无线通信系统中的协同传输技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对数据传输速率和服务质量要求的提高,无线通信系统的网络架构和传输技术都在不停地演变。作为提高无线通信系统频谱效率的一种有效方法,多输入多输出(MIMO)技术在近年来得到了广泛的关注,并被许多标准所采纳。通过在收发双方部署多个天线并采用空时编码等方式可以获得空间分集,增强无线链路的可靠性。但是出于终端尺寸,硬件复杂度以及实现成本等因素的考虑,在移动终端上部署多个天线有一定的困难。为此,人们提出了协同通信的概念。在一个协同通信系统中,一个用户在系统中其他用户或终端的配合下进行通信。这种新颖的技术可以有效增加空间分集,扩大网络覆盖范围并降低终端发送功率,因此得到了工业界和学术界的广泛关注,有望成为第三代移动通信系统长期演进更高级版本(LTE Advanced)的关键技术之一。
     常用的协同传输协议包括放大传送,解码传送和压缩传送等。这些协议在复杂度和性能方面各有优劣。本文围绕协同传输协议的性能分析与优化,协同终端选择,新颖协同传输协议的设计等方面展开研究。
     在一个放大传送协同传输系统中,接收端输出信噪比是一个十分复杂的调和平均值的形式。要分析系统的精确误符号率是十分困难的,通常只在某些简单的信道模型例如瑞利信道下可以得到误符号率的表达式。而这些表达式却十分复杂,通常包含贝赛尔函数的积分。本文中我们采用参数化性能分析方法,分析各种放大传送协同系统在高信噪比时的误符号率性能。这些系统包括两跳正交放大传送系统,两跳选择性放大传送系统,多跳放大传送系统。分析所得的误符号率表达式十分简单,从中可以方便地得到这些放大传送系统的分集阶数和分集增益。而且所提出的方法适合于任意信道,只要这些信道的概率密度函数在零点有一个有效的级数展开式。在此基础上,文中又讨论了两跳正交放大传送系统在Nakagami-m信道下基于信道统计信息的功率分配方法,通过为发送端和协同终端(中继)分配不同的功率来最小化误符号率和中断概率。由于最优的功率分配需要求解一个非线性方程组,文中还提出了一种低复杂度的次优功率分配方法,并通过计算机仿真检验了这两种功率分配方法所能获得的性能增益。
     在一个具有多个协同终端的系统中,分布式空时编码是一种高效率的多终端协同方法,不过这种协议需要多个发送终端信号之间严格同步以保持其正交性。为此本文提出了一种适用于同步和异步情况的基于交织器的多终端协同传输协议,给出了接收端相应的信号检测算法并仿真了其性能。这种协议不要求发送终端之间的同步,即使在异步情况下经过适当处理仍可以获得良好的分集效果,并且适合于任意数目的协同终端。
     和传统点对点通信系统相比,信道估计在协同系统中较为复杂。特别是对于采用放大传送传输协议的系统而言,由于接收端需要知道发送端与协同终端,以及协同终端与接收端之间所有信道,其信道估计的难度更大。为此我们提出了广义差分编码技术并将其应用于放大传送协同通信系统中来避免信道估计。这种差分编码采用了分块编码的思想,发送数据按照一定长度进行分块。每一块第一个符号为参考符号,其余符号为普通符号,通过为参考符号和普通符号分配不同功率可以提升系统性能。在信道变化不是很快时,其性能优于传统的差分编码,并且和理想相干检测接收机的性能差距非常小。
     在一个多用户协同通信系统中,如何选择一个合适的协同伙伴进行信号的传输需要考虑性能与公平性等诸多因素。现有的协同伙伴选择方法虽然可以获得较好的性能但是无法保证用户之间的实时公平性。文中提出了一种考虑实时公平性的多用户协同伙伴选择方法,该方法基于直接链路瞬时信道状况来选择协同用户,直接链路较差的用户可以优先选择其协同伙伴,这样可以保证每次突发传输中的用户公平性。文中分析了该协同伙伴选择方法的性能下限,并通过仿真和其他几种伙伴选择方法进行了比较。
     选择性中继是一种高效率的协同传输方法。而选择最佳的协同终端进行传输需要决策者具有全局的信道信息,这在实际系统中是非常困难的。因此文中讨论了基于部分信道信息的协同终端选择方法。考虑了基于理想的瞬时信道信息,统计信道信息以及量化信道信息的以最小化比特误码率或者中断概率为目标的协同终端选择方法。文中还研究了信道量化器的设计问题,提出了基于目标速率和目标误码率的量化器设计方法。仿真结果表明基于量化信道信息的协同终端选择可提供复杂度与系统性能之间的良好折中。
     当系统中有多个用户的数据需要中继时,采用无线网络编码技术可以有效提高传输效率。不过与传统点对点直接传输相比,仍然存在频谱效率的损失。文中提出了一种基于联合网络编码与信道解码的高效率协同传输技术。该技术有效利用了无线信道的广播特性以及常见信道编码的线性特性,具有和点对点直接传输相同的效率,并且有效改善了用户的误码率性能。
With the growing demand for high data rates and high quality of service,there iscontineous evolution in wireless network architecture and advanced transmissiontechnique.It is well known that multiple-input multiple-output (MIMO) technologypromises significant improvements in terms of spectral efficiency and link reliability,and is adopted in many standards.By employing multiple antennas at the transmitterand the receiver,spatial diversity can be achieved with simple space-time blockcoding.However,due to size,cost and hardware complexity limitations,the use ofmultiple antennas at mobile terminals might be impractical in many instances.Recently,cooperative communication has been proposed as a promising technologyfor future wireless communication systems.By exploiting the broadcast nature of thewireless medium,multiple wireless terminals work together to form a virtual antennaarray and spatial diversity is achievable even for single-antenna terminals.Thebenefits of cooperative communication include increasing the spatial diversity order,reducing the transmit power and extending the radio cover range.This noveltransmission technique has attracted a lot of research attention in recent years,and is apromising technique for future LTE-Advanced systems.
     So far,several efficient cooperative transmission protocols have been proposed inthe literature,including amplify-and-forward (AF),decode-and-forward (DF),andcompress-and-forward (CF).In this thesis,we mainly focus on performance analysisand optimization of amplify-and-forward protocol,cooperative partner selection inmulti-user systems,and novel cooperation protocol design.
