated. It is shown that the coefficient of variation (CV) and the SNR are non-monotonic functions of the correlation time of and intensity of the colored noise.
     6. The CR phenomenon of a linear integral-and-fire model subject to a neurotransmitter Poisson point trains and a voltage-gated noise is investigated. It is shown that the interval-spike-interval (ISI) is a non-monotonic function of the intensity of neurotransmitter arrivals trains and the strength of the voltage-gated channel noise.
     7. The CR phenomenon of a nonlinear integral-and-fire model subject to a voltage-gated channel noise and a synaptic noise is investigated. It is shown that the probability distribution of the first fire (FPD) and the firing rate (FR) are non-monotonic functions of the strength of the voltage-gated channel noise and the synaptic noise. Furthermore, by choosing appropriate noise parameter, spontaneous fire of neuron can occur.
引文
[1] 郝柏林.从抛物线谈起--混沌动力学引论.上海:上海科技教育出版社,1993
    [2] 李翊神.非线性科学选讲.合肥:中国科学技术大学出版社,1994
    [3] 谷超豪.别有洞天.非线性科学.长沙:湖南科学技术出版社,2001
    [4] 陆同兴.非线性物理概论.合肥:中国科学技术大学出版社,2002
    [5] 庞小峰.孤子物理学.成都:四川科学技术出版社,2003
    [6] Hille B. Ionic Channel of Excitable Membranes. Sinauer Associates, 1992
    [7] Mainen Z F, Sejnowski T J. Reliability of spike timing in neocortical neurons. Science, 1995,268:1503-1506
    [8] Nowak L G. Influence of low and high frequency inputs on spike timing in visual cortical neurons. Cereb. Cortex, 1997, 7:487-501
    [9] Stevens C F, Zador A M. Input synchrony and the irregular firing of cortical neurons. Nat.Neurosci, 1998, 1:210-217
    [10] Vreeswijk C, Sompolinsky H. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science, 1996, 274:1274-1726
    [11] White J A. Noise from voltage-gated ion channel may influence neuronal dynamics in the entorhinal cortex. J. Neurophysiol, 1998, 80:262-269
    [12] Zador A. Impact of synaptic unreliability on the information transmitted by spiking neurons. J.Neurophysiol, 1998, 79:1230-1238
    [13] Schneidman E. Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neural Comput, 1998, 10:1679-1703
    [14] Rubinstein J T. Pseudospontaneous activity: Stohastic independence of auditory nerve fibers with electrical stimulation. Hear. Res., 1999, 127:108-118
    [15] Collins J J. Stochastic resonance without tuning. Nature, 1995, 376:236-238
    [16] Raun H A. Oscillation and noise determine signal transduction in shark mutimodal sensory cells. Nuture, 1994, 367:270-273
    [17] Braun H A. Low-dimensional dynamics in sensory biology 1: thermally sensitive electroreceptors of the catfish. J. Comput. Neurosci, 1997, 4:335-347
    [18] Kirkpatrick S. Optimization by simulated annealing. Science, 1983, 220:671-680
    [19] Rubinstein J T, Miller C A. How do cochler prosheses work. Curr. Opin. Neurobiol., 1999, 9: 399-404
    [20] Sewell W F. The relation between the endocochlear potential and spontaneous activity in auditory nerve fibres of the cat. J. Physiol., 1984, 347: 685-696
    [21] Johnson D H, Kiang N Y. Analysis of discharges recorded simultaneously from pairs of auditory nerve fibers. Biophys. J., 1976, 16: 719-734
    [22] Kiang N Y, Moxon E C. Physiological considerations in artificial stimulation of the inner ear. Ann. Otol. Rhinol. Laryngol., 1972, 81: 714-730
    [23] Kiang N Y. Auditory nerve activity in cats ith normal and abnormal cochleas. In Sensorineural hearing Loss, 1970, 241-268
    [24] Parnas B R. Noise and neuronal populations conspire to encode simple waveforms reliably. IEEE Trans. Biomed. Eng. 1996, 43: 313-318
    [25] Miller C A. Electrically evoked single-fiber action potentials from cat: response to monopolar, monophasic stimulation. Hear. Res. 1999, 43: 197-218
    [26] Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance. J.- Phys. A: Math. Gen., 1981, 14(11): L453-L457
    [27] Nicolis C, Nicolis C. Stochastic aspects of climatic transitions-additive fluctuations. Tellus, 1981,33(3):225-234
    [28] Fauve S, Heslot F. Stochastic resonance in a bistable system. Phys. Lett. A, 1983, 97A (1-2): 5-7
    [29] McNamara B, Wiesenfeld K, Roy R. Observation of stochastic resonance in a ring laser. Phys. Rev. Lett., 1988, 1(4):3-4.
