并网逆变器系统中的重复控制技术及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于太阳能、风能、地热能等多种可再生能源的分布式发电系统(distributed power generation system)已经成为近年来世界各国的关注重点。而并网逆变器作为将分布式发电系统中的电能传递给公共电网的重要电力电子设备,其输出功率的品质受到了大量的研究。重复控制技术基于内模原理,能够在交流系统中实现极低的稳态跟踪误差和总谐波失真THD (total harmonic distortion),因此在逆变器系统中得到了广泛的应用。然而在实际应用场合中,重复控制技术还存在着很多需要解决的问题。本文针对并网逆变器系统中的重复控制技术,及其在实际应用场合中的关键问题进行了研究,主要包含了以下内容:
     分布式发电系统中的电网频率存在明显的波动,而数字控制中延时环节的延时时间通常为系统采样周期的整数倍。此时重复控制的内模将偏离由实际电网频率决定的理想内模,其谐振频率也将偏离实际电网的基波和谐波频率,导致系统性能的显著降低。针对这一问题,本文提出了一种具有频率适应性的新型重复控制方法。该方法采用了一个新型有限冲击响应FIR (finite impulse response)数字滤波器,该FIR滤波器能够使其内模逼近于系统采样频率与电网频率比值为任意值的内模。当电网频率变化时,该重复控制方法通过在线快速调整此FIR滤波器的参数,能够使其重复控制环节保持逼近于理想重复控制。基于对电压源型三相三线制并网逆变器的建模,本文对该新型FIR滤波器的原理和新型重复控制方法的性能进行了研究,验证了该方法在不同场合下均能提高并网逆变器系统的稳态跟踪性能和谐波抑制能力,实现了重复控制技术对电网频率变化的适应能力。同时,还对三相系统下的锁相环PLL (phase-lock loop)技术进行了研究,并设计了一个适用于新型重复控制方法的、具有高精度的PLL模块。
     分布式发电系统中的可再生能源具有明显的间歇性,为了保证系统稳定运行,分布式发电系统需要具有一定的动态性能。并网逆变器系统中的重复控制技术,其延时环节的延时时间为一个电网基波周期,因此其动态性能较差。为此,本文提出了一种具有快速动态性能的改进型重复控制方法。该方法将以六分之一电网基波周期为延时时间的短延时环节,分别应用于了正向和反向的同步旋转坐标系,实现了优秀的动态性能以及对6n±1(n=±1,±2,±3…)次谐波的抑制。本文还将该重复控制以插入式的形式,与传统控制进行了结合,以提高该方法的综合性能;并研究了一个基于线性插值法的、能够适应快速动态特性的简化辅助函数,以提高该方法在频率比值为非整数情况下的性能。研究表明,该改进型重复控制方法,能够使系统同时实现快速的动态性能,以及极低的动静态跟踪误差和THD。
     本文研究的并网逆变器系统均基于LCL滤波器,系统中存在一个阻尼系数极低的谐振尖峰。传统的谐振阻尼技术中,电阻阻尼技术会增加额外的功率损耗,有源阻尼技术则会增加系统的硬件成本和设计成本。本文提出了一种单电流反馈的新型谐振阻尼控制策略,其采用了入网电流两次微分的反馈方法,所需的信号为并网逆变器系统控制必需的采样信号,因此没有增加原系统任何的硬件或设计成本。本文对该控制策略下的系统传递函数进行了推导,并经过研究与分析,证明了该控制策略能够达到与传统谐振阻尼技术相同的效果,且在不同器件参数下其阻尼效果基本不变,从而提高了系统的稳定性,使系统具有了优秀的整体性能。
The distributed power generation systems based on the renewable energy sources, such as solar photovoltaic, wind power, geothermal power, have been the focus of the world in the latest years. The grid-connected inverter is important power electronic implements, used to transfer the power from the DPGS to the public grid, and the quality of its output power has been studied a lot. The repetitive control technique based on the internal model principle, can achieve low steady-state tracking error and total harmonic distortion (THD) in AC systems, so it is widely adopted in the inverter systems. However in the practical applications, there are still some issues need solving when using the repetitive control technique. This paper does researches on the repetitive control technique in the grid-connected systems, and the key issues in the practical applications, which mainly contains the contents as below:
     The grid frequency in the DPGS varies obviously, but the delay time of the delay function in the digital control usually is integral times of the system sampling period. Then the internal model of the repetitive control will deviate from the ideal internal model which is determined by the real grid frequency, and its resonant frequencies will also deviate from the real grid fundamental and harmonic frequencies, the system performance will be degraded significantly. To solve this problem, this paper proposes a new repetitive control scheme with frequency adaptive capability. The proposed scheme adopts a new finite impulse response (FIR) digital filter, which can approximate the internal model of any ratio of the system sampling frequency to the grid frequency. When the grid frequency varies, the proposed scheme rapidly varies the parameters of the FIR filter on line, and can maintain its repetitive control function approximating the ideal one. Based on the modeling of the three-phase three-wire grid-connected voltage-source inverter, this paper researches the principle of the new FIR filter and the performance of the new repetitive control scheme, and verifies its effectiveness on increasing the steady-state tracking performance and harmonic suppression of the grid-connected inverter systems, while the adaptive capability to the grid frequency variation of the repetitive control technique is finally achieved. Meanwhile, the phase-lock loop (PLL) in three-phase system is also researched, and an applicable to the new repetitive control scheme and high accuracy PLL module is designed.