     In an amplify-and-forward cooperative system,the end-to-end signal-to-noiseratio (SNR) is in the form of the harmonic mean of the source-relay channel SNR andthe relay-destination channel SNR.It is quite difficult to derive the exact symbol errorrate (SER) expression.Instead of deriving the exact probability density function (PDF)of the harmonic mean of two independent non-negative random variables,we studythe series expansion of this PDF around zero.This statistical result is then applied toevaluate the end-to-end performance of various AF cooperative systems,includingdual-hop orthogonal AF system,dual-hop selection relaying AF system and multihopAF system.Closed-form expressions for the average SER in the high SNR regime arederived.The presented method is suitable for arbitrary fading channel,provided thatthe PDF of the channel SNR has a valid Taylor expression in the neighborhood of zero.Based on these SER expressions,we further investigate the power allocation indual-hop orthogonal AF systems over Nakagami-m fading channels.Based on thestatistical channel knowledge,the optimal power allocation scheme is proposedaiming at minimizing the asymptotic SER and the outage probability.Since theoptimal power allocation scheme requires solving nonlinear equations,we alsopropose a low complexity sub-optimal power allocation scheme for practicalimplementation.The performance improvement with optimal and sub-optimal powerallocation is analyzed and validated by numeric results.
     Distributed space-time coding (DSTC) is an efficient cooperation protocol forsystem with multiple cooperative terminals (relays).However,it requires accuratesymbol-level synchronization and prior coordination between cooperative relayterminals,which is difficult to implement in distributed networks.In this thesis,wepropose a novel cooperative transmission scheme based on interleaving to achievecooperative diversity in both synchronous and asynchronous systems with littleprotocol overhead.A low complexity iterative detection algorithm is also proposed tocombine signals from different relays at the receiver.In the proposed scheme,eachcooperative terminal simply interleaves the detected bits using a pre-allocatedinterleaver.The proposed scheme supports arbitrary number of cooperative terminalswithout data rate loss while full-rate full-diversity orthogonal space-time codes don'texist in most cases.The cooperative spatial diversity can be achieved by a lowcomplexity symbol-by-symbol iterative detection algorithm at the receiver even if thereceived signal is asynchronous.
     So far,most of previous works assume that perfect channel state information (CSI)of all links is available at the destination.In a practical scenario,these CSIs areunknown and must be estimated by the receiver for coherent detection.Comparedwith point-to-point systems,channel estimation in distributed wireless networksbecomes more complicate.Furthermore,when amplify-and-forward relaying protocolis employed,the relay nodes forward the useful signal as well as the noise to thedestination at the same time,which makes the channel estimation problem morechallenging.In this thesis,we propose a novel differential modulation scheme forwireless relay networks with amplify-and-forward relaying,which can bridge the 3dBperformance gap between conventional differential modulation and coherent detection.In the proposed scheme,each transmitted frame is divided into several blocks.Thefirst symbol in each block is referred as reference symbol,and the other symbols in each block are normal symbols.We also investigate the power allocation among thereference symbol and normal symbols to enhance the system performance.Simulationresults are presented to validate the proposed scheme.It is shown that the optimizedsystem performance is very close to coherent receiver in slow fading channels.