    [30] Bruce A, Kurt W. Theory of stochastic resonance. Phys. Rev. A., 1989, 39 (9): 4854-4869
    [31] Presilla C, Marchesoni F, Gammaitoni L. Periodically time-modulated bistable systems: Nonstationary statistical properties. Phys. Rev. A., 1989,40(4): 2105-2110
    [32] Gang F, Qing G R, Gong D C. Comparison of analog simulation of stochastic resonance with adiabatic theory. Phys. Rev. A., 1991,44(10):6414-6420
    [33] Dykman M I, Luchinsky D G. Noise-induced linearization. Phys. Lett. A., 1994, 193: 61-66
    [34] Fox R., R.Ian, G. Vemuri. Fast, accurate algorithm for numerical simulation of exponentially correlated colored noise. Phys. Rev. A, 1988, 38(5):5938-5945
    [35] Smythe J, Moss F. Observation of a noise-induced phase transition with an analog simulator. Phys. Rev. Lett., 1983, 51:1062-1068
    [36] Adair R K. Constraints on biological of weak extremely-low-frequency electromagnetic fields. Phys. Rev. A, 1991,43: 1039-1048
    [37] Douglass J K, Wilkens L, Pantazelou E, et al. Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature, 1993, 365: 337-340
    [38] Moss F, Douglass J K, Wilkens L, et al. Stochastic resonance in an electronic FitzHugh-Nagumo model. Ann N Y Acad Sci, 1993, 706: 26-41
    [39] Levin J E, Miller J P. Broadband neural encoding in the cricket cereal sensory system endhanced by stochastic resonance. Nature, 1996, 380: 165-168
    [40] Russell D, Wilkens L, Moss F. Use of behavioral stochastic resonance by paddlefish for feeding. Nature, 1999, 402: 219-213
    [41] Simonotto E, Riani M, Seife , et al. Visual perception of stochastic resonance. Phys Rev Lett, 1997,78:1186-1189
    [42] Simonotto E, Spano F, Riani M, et al. fMRJ studies of visual cortical activity during noise stimulation. Neurocomputing, 1999, 26-27: 511-516
    [43] Shigeo M T, Imranul A, Charles H T. Stochastic in osteogentic response to mechannical loading. The FASEB Journal, 2003, 17: 313-314
    [44] Seger M B, Igor V. Noise-induced enhancement of signal transduction across voltage-dependent ion channels. Nature, 1995, 378: 362-364
    [45] Kandel E R, Schwartz J R, Jessell T M. Principles of Neural Science. America: Norwalk, Conn., 1991
    [46] Rinzel J. A formal classification of bursting mechanisms in excitable systems. American Mathematical Society: Proceedings of the International Congress of Mathematicians, 1987, 1578-1594
    [47] Izhikevich E M. Neural excitability, spiking, and bursting. International Journal of Bifurcation and Chaos, 2000, 10: 1171-1126
    [48] Golomb D, Wang X J, Rinzel J. Synchronization properties of spindle oscillations in a thalamic reticular nucleus model. J. Neurophysiol, 1994, 72:1109-1126
    [49] Terman D, Rubin J, Yew A C, et al,. Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J. Neuroscience, 2002, 22:2963-2976
    [50] Terman D H, Ermentrout G B, Yew A C. Propagating activity patterns in thalamic neuronal networks. SLAM J. Appl. Math., 2001,61:1578-1604
    [51] Francesc S, Jose M S, Jordi G O. Spatiotemporal order out of noise. Rev. Mod. Phy. 2007, 79: 829-882
    [52] Hoppensteadt F C, Izhikevich E M. Weakly Connected Neural Networks. German: Springer- Verlag, 1997
    [53] Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol, 1952, 10: 500-544
    [54] Hanggi P, Talkner, Borkovec M. Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys., 1990, 62(2): 251-342
    [55] McNamara B, Wiesenfeld K, Roy R. Observation of stochastic resonance in a ring laser. Phys. Rev. Lett., 1988, 1(4):3-4.