     The renewable energy sources in the DPGS are obviously intermittent, to guarantee the stability of the system, the DPGS should have certain dynamic performance. While the repetitive control technique is used in the grid-connected inverter system, its delay time of the delay function will be one grid fundamental period, so its dynamic performance will be poor. This paper proposes an improved repetitive control scheme with fast dynamic performance. The proposed scheme uses one-sixth of the grid fundamental period as the delay time of the delay function, and adopts this delay function in the positive-rotating and negative-rotating synchronous reference frames, then it achieves good dynamic performance and the6n±1(n=±1,±2,±3...) harmonics suppression. This paper also combines the traditional control with the improved repetitive control as a plug-in type, to improve its comprehensive performance; and researches a simple auxiliary function which is based on the linear interpolation and suitable for the fast dynamic characteristic, to improve its performance at the condition of non-integral frequency ratio. The studies show that, the improved repetitive control scheme can make the system achieve fast dynamic performance, low steady-state/transient tracking error and low THD at the same time.
     The gird-connected inverter systems researched in this paper are all based on the LCL filter, and there is a resonant peak with low damping coefficient. In the traditional resonant damping techniques, the resistance damping technique will increase the power loss, and the active damping technique will increase the hardware and design cost of the system. This paper proposes a new, single current feedback, resonant damping control strategy; it used the feedback method of second derivative of the grid current, while the signals needed are the signals must be sampled by the control of the grid-connected inverter systems, so no hardware or design cost is increased in the original system. This paper derivates the transfer function of the system with this strategy, and the analysis and researches verify that it could attain the same effect with the traditional resonant damping technique, and its effect maintains almost unchanged at the condition of different devices'parameters. So the system stability is increased, and the good overall performance is achieved.
引文
[1]江泽民.对中国能源问题的思考.上海交通大学学报,2008,42(2):345-359.
    [2]陈琳.分布式发电接入电力系统若干问题的研究.浙江大学博士学位论文,2007.
    [3]唐西胜.超级电容器储能应用于分布式发电系统的能量管理及稳定性研究.中国科学院研究生院博士学位论文,2006.
    [4]陈海焱.含分布式发电的电力系统分析方法研究.华中科技大学博士学位论文,2007.
    [5]赵晶晶.分布式发电的配电网优化运行研究.重庆大学博士学位论文,2009.
    [6]马立克.间歇式可再生能源分布式发电对配电系统的影响研究.天津大学博士学位论文,2007.
    [7]欧阳武.含分布式发电的配电网规划研究.上海交通大学博士学位论文,2009.
    [8]Kirubakaran K, Jain S, Nema R K. DSP-Controlled Power Electronic Interface for Fuel-Cell-Based Distributed Generation. IEEE Transactions on Power Electronics,2011,26(12):3853-3864.
    [9]Balaguer I J, Qin Lei, Shuitao Yang, et al. Control for Grid-Connected and Intentional Islanding Operations of Distributed Power Generation. IEEE Transactions on Industrial Electronics,2011,58(1): 147-157.
    [10]Sinsukthavom W, Ortjohann E, Mohd A, et al. Control Strategy for Three/Four-Wire-Inverter-Based Distributed Generation. IEEE Transactions on Industrial Electronics,2012,59(10):3890-3899.
    [11]Bojoi R I, Limongi L R, Roiu D, et al. Enhanced Power Quality Control Strategy for Single-Phase Inverters in Distributed Generation Systems. IEEE Transactions on Power Electronics,2011,26(3): 798-806.
    [12]Kai Sun, Li Zhang, Yan Xing, et al. A Distributed Control Strategy Based on DC Bus Signaling for Modular Photovoltaic Generation Systems With Battery Energu Storage. IEEE Transactions on Power Electronics,2011,26(10):3032-3045.
    [13]Tao Zhou, Francois B. Energy Management and Power Control of a Hybrid Active Wind Generator for Distributed Power Generation and Grid Integration. IEEE Transactions on Industrial Electronics, 2011,58(1):95-104.
    [14]杨素萍,赵永亮,栾凤奎,等.分布式发电技术及其在国外的发展状况.电力需求侧管理,2006,8(2):57-60.
    [15]魏晓霞,刘士玮.国外分布式发电发展情况分析及启示.能源技术经济,2010,22(9):58-65.
    [16]王建,李兴源,邱晓燕.含有分布式发电装置的电力系统研究综述.电力系统自动化,2005,29(24):90-97.
    [17]刘杨华,吴政球,涂有庆,等.分布式发电及其并网技术综述.电网技术,2008,33(15):71-76.
    [18]Hou Shuang, Gao QinXiang. Review of impact of distributed generation on distribution system.2011 International Conference on APAP,2011:219-222.