     In a multiuser cooperative communication system,one basic question is“whohelps whom”,i.e.how to appropriately match users for cooperative transmission.Inthis thesis,we propose a channel-adaptive partner selection scheme with real-timefairness constrain.During each cooperative transmission,the partners are selectedaccording to the direct links' quality.The user with the worst direct link has thehighest priority to select its partner,while the user with the best direct link is the lastone to select its partner.Also,each user can be selected only once to ensure fairness.By doing so,the proposed partner selection scheme provides a good trade-off betweenfairness and system performance.The lower bound of the BER performance of theproposed scheme is also presented.
     Selection relaying is a promising technique for practical implementation ofcooperative systems with multiple relay nodes.However,to select the best relay,global channel knowledge is required at the selecting entity,which may result inconsiderable signaling overhead.In this thesis,we consider the relay selectionproblem in dual-hop amplify-and-forward communication systems with partial CSI.We present relay selection strategies aiming at minimizing either the outageprobability or the bit error rate (BER) with different kinds of channel knowledgeavailable,including perfect instantaneous,quantized and statistical CSI.In case ofwhen quantized CSI is available,we propose a target rate based quantizer toefficiently partition the SNR range for outage minimized relay selection,and a targetBER based quantizer for BER minimized relay selection.Simulation results show thatselection relaying with quantized CSI provides a good trade-off between the signalingoverhead and the system performance,and is very attractive for practicalimplementation.
     In a multiuser relaying system,wireless network coding is a more efficienttransmission scheme than conventional relaying schemes.However,it still suffersfrom spectral efficiency loss as compared with the point-to-point direct transmission.By exploiting the broadcast nature of the wireless medium and the linear property ofpractical error control codes,we propose a spectral efficient cooperative transmissionscheme for multiuser relaying systems based on joint network coding and channel decoding.Simulations results show that the proposed scheme outperforms thepoint-to-point direct transmission in terms of BER performance in various cases.
引文
[1]李锵,周进.无线通信基础[M].北京:人民邮电出版社,2007.
    [2]D.Gesbert,M.Shafi,Shiu Da-shan,P.J.Smith,A.Naguib.From theory to practice:an overview of MIMO space-time coded wireless systems[J].IEEE Journal on Selected Areas in Communications,2003,21(3):281-302.
    [3]S.M.Alamouti.A Simple Transmitter Diversity Scheme for Wireless Communications[J].IEEE J.Select.Areas Communications,1998,16(10):1451-1458.
    [4]V.Tarokh,H.Jafarkhani,A.R.Calderbank.Space-time block codes from orthogonal designs[J].IEEE Transactions Inform.Theory,1999,45(7):1456-1467.
    [5]张平,王卫东,陶小峰,王莹.WCDMA移动通信系统[M].北京:人民邮电出版社,2004.
    [6]张传福,彭灿,刘丑中.第三代移动通信系统及其演进[M].北京:人民邮电出版社,2008.
    [7]C.Berrou,A.Glavieux.Near optimum error correcting coding and decoding:Turbo-codes[J].IEEE Transactions Communications,1996,44(10):1261-1271.
    [8]R.G.Gallager,Low Density Parity Check Codes.Cambridge,MA:MIT Press,1963.
    [9]王文博,郑侃.宽带无线通信OFDM技术[M].北京:人民邮电出版社,2007.
    [10]X.Wang,H.V.Poor.Iterative(turbo)soft interference cancellation and decoding for coded CDMA[J].IEEE Transactions Communications,1999,47(7):1046-1061.
    [11]D.Tse,S.V.Hanly.Multiaccess fading channels—Part Ⅰ:Polymatroid structure,optimal resource allocation and throughput capacities[J].IEEE Transactions Inform.Theory,1998,44(7):2796-2815.
    [12]何廷润,发展低频段3G的策略探讨[J],移动通信,2008,32(19):22-29。
    [13]A.Sendonaris,E.Erikip,B.Aazhang.User cooperation diversity-Part Ⅰ:System description[J].IEEE Transactions Communications,2003,51(11):1927-1938.
    [14]A.Sendonaris,E.Erikip,B.Aazhang.User cooperation diversity-Part Ⅱ:Implementation aspects and performance analysis[J].IEEE Transactions Communications, 2003, 51(11): 1939-1948.