    [56] Dykman M I, Mannella R, McClintock P V E. Comment on "Stochastic resonance in bistable systems". Phys. Rev. Lett., 1990, 65(20):2606-2606
    [57] Dykman M I, Mannella R, McClintock P V E. Giant nonlinearity in the low frequency response of a fluctuating bistable system. Phys. Rev. E, 1993, 47(3): 1629-1632
    [58] Wiesenfeld K, Jaramillo F. Minireview of stochastic resonance. Chaos, 1998, 8(3):539-548
    [59] Choi M H, Fox R F, Jung P. Quantifying stochastic resonance in bistable systems: response vs residence-time distribution functions. Phys. Rev. E, 1998, 57(6):6335-6344
    [60] Priscilla E G, Lawrence M W. Statistical analysis of stochastic resonance in a simple setting. Phys. Rev. E, 1998, 60(4):4687-4695
    [61] Stocks N G, Mannella R. Generic noise-enhanced coding in neuronal arrays. Phys. Rev. E, 2001, 64(3):031902-031905
    [62] Collins J J, Chow C C, Imhoff T T. Stochastic resonance without tuning. Nature, 1995, 376:236-239
    [63] Grigorenko A N, Nikitin S I, Roschepkin G V. Stochastic resonance at higher harmonics in monostable systems. Phys. Rev. E, 1997, 56(5):R4907-R4910
    [64] Rubinstein J T, Wilson B S. Pseudospontaneous activity: stochastic independence of auditory nerve fibers with electrical stimulation. Hearing Research, 1999, 127:108-118
    [65] Anishchenko V S, Safonova M A, Chua L O. Stochastic resonance in Chua's circuit. Int. J. Bifurcation and Chaos, 1992, 2(2):397-401
    [66] Xu B, Duan F, Boo R, et al,. Stochastic resonance with tuning system parameters: The application of bistable systems in signal processing. Chaos, Solitons and Fractals, 2002, 13(4):633-644
    [67] McNamara B, Wiesenfield K. Theory of stochastic resonance. Phys. Rev. A, 1989, 39(9): 4854-4869
    [68] Wiesenfeld K, Weltens T, Buchleitner A. Coherent evolution in noise environments. Letter Notes in physics, Germany Springer, 2002
    [69] Gang H, chum G D, Xiaodong W. Stochastic resonance in a nonlinear system driven by an aperiodic force. Phys. Rev. A, 1992, 46(6), 3250-3254
    [70] Ambtard P O, Zozor S. Cyclostationary and stochastic resonance in threshold devices. Phys. Rev. E, 1999, 59(5):5009-501
    [71] Fulinski A. Relaxation, noise-induced transitions, and stochastic resonance driven by non-Markovian dichotomic noise. Phys. Rev. E. 52 (4) 1995 4523-4526
    [72] Barzykin A V, Scki K. Periodically driven linear system with multiplicative colored noise. Phys. Rev. E. 57 (6) 1998 6555-6563
    [73] Berdichevsky V, Gitterman M. Stochastic resonance in linear systems subject to multiplicative and additive noise. Phys. Rev. E, 1999, 60(2): 1494-1499
    [74] Yanfei Jin, Wei Xu, Meng Xu. Stochastic resonance in linear system due to dichotomous noise modulated by bias signal. J. Phys. A, 2005, 38:3733-3738
    [75] 周玉荣,郭锋,蒋世奇,等.色噪声作用下线性系统的随机共振.电子科技大学学报,2008:37(2):232-234
    [76] Michaelis L, Menten M I. Die Kinetik der Invertinwirkung, Biochem. Z. 1913, 49:333-369
    [77] Monod J, Wyman J, Changeux J P. on the nature of allosteric transition: A plausible model.Journal of Molecular Biology, 1965, 12:88-118
    [78] Goldbeter A L, Lefever R. Dissipative structures for an allosteric model. Biophysical Journal,1972, 12:1302-1315
    [79] Smolen P. A model for glycolytic oscillations based on skeletal muscle phosphofructokinase kinetics. Journal of Theoretical Biology, 1995, 174:137-148
    [80] Levine H G. Physical Chemistry. Tokyo: McGraw-Hill Kogokusha Ltd, 1972
    [81] Denbigh K. The Principles of Chemical Equilibrium. London: Cambridge University Press,1983