    [15]R. Pabst, B. H. Walke, D. C. Schultz, et al. Relay-based deployment concepts for wireless and mobile broadband radio [J]. IEEE Communications Magazine, 2004,42(9): 80-89.
    [16] P. A. Chou, Yunnan Wu. Network Coding for the Internet and Wireless Networks [J]. IEEE Signal Processing Magazine, 2007,24(5): 77-85.
    [17]T. M. Cover, El Gamal. Capacity theorems for the relay channel [J]. IEEE Transactions Inf. Theory, 1979, IT-25(4): 572-584.
    [18]J. N. Laneman, D. N. C. Tse, G W. Wornell. Cooperative diversity in wireless networks: Efficient protocols and outage behavior [J]. IEEE Transactions Inf. Theory, 2004, 50(12):3062-3080.
    [19]J. N. Laneman, G W. Wornell, D. N. C. Tse. An effiencient protocol for realizing cooperative diversity in wireless wotks [A]. in: IEEE. Proc. Int. Symp. Information Theory [C], Washington, D. C.: IEEE, 2001:294.
    [20]Y. A. Chau, K. Y. Huang. Channel statistics and performance of cooperative selection diversity with dual-hop amplify-and-forward relay over Rayleigh fading channels [J]. IEEE Transactions on Wireless Communications, 2008, 7(5): 1779-1785.
    [21]Yingbin Liang, G Kramer. Rate Regions for Relay Broadcast Channels [J]. IEEE Transactions on Information Theory, 2007, 53(10):3517-3535.
    [22]G. Kramer, M. Gastpar, P. Gupta. Cooperative Strategies and Capacity Theorems for Relay Networks [J]. IEEE Transactions on Information Theory, 2005, 51(9): 3037-3063.
    [23]C. Hucher, Charlotte, G R. Othman, Jean-Claude Belfiore . Adaptive Amplify-and-Forward Cooperative Channel [A]. In: IEEE. Proc. ISIT 2007[C]. France: IEEE, 2007: 2706-2710.
    [24]W. P. Siriwongpairat, T. Himsoon, Weifeng Su,K. J. R. Liu. Optimum threshold-selection relaying for decode-and-forward cooperation protocol [A]. In: IEEE. Proc.WCNC 2006 [C]. Las Vegas : IEEE, 2006: 1015-1020.
    [25]Bin Zhao, M. C. Valenti. Practical relay networks: a generalization of hybrid-ARQ [J]. IEEE Journal on Selected Areas in Communications, 2005, 23(1): 7-18.
    [26]T.E. Hunter, S. Sanayei, A. Nosratinia. Outage analysis of coded cooperation [J]. IEEE Transactions on Information Theory, 2006, 52(2): 375 - 391.
    [27]T.E. Hunter, A. Nosratinia. Diversity through coded cooperation [J]. IEEE Transactions on Wireless Communications, 2006, 5(2): 283-289.
    [28]E. Koyuncu, Y. Jing, H. Jafarkhani. Distributed beamforming in wireless relay networks with quantized feedback [J]. IEEE Journal on Selected Areas in Communications, 2008, 26(8): 1429 - 1439.
    [29]M. M. Abdallah, H. C. Papadopoulos. Beamforming Algorithms for Information Relaying in Wireless Sensor Networks [J]. IEEE Transactions on Signal Processing, 2008, 56(10): 4772 - 4784.
    [30]P. A. Anghel, G. Leus, M. Kaveh. Distributed Space-Time Cooperative Systems with Regenerative Relays [J]. IEEE Transactions on Wireless Communications, 2006, 5(11): 3130-3141.
    [31]M.O. Hasna,M.-S. Alouini . Performance analysis of two-hop relayed transmissions over Rayleigh fading channels [A]. In: IEEE. Proc. 56th Vehicular Technology Conference[C], Alabama : IEEE, 2002: 1992-1996. [32]G. K. Karagiannidis, T. A. Tsiftsis, R. K. Mallik. Bounds for multihop relayed communications in nakagami-m fading [J] . IEEE Transactions on Communications, 2006, 54(1): 18-22.
    [33] G. K. Karagiannidis, T. A. Tsiftsis, R. K. Mallik, N. C. Sagias, S. A. Kotsopoulos. Closed-form bounds for multihop relayed communications in Nakagami-m fading [A]. In: IEEE. Proc. ICC 2005[C]. Seoul: IEEE, 2005: 2362-2366.
    [34] M.O. Hasna, M.-S. Alouini. Harmonic mean and end-to-end performance of transmission systems with relays [J]. IEEE Transactions on Communications, 2004,52(1): 130-135.
    [35] A. Ribeiro, C. Xiaodong, G. B. Giannakis. Symbol error probabilities for general Cooperative links [J]. IEEE Transactions on Wireless Communications, 2005, 4(3): 1264-1273.
    [36]W. Zhengdao, G. B. Giannakis. A simple and general parameterization quantifying performance in fading channels [J] . IEEE Transactions on Communications, 2003, 51(8): 1389-1398.
    [37]Y. Zhao, R. Adve, T. J. Lim. Improving Amplify-and-Forward Relay Networks: Optimal Power Allocation versus Selection [A]. In: IEEE. Proc. ISIT 2006[C]. Washington: IEEE, 2006: 1234-1238. [38]Y. Zhao, R. Adve, T. J. Lim . Symbol Error Rate of Selection Amplify-and-Forward Relay Systems [J]. IEEE Communications Letters, 2006, 10(11): 757-759.
    [39]M.O. Hasna, M.-S. Alouini. Outage probability of multihop transmission over Nakagami fading channels [J]. IEEE Communications Letters, 2003, 7(5): 216-218.
    [40]G K. Karagiannidis, T. A. Tsiftsis, R. K. Mallik. Bounds for multihop relayed communications in nakagami-m fading [J] . IEEE Transactions on Communications, 2006,54(1): 18-22.
    [41]Y. Zhao, R. Adve, T. J. Lim. Improving amplify-and-forward relay networks: optimal power allocation versus selection [J]. IEEE Transactions Wireless Communications, 2007,6(8): 3114 -3123.
    [42]M. O. Hasna, M.-S. Alouini. Optimal power allocation for relayed transmissions over Rayleigh-fading channels [J]. IEEE Transactions Wireless Communications, 2004, 3(6): 1999-2004.
    [43]K. G. Seddik, A. K. Sadek, Weifeng Su, K. J. R. Liu. Outage analysis and optimal power allocation for multinode relay networks [J]. IEEE Signal Processing Letters, 2007, 14(6): 377-380.
    [44] Y. Li, B. Vucetic, Z. Zhou, M. Dohler. Distributed adaptive power allocation for wireless relay networks [J]. IEEE Transactions Wireless Communications, 2007, 6(3): 948-958.
    [45]R. Annavajjala, P. C. Cosman, L. B. Milstein. Statistical channel knowledge based optimum power allocation for relaying protocols in the high SNR regime [J]. IEEE JSAC, 2007,25(2): 292-305.
    [46] J. N. Laneman, G W. Wornell. Distributed Space-Time-Coded Protocols for Exploiting Cooperative Diversity in Wireless Networks [J]. IEEE Transactions Inf. Theory, 2004,49(10):2415-2425.
    [47] P. Herhold, E. Zimmermann, G Fettweis. A simple cooperation extension to wireless relaying [A] . In: IEEE. Proc. International Zurich Seminar Communications[C]. Zurich: IEEE, 2004:36-39.
    [48] W. P. Siriwongpairat, T. Himsoon, W. Su, K. J. Ray Liu. Optimum Threshold-Selection Relaying for Decode-and-Forward Cooperation Protocol [A]. In IEEE: Wireless Communications and Networking Conference 2006 [C]. Las Vegas : IEEE, 2006:1015-1020.
    [49] V. Tarokh, H. Jafarkhani, A. R. Calderbank. Space-time block codes from orthogonal designs [J] . IEEE Transactions Inform. Theory, 1999, 45: 1456-1467.
    [50]S. Wei, D. L. Goeckel, M. C. Valenti. Asynchronous Cooperative Diversity[J]. IEEE Transactions Wireless Communications, 2006, 5(6): 1547-1557.
    [51]Y. Shang, X.-G. Xia. Shift-Full-Rank Matrices and Applications in Space-Time Trellis Codes for Relay Networks With Asynchronous Cooperative Diversity[J]. IEEE Transactions Inform. Theory, 2006, 52(7): 3153-3167.
    [52]C. Berrou, A. Glavieux. Near optimum error correcting coding and decoding: Turbo-codes [J]. IEEE Transactions Communications, 1996, 44(10): 1261-1271.
    [53]M. Moher, P. Guinand. An iterative algorithm for asynchronous coded multi-user detection [J]. IEEE Communications Letters, 1998,2(8):229-231.
    [54]M. C. Reed, C. B. Schlegel, P. D. Alexander, J. A. Asenstorfer. Iterative multi-user detection for CDMA with FEC: Near-single-user performance [J]. IEEE Transactions Communications, 1998, 46(12): 1693-1699.
    [55]X. Wang, H. V. Poor. Iterative (turbo) soft interference cancellation and decoding for coded CDMA [J]. IEEE Transactions Communications, 1999, 47(7): 1046-1061.