    [82] Yurong Zhou, Feng Guo, Shqi Jiang, et al. STOCHASTIC RESONANCE IN A LINEAR SYTEM INDUCED BY DICHOTOMOUS NOISE. International Journal of Modern Physics B, 2008, 22(6): 697-708
    [83] 周玉荣,郭锋,蒋世奇,等.信号调制色噪声作用下线性系统的随机共振.计量学报,2008:29(4):369-373
    [84] Kuperman M N, Wio H S, Izus G. Stochastic resonance media: I. Signal-to-noise ratio for the activator-inhibitor system through a quasivariational approach. Phys. Rev. E., 1998, 57(5),5122-5125
    [85] Neff J D, Patel G N. Spatiotemporal dynamics of a stochastic VLSI array. Proceedings of the 1998 IEEE International Symposium, Circuits and Systems, 1998, 3:542-545
    [86] Mantegna R N, Spagnolo B. Stochastic resonance in a tunnel diode. Phys. Rev. E, 1994, 49(3):R1792-R1795
    [87] Aldrich R W, Corey D P, Stevens C F. A reinterpretation of mammalian sodium channel gationg based on single channel recording. Nature, 1983,306:436-441
    [88] Peskin C S. Mathematical Aspects of Neurophysiotogy: Courant Institute of Mathematical Sciences lecture Notes, New York, 1991
    [89] Bourret R C. Brownian motion of harmonic oscillator with stochastic frequency. Physica A,1973, 65:303-307
    [90] Bourret R C. Propagation of randomly perturbed fields. Canad J Phys, 1962, 40:782-790
    [91] Wu X J, Cai W S, Shao X G et al. A method based on stochastic resonance for the detection of weak analytical signal. Talanta, 2003, 61: 863-869
    [92] 祝恒江,李蓉,温孝东.利用随机共振在强噪下提取信息信号.物理学报,2003,52(10):2404-2408
    [93] Lindner B, Ojalvo J G, Neiman A et al. Effects of noise in excitable systems. Physics Reports.2004, 392:321-424
    [94] Tocino A, Ardanuy R. Runge-Kutta methods for numerical solution of stochastic differential equations. Journal of Computational and Applied Mathematics, 2002, 128:219-241
    [95] Chandho Kim, Eok Kyun Lee. Numerical method for solving stochastic differential equations with dichotomous noise. Phys. Rev. E, 2006, 73:026101-1-026101-11
    [96] Murray J D. Mathematical biology. Germany: Springer, 1989
    [97] 涂安慎,杜婵英.免疫的非线性模型.上海:上海科技教育出版社,1998
    [98] Keener J, Sneyd J. Mathematical Physiology. Germany: Springer, 1998
    [99] YuRong Zhou, HuiMei Pan, Feng Guo, XiaoFeng Pang. Stochastic Reonance in a Bistable System Subject to Dichotomous Noise. Commun. Theor. Phys. 2008, 50(2): 387-390
    [100] Fulinski A. Stochastic flows driven by non-Markovian dichotomic noise. Acta Phys. Polon. B.1999,30:203-209
    [101] Jung P. Hanggi P. Amplification of small signals via stochastic resonance. Phys. Rev. A. 1991, 44(2): 8032-8042
    [102] Frohlinde V S, Ashkenazy Y, Ivanov P C. Noise effects on the complex patterns of abnormal heartbeats. Phys. Rev. E, 2001, 87(6):068104-068109
    [103] YuRong Zhou, Feng Guo, XiaoFeng Pang. Effect of Asymmetry in a Bistable System Subject to Multiplicative Colored Noise. Commun. Theor. Phys. 2007,48(2): 1059-1062
    [104] Ya J, Jiarong L. Steady-state analysis of a bistable system with additive and multiplicative noise. Phys. Rev. E. 1996, 53(6): 5786-5792
    [105] Guyton A C, Hall J E. Textbook of Medical physioloy. Philadelphia: Saunders, 1996
    [106] Wong A Y K, Fabiato A, Bassngthwaigthe. Model of calcium induced calcium release mechanism in cardiace cells. Bulletion of Mathematical Biology. 1992, 54: 95-116
    [107] Wyman R J. Neural generation of breathing rhythm. Ann. Rev. Physiol. 1977, 39: 417-448
    [108] Iwai T. Study of stochastic resonance by method of stochastic energetics. Physica A. 2001, 300(3-4): 350-358
    [109] Debasis D, Jayannavar A M. Bona fide stochastic resonance : a view point from stochastic energetics. Physica A. 2005,345(3-4): 404-410