    [56]A. AlRustamani, A. D. Damnjanovic, B. R. Vojcic. Turbo greedy multi-user detection [J]. IEEE J. Select. Areas Communications, 2001, 19(8): 1638-1645.
    [57]A. J. Viterbi. Very low rate convolutional codes for maximum theoretical performance of spread spectrum multiple-access channels [J]. IEEE J. Select. Areas Communications, 1990, 8(8): 641-649.
    [58]R. H. Mahadevappa, J. G. Proakis. Mitigating multiple access interference and intersymbol interference in uncoded CDMA systems with chip-level interleaving [J]. IEEE Transactions Wireless Communications, 2002, l(10):781—792.
    [59]A. Tarable, G. Montorsi, and S. Benedetto. Analysis and design of interleavers for CDMA systems [J]. IEEE Communications Letters, 2001, 5(10): 420-422.
    [60]L.Ping, L.Liu, K.Y.Wu, W.K.Leung. A unified approach to multiuser detection and space-time coding with low complexity and nearly optimal performance [A]. In IEEE: Proc.40th Allerton Conference [C]. Montecello: IEEE, 2002: 170-179.
    [61]L. Ping, L. Liu, W.K Leung. A simple approach to near-optimal multiuser detection: interleave-division multiple-access [A]. In: IEEE. Proc. Wireless Communications and Networking 2003 [C]. New Orleans : IEEE, 2003:391- 396.
    [62]Li Ping, L. Liu, K. Y. Wu, W. K. Leung. Interleave-division multiple-access (IDMA) communications [A]. In IEEE. Proc. 3rd International Symposium on Turbo Codes & Related Topics [C]. Brest: IEEE, 2003: 173-180.
    [63]L. Liu, W. K. Leung, Li Ping. Simple chip-by-chip multi-user detection for CDMA systems [A]. In: IEEE. Proc. VTC 2003-Spring[C]. Korea: IEEE. 2003: 2157-2161.
    [64]Li Ping, L. Liu, K. Wu, W.K.Leung. Interleave-Division Multiple-Access [J]. IEEE Transactions Wireless Communications, 2006, 5(4):938-967.
    [65]K. Y. Wu, Li Ping . Multi-Layer Turbo Space-Time Codes [J]. IEEE Communications Letters, 2005, 9(1): 55-57.
    [66]K. Y. Wu, W. K. Leung, Li Ping. A simple approach to near-optimal multiple transmit antenna space-time codes [A]. In: IEEE. Proc. ICC03[C]. Alaska: IEEE, 2003:2603-2607.
    [67]Li Ping, K. Y. Wu, W. K. Leung. High-Rate Interleve-Division-Multiplexing Space-Time Codes [A]. In: IEEE. Proc. VTC 2004 Fall [C]. Los Angeles : IEEE, 2004: 2384-2388.
    [68]H. Schoeneich, P. A. Hoeher. A Hybrid Multiple Access Scheme Delivering Reliability Information [A]. In: Int. Proc. ITG Conf. on Source and Channel Coding [C]. Erlangen:Int, 2004:437-442.
    [69] J. C. Fricke, H. Schoeneich, P. A. Hoeher. An interleave-division multiple access based system proposal for the 4G uplink [A]. In IST. Proceedings of 14th Mobile & Wireless Communications Summit [C]. Dresden: IST, 2005.
    [70]Li Ping, L. Liu. Analysis and Design of IDMA Systems Based on SNR Evolution and Power Allocation [A]. In: IEEE. Proc. VTC 2004 Fall [C]. Los Angeles : IEEE, 2004:1068-1072.
    [71]L. Liu, Li Ping. Iterative detection of chip interleaved CDMA systems in multipath channels [J]. IEEE Electronics Letters, 2004,40(14): 884-886.
    [72]Q. Zhao and H. Li. Differential Modulation for Cooperative Wireless Systems [J]. IEEE Transactions Signal Processing, 2007, 55(5): 2273 - 2283.
    [73]T. Himsoon, Weifeng Su, K. J. R. Liu. Differential Transmission for Amplify-and -Forward Cooperative Communications [J]. IEEE Signal Processing Letters, 2005, 12(9): 597-600.
    [74]T. Himsoon, Weifeng Su, K. J. R. Liu. Differential modulation for multi-node amplify-and-forward wireless relay networks [A]. In: IEEE. Proc. Wireless Communications and Networking Conference [C]. Las Vegas: IEEE, 2006:1195-1200.
    [75]Woong Cho, Liuqing Yang. Resource Allocation for Amplify-and-Forward Relay Networks with Differential Modulation [A]. In: IEEE. Proc. GLOBECOM 2007[C], Washington D.C. : IEEE, 2007:1668-1672.
    [76]Woong Cho, Liuqing Yang. Joint Energy and Location Optimization for Relay Networks with Differential Modulation [A]. In: IEEE. Proc. ICASSP 2007 [C]. Hawai'i: IEEE, 2007:153-156.
    [77]J. G. Proakis, Digital Communications [M]. New York: McGraw-Hill, 2000.
    [78]R. H. Clarke. A statistical theory of mobile-radio reception [J]. Bell Syst. Tech. Journal, 1968,47:957-1000.
    [79]D. S. Michalopoulos, G. K. Karagiannidis, T. A. Tsiftsis. Introducing PHY-Layer Fairness in Amplify and Forward Cooperative Diversity Systems [A]. In: IEEE. Proc. International Conference on Communications 2007[C]. Glasgow: IEEE, 2007: 4040-4045.
    [80]V. Mahinthan, Lin Cai, J. W. Mark, Xuemin Shen. Partner Selection Based on Optimal Power Allocation in Cooperative-Diversity Systems [J] . IEEE Transactions Vehicular Technology, 2008, 57(1):511-520.
    [81]A. Bletsas, A. Khisti, D. P. Reed, A. Lippman. A simple cooperative diversity method based on network path selection [J]. IEEE J. Select. Areas Communications, 2006, 24(3): 659-672.
    [82]I. Krikidis, J. Thompson, S. McLaughlin, N. Goertz. Amplify-and-forward with partial relay selection [J]. IEEE Communications Letters, 2008, 12(4): 235-237.
    [83]A. Muller, J. Speidel. Relay Selection in Dual-Hop Transmission Systems: Selection Strategies and Performance Results [A], in: IEEE. Proc. ICC 2008 [C]. Beijing : IEEE, 2008: 4998-5003.
    [84]M. K. Simon, M.-S. Alouini. Digitial Communication over Fading Channels[M]. New York: Wiley, 2000.
    [85]P. A. Anghel, M. Kaveh. Exact symbol error probability of a Cooperative network in a Rayleigh-fading environment [J]. IEEE Transactions Wireless Communications, 2004, 3(5): 1416-1421.
    [86]A. Papoulis, S. U. Pillai. Probability, random variables, and stochastic processes, 4th ed. [M]. USA: McGraw-Hill, 2002.
    [87]B. Rankov, A. Wittneben. Achievable rate regions for the two-way relay channel [A].In:IEEE.Proc.International Symposium on Information Theory 2006[C].Washington:IEEE,2006:1668-1672.
    [88]B.Rankov,A.Wittneben.Spectral efficient protocols for half-duplex fading relay channels[J].IEEE Journal Select.Areas Communications,2007,25(2):379-389.
    [89]P.Popovski,H.Yomo.Wireless network coding by amplify-and-forward for bi-directional traffic flows[J].IEEE Communications Letters,2007,11(1):16-18.
    [90]S.Yiu,R.Schober,L.Lampe.Distributed space-time block coding[J].IEEE Transactions on Communications,2006,54(7):1195-1206.
    [91]P.A.Anghel,M.Kaveh.On the performance of distributed space-time coding systems with one and two non-regenerative relays[J].IEEE Transactions on Wireless Communications,2006,5(3):682-692.
    [92]E.Beres,R.Adve.Selection Cooperation in Multi-Source Cooperative Networks[J].IEEE Transactions on Wireless Communications,2008,7(1):118-127.
    [93]R.Tannious,A.Nosratinia.Spectrally-efficient relay selection with limited feedback[J].IEEE Journal on Selected Areas in Communications,2008,26(8):1419-1428.
    [94]M.M.Fareed,M.Uysal.BER-Optimized Power Allocation for Fading Relay Channels[J].IEEE Transactions on Wireless Communications,2008,27(6):2350-2359.
    [95]Jia Tang,Xi Zhang.Cross-layer resource allocation over wireless relay networks for quality of service provisioning[J].IEEE Journal on Selected Areas in Communications,2007,25(4):645-656.
    [96]Y.Liu,R.Hoshyar,X.Yang,R.Tafazolli.Integrated Radio Resource Allocation for Multihop Cellular Networks With Fixed Relay Stations[J].IEEE Journal on Selected Areas in Communications,2006,24(11):2137-2146.
    [97]Yanwu Ding,Jian-Kang Zhang,Kon Wong.Optimal precoder for amplify-and-forward half-duplex relay system[J].IEEE Transactions on Wireless Communications,2008,7(8):2890-2895.