    [110] 张守信,金连弘.神经生物学.北京:科学出版社,2002
    [111] Rabinovich M I, Selverston A I, Abarbanel A D I, et al,. Dynamical principles in neuroscince. Rev. mod. Phys., 2006, 78: 1213-1265
    [112] Zhou C, Kurths N, Bing H. Frequency and phase locking of noise-sustained oscillations in coupled excitable systems: Array-enhanced resonances. Phys. Rev. E, 2003, 67: 030101-030107
    [113] Yurong Zhou, Anying Zhang, Xiaofeng Pang. Coherence and Stochastic Resonance of the Fizhugh-Nagumo System Caused by Coloured noise. The 2st International Conference on Bioinformatics and Biomedical Engineering, 2008, ICBBE 2008: 1453-1456
    [114] Kiss L, Gingl Z, Marton Z, et al. l/f noise in systems showing stochastic resonance. J. Stat. Phys., 1993,70:451-462
    [115] Pantazelou E, Moss F, Chialvo D. In noise in physical systems and 1/f fluctuations. New York: AIP Press, 1993
    [116] Bulsara A R, Schmera G. Stochastic resonance in globally coupled nonlinear oscillators. Phys. Rev. E, 1993,47:3734-3737
    [117] Bulsara A R, Maren A, Schmera G. Single effective neuron: dendritic coupling effects and stochastic resonance. Biol. Cyb., 1993, 70: 145-156
    [118] Inchiosa M E, Bulsara A R. Nonlinear dynamic elements with noisy sinusoidal forcing: enhancing response via nonlinear coupling. Phys. Rev. E, 1984, 52: 327-339
    [119] Lindner J, Meadows B, Ditto W. Array enhanced stochastic resonance and spatiotemporal synchronization. Phys. Rev. Lett., 1995, 75: 3-6
    [120] Wio H S. Stochastic resonance in a spatially extended system. Phys. Rev. E, 1996, 54: 3075-3078
    [121] Rappel W J, Karma A. Noise-induced coherence in a neural networks. Phys. Rev. Lett., 1996, 77: 3256-3259
    [122] Kanamaru T, Horita T, Okabe Y. Theoretical analysis of array-enhanced stochastic resonance in the diffusively coupled FitzHugh-Nagumo equation. Phys. Rev. E, 2001, 64: 031908/1-10
    [123] Tanabe S, Pakdaman P. Dynamics of moments of FitzHugh-Nagumo neuronal models and stochasitc bifurcation. Phys. Rev. E, 2001, 63: 031911/1-9
    [124] Haeften B V, Deza R, Wio H S. Enhancement of stochastic resonance in distributed systems due to a selective coupling. Phys. Rev. Lett., 2000, 84: 404-407
    [125] Lindner J F, Meadows B K, Ditto W L. Scaling laws for spatotemporal synchronization and array enhanced stochastic resonance. Phys. Rev. E, 1996, 53:2081-2086
    [126] Lapicquel L. Recherches quantitatives sur 1'excitation electrique des nerfs traitee comme une polarization. J. Physiol. Pathol. Gen., 1907, 9: 620-635
    [127] Tuckwell H C. Introduction to theoretical neurobiology. In: linear cable theory and dendritic struture. Cambridge: Cambridge Uniersity Press, 1988
    [128] Hill A V. Excitation and accommodation approximations in nerve. J. Neurobiol., 1936, 119: 127-153
    [129] Gerstein G L, Mandelbrot J M. Random walk models of the spike activity of the neurons. Biophys. J., 1964, 6:53-69
    [130] Uhlenbeck G E, Omstein L S. On the theory of Brownian motion. Phy. Rev., 1930, 36: 823-841
    [131] Stein R B. A theoretical analysis of neuronal variability. Biophys. J., 1965, 5: 173-194
    [132] Stein R B. Some models of neuronal variability. Biophys. J., 1968, 7: 37-38
    [133] Knight B W. Dynamics of encoding in a population of neurons. J. Gen. Physiol., 1972, 59: 734-766
    [134] Kryukov V I. Wald's indentity and random walk models for neuron firing. Adv. Biomed. Eng., 1976,36:44-54
    [135] Tuckwell H C. On stochastic models of the activity of single neurons. J. Theor. Biol., 1977, 65: 783-785