    [98]Zhihang Yi,Il-Min Kim.Joint optimization of relay-precoders and decoders with partial channel side information in cooperative networks[J].IEEE Journal on Selected Areas in Communications,2007,25(2):447-458.
    [99]R.Ahlswede,N.Cai,S-Y.R.Li,R.W.Yeung.“Network information flow [J]. IEEE Transactions on Information Theory, 2000, 46(4): 1204-1216.
    [100] P. Chou, Y. Wu, K. Jain. Practical Network Coding [A]. In: IEEE. Proc. of Allerton Conference on Communication, Control and Computing 2003 [C], Monticello:IEEE, 2003:40-49.
    [101] S-Y. R. Li, R. W. Yeung, N. Cai. Linear network coding [J]. IEEE Transactions on Information Theory, 2003, 49(2): 371-381.
    [102] S.Katti, H.S.Rahul, W. Hu , D. Katabi, M.Meard , J.Crowcroft. XORs in The Air : Practical Wireless Network Coding [J]. IEEE/ACM Transactions on Networking, 2008, 16(3):497-510.
    [103] Y. Chen, S. Kishore, J. Li. Wireless diversity through network coding [A]. In: IEEE. Proc. WCNC 2006 [C]. Las Vegas : IEEE, 2006: 1681-1686.
    [104] P. Popovski, H. Yomo. Wireless network coding by amplify-and-forward for bi-directional traffic flows [J]. IEEE Communications Letters, 2007, 11(1): 16-18.
    [105] B. Rankov, A. Wittneben. Spectral efficient protocols for half-duplex fading relay channels [J]. IEEE J. Select. Areas Communications, 2007, 25(2): 379-389.
    [106] C. Hausl, J. Hagenauer. Iterative Network and channel decoding for the two-way relay channel [A]. In: IEEE. Proc. International Conference on Communications (ICC 2006) [C]. Istanbul: IEEE, 2006:1568-1573.
    [107] S. Zhang, S.C. Liew, P.P. Lam. Hot topic: physical-layer network coding [A]. In: IEEE. Proc. MobiCom'06 [C]. Los Angeles: IEEE, 2006:358-365.
    [108] J. Castura, Yongyi Mao. Rateless Coding and Relay Networks [J]. IEEE Signal Processing Magazine, 2007, 24(5):27 - 35.
    [109] A. F. Molisch, N. B. Mehta, J. S. Yedidia, Jin Zhang. Performance of Fountain Codes in Collaborative Relay Networks [J]. IEEE Transactions on Wireless Communications, 2007, 6(11):4108-4119.
    [110] C. Fragouli, D. Katabi, A. Markopoulou, M. Medard, H. Rahul. Wireless Network Coding: Opportunities & Challenges [A]. In: IEEE:Proc. MILCOM 2007. Orlando:IEEE, 2007:1-8.
    [111] Y. Wy, P. A. Chou, S.-Y. Kung. Minimum-energy multicast in mobile andad hoc networks suing network coding [J]. IEEE Trans. Commun. 2005, 53(11):.1906-1918.
    [112] C. Hausl, P. Dupraz. Joint network-channel coding for the multiple-access relay channels [A]. In: IEEE. Proc. IWWAN 2006 [C]. New York:IEEE, 2006: 817-822.
    [113] L. R. Bahl, J. Cocke, F. Jelinek, J. Raviv. Optimal decoding of linear codes for minimizing symbol error rate [J]. IEEE Trans. Inform. Theory, 1974, 20(3): 284-287.
    [114] H. Shan, W. Zhuang, Z. Wang. Distributed cooperative MAC for multihop wireless networks [J]. IEEE Communications Magazine, 2009,47(2):126 - 133.
    [115] P. Liu, Z. Tao, S. Narayanan, T. Korakis, S. S. Panwar. CoopMAC: A Cooperative MAC for Wireless LANs [J]. IEEE Journal on Selected Areas in Communications, 2007, 25(2): 340 - 354.
    [116] B. Zhao, M.C. Valenti.Practical relay networks: a generalization of hybrid-ARQ [J] IEEE Journal on Selected Areas in Communications, 2005, 23(1):7-18.
    [117] Y. Sung, S. Misra, L. Tong, A. Ephremides. Cooperative routing for distributed detection in large sensor networks [J]. IEEE Journal on Selected Areas in Communications,, 2007, 25(2):471 -483.
    [118] A. Ibrahim, Z.Han, K. J. Liu. Distributed energy-efficient cooperative routing in wireless networks [J]. IEEE Transactions on Wireless Communications, 2008, 7(10):3930-3941.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700