    [136] Lansky P. On approximations of stein's neuronal model. J. Theor. Biol., 1984, 107: 631-647
    [137] Tuckwell H C. Neuronal interspike time histograms for a random input model. Biophys. J., 1978,21:289-290
    [138] Tuckwell H C. Recurent inhibition and afterhyperpolarization: effects on neuronal discharge. Biol. Cybern. 1978,30: 115-123
    [139] Wilbur W J, Rinzel J. An analysis of stein's model for stochastic neuronal excitation. Biol. Cyben., 1982, 45: 107-114
    [140] Wilbur W J, Rinzel J. A theoretical basis for large coefficient of variation and bimodality in neuronal interspike interval distributions. J. Theor. Biol., 1983, 105: 345-368
    [141] Musila M, Lansky P. On the interspike intervals caculated from diffusion approximations of Stein's neuronal model with reversal potentials. J. Theor. Biol., 1994, 171:225-232
    [142] Cox D R. Renewal theory. New York: Chapman and Hall, 1962 [143] Cox D R. Lewis PAW. The theory of stochastic processes. London: Chapman and Hall, 1965
    [144] Tuckwell H C. Introduction to Theoretical Neurobiology. Cambridge: Cambridge UniversityPress, 1988
    [145] Burkitt A N, Clark G M. Calculation of interspike intervals for integrate-and-fire neurons with Possion distribution of synaptic inputs. Neural Comput., 2000, 12: 1789-1820
    [146] Plesser H E, Tanaka S. Stochastic resonance in a model neuron with reset. Phys. Lett. A, 1997, 225: 228-234
    [147] Burkitt A N, Clark G M. Analysis of integrate-and-fire neurons: synchronization of synaptic input and spike output in neural systems. Neural Comput, 1999, 11: 871-901
    [148] Van Kampen N G. Stochastic processes in physics and chemistry. Amsterdam: North-Holland, 1992
    [149] Risken H, The Fokker-Planck equation. Berlin: Springer, 1996
    [150] Brunei N, Hakim V. Fast global oscillations in networks of integrate-and-fire neurons with low firing rate. Neural Comput, 1999, 11: 1621-1671
    [151] Burkitt A N, Clark G M. synchronization of the neural response to noise periodic synaptic input. Neural Comput., 2001, 13: 2639-2672
    [152] Burkitt A N, Meffin H, Grayden D B. Spike timing-dependent- plasticity: The relationship to rate based learning for models with weight dynamics determined by a stable fixed point. Neural Comput., 2004, 16:885-940
    [153] Gedeon T, Holzer M. Phase locking in integrate-and-fire models with refractory periods and modulation. J. Math. Biol., 2004, 49:577-603
    [154] Gerstner W. Population dynamics of spiking neurons: Fast transients, asynchronous states, and locking. Neural Comput., 2000, 12:43-89
    [155] 周玉荣,郭锋,张安英,等.线性整合放电模型的相干共振.生物物理学报.2007,23:129-133
    [156] Singer W. Synchronization of cortical activity and its putative role in information processing and learning. Annu Rev Physiol, 1993, 55:349-374
    [157] Tsodysks M V, Skaggs W E, Sejnowski T J, et al. Polpulation dynamics and theta rhythm phase precessions of hippocampal place cell firing: a spking neuron model. Hippocampus, 1996, 6:271-280
    [158] Rennie C J, Robinson P A, Wright J J. Unified neurophysical mode of EEG spectra and evoked potentials. Biol Cybern, 2002, 86:457-471
    [159] Winfree A T. Biological rhythms and the behavior of populations of coupled oscillators. J Theor Biol,1967, 16:14-42
    [160] Kuramoto Y. Collective synchronization of pulse-coupled oscillators and excitable units. Physica D, 1991, 50:15-30
    [161] Mirollo R E, Strogatz S H. Synchronization of pulse-coupled bilogical oscillators. SIAM J Appl Math, I990, 50:1645-1662
    [162] Sakaguchi H. Oscillatory phase transition and pulse propagation in noisy integrate-and-fire neurons. Phys. Rev. E., 2004, 70:022901-022908
    [163] Bressloff P C. Synaptically generated wave propagation in excitable neural media. Phys Rev Lett, 1999, 82:2979-2982
    [164] Bressloff P C, Coombes S. Desynchronization, mode locking, and bursting in strongly coupled integrate-and-fire oscillators. Phys. Rev. Lett, 1998, 81:2168-2171
    [165] Bressloff P C, Coombes S. A dynamical theory of spike train transitions in networks of integrate-and-fire oscillators. SIAM J Appl Math, 2000, 60:820-841
    [166] Bi G Q, Poo M M. Synaptic modification by correlated activity: Hebb's postulate revisited. Ann Rev Neurosci, 2001, 24:139-166
    [167] Gerstner W. Population dynamics of spiking neurons: Fast transients, asynchronous states, and locking. Neural Comput., 2000, 12:43-89
    [168] Chapeua B F, Goddivier X, Chambet N. Stochastic resonance in a neuron model that transimts spike trains. Phys. Rev. E., 1996, 53:1273-1275
    [169] Henghan C, Chow C C, Collins J J, et al., Information measures quatifying aperiodic stochastic resonance. Phys. Rev. E, 1996:2228-2231
    [170] Bulsara A R, Zador A. Threshold detection of wideband signals: a noise-induced maximum in mutual information. Phys. Rev. E, 1996, 54:2185-2188
    [171] Bulsara A R, Lowen S B, Rees C D. Cooperative behavior in the periodically modulated Wiener process: noise-induced complexity in a model neuron. Phys. Rev. E, 1994, 49: 4989-5000
    [172] Stemmler M. A single spike suffices: the simplest form of stochastic resonance in model neurons. Netw Comput Neural Syst., 1996, 7:687-716
    [173] Bulsara A R, Etston T C, Doering C R, et al., Coperative behavior in periodically driven noisy integrate-fire models of neuronal dynamics. Phys. Rev. E, 1996, 53:3958-3969
    [174] Fourcaud N, Brunel N. Dynamics of the firing probability of noisy integrate-and-fire neurons. Neural Comput., 2002, 14:2057-2110
    [175] Longtin A, Chialvo DR. Stochastic and deterministic resonances for excitable systm. Phys. Rew. Lett., 1998, 391:4012-4015
    [176] Benjamin L, Schimansky G L, Longtin A, et al. Maximizing spike train coherence or incoherence in the leaky integrate-and-fire model. Phys. Rev. E, 2002, 66:031916/1-6
    [177] 邓之录,梁之舜.随机点过程及其应用.北京:科学出版社,1992
    [178] Hanggi P. Correlation Functions and Masterequations of Generalized (Non-Markovian) Langevin Equation. Z. Physik B. 1978, 31:407-416
    [179] Guy J. New stochastic fractional models for Mathusian growth, the Poissonian birth process and optimal management of populations. Mathematical and computer modelling. 2006, 44: 231-254
    [180] 周玉荣,郝小江,张安英,等.非线性积分放电模型的相干共振.电子科技大学学报.2008.37:724-726
    [181] Marcin K, Michael S, Peter T, et al. Neuron firing in driven nonlinear integrate-and-fire models. Mathematical Bioscinces. 2007, 207:302-311
    [182] Reimann P. Brownian motors: noisy transport far from equilibrium. PHYSICS REPORTS.2002, 362:57-265
    [183] Feng Guo, Yu-Rong Zhou, Si-Qi Jiang, et. al. Stochastic resonance in a mono-stable system with multiplicative and additive noise. J. Phys. A. Gen., 2006, 39:13861-13868
    [184] 周玉荣,张安英,庞小峰.随机神经递质释放驱动非线性整合放电模型相干共振.中国生物医学工程进展-2007中国生物医学工程联合学术年会论文集.西安:西安交通大学出版社,2007,1266-1269
    [185] 胡岗.随机力与非线性系统.上海:上海科学教育出版社,1994
    [186] Feng Guo, Yurong Zhou, Shiqi Jiang, et al. Stochastic resonance in a bias linear system with multiplicative and additive noise. Chinese Physics. 2006, 15(5): 0947-0952

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700