    [19]Balamurugan K, Srinivasan D. Review of power flow studies on distribution network with distributed generation.2011 IEEE Ninth International Conference on PEDS,2011:411-417.
    [20]Hoffmann N, Lohde R, Fischer M, et al. A review of fundamental grid-voltage detection methods under highly distorted conditions in distributed power-generation networks.2011 IEEE ECCE,2011: 3045-3052.
    [21]Mechouma R, Azoui B, Chaabane M. Three-phase grid connected inverter for photovoltaic systems, a review.2012 First International Conference on REVET,2012:37-42.
    [22]Calais M, Myrzik J, Spooner T, et al. Inverters for single-phase grid connected photovoltaic systems-an overview.2002 IEEE 33rd Annual PESC 02,2002:1995-2000.
    [23]Kjaer S B, Pedersen J K, Blaabjerg F. A review of single-phase grid-connected inverters for photovoltaic modules. IEEE Transactions on Industry Applications,2005,41(5):1292-1306.
    [24]Jih-Sheng Lai. Power conditioning circuit topologies. IEEE Industrial Electronics Magazine,2009, 3(2):24-34.
    [25]Cardenas A, Guzman C, Agbossou K. Development of a FPGA Based Real-Time Power Analysis and Control for Distributed Generation Interface. IEEE Transactions on Power Systems,2012,27(3): 1343-1353.
    [26]Sung-Hun Ko, Lee S R, Dehbonei H, et al. Application of voltage-and current-controlled voltage source inverters for distributed generation systems. IEEE Transactions on Energy Conversion,2006, 21(3):782-792.
    [27]Karimi-Ghartemani M, Khajehoddin S A, Jain P, et al. Control of three-phase converters for grid-connected renewable energy systems using feedback linearization technique.2010 IEEE International Symposium on ISIE,2010:179-183.
    [28]Grogan S A S, Holmes D G, Mcgrath B P. High-Performance Voltage Regulation of Current Source Inverter. IEEE Transactions on Power Electronics,2011,26(9):2439-2448.
    [29]Mirafzal B, Saghaleini M, Kaviani A K. An SVPWM-Based Switching Pattern for Stand-Alone and Grid-Connected Three-Phase Single-Stage Boost Inverters. IEEE Transactions on Power Electronics. 2011,26(4):1102-1111.
    [30]Sahan B, Araujo S V, Noding C, et al. Comparative Evaluation of Three-Phase Current Source Inverters for Grid Interfacing of Distributed and Renewable Energy Systems. IEEE Transactions on Power Electronics,2011,26(8):2304-2318.
    [31]Farag M M, Gadoue S M, Mohamadein A L, et al. Elimination of reverse recovery effects associated with CoolMOS devices employing current source inverter topology.6th IET International Conference on PEMD 2012,2012:1-6.
    [32]Zhou D, Sun K, Liu Z, et al. A Novel Driving and Protection Circuit for Reverse-Blocking IGBT Used in Matrix Converter. IEEE Transactions on Industry Applications,2007,43(1):3-13.
    [33]Mazumder S K, Burra R K, Rongjun Huang, et al. A Universal Grid-Connected Fuel-Cell Inverter for Residential Application. IEEE Transactions on Industrial Electronics,2010,57(10):3431-3447.
    [34]Whaley D M, Ertasgin G, Soong W L, et al. Investigation of a Low-Cost Grid-Connected Inverter for Small-Scale Wind Turbines Based on a Constant-Current Source PM Generator. IECON 2006-32nd Annial Conference on IEEE Industrial Electronics,2006:4297-4302.
    [35]Salamah A M, Finney S J, Williams B W. Single-Phase Voltage Source Inverter With a Bidirectional Buck-Boost Stage for Harmonic Injection and Distributed Generation. IEEE Transactions on Power Electronics,2009,24(2):376-387.
    [36]Agorreta J L, Reinaldos L, Gonzalez R, et al. Fuzzy Switching Technique Applied to PWM Boost Converter Operating in Mixed Conduction Mode for PV Systems. IEEE Transactions on Industrial Electronics,2009,56(11):4363-4373.
    [37]Balathandayuthapani S, Edrington C S, Henry S D, et al. Analysis and Control of a Photovoltaic System Application to a High-Penetration Case Study. IEEE System Journal,2012,6(2):213-219.
    [38]Zhe Chen, Guerrero J M, Blaabjerg F. A Review of the State of the Art of Power Electronics for Wind Turbines. IEEE Transactions on Power Electronics,2009,24(8):1859-1875.
    [39]魏伟,许胜辉.风力发电及相关技术综述.微电机,2009,42(4):66-80.
    [40]Singh M, Chandra A. Application of Adaptive Network-Based Fuzzy Inference System for Sensorless Control of PMSG-Based Wind Turbine With Nonlinear-Load-Compensation Capabilities. IEEE Transactions on Power Electronics,2011,26(1):165-175.
    [41]Shuhui Li, Haskew T A, Swatloski R P, et al. Optimal and Direct-Current Vector Control of Direct-Driven PMSG Wind Turbines. IEEE Transactions on Power Electronics,2012,27(5): 2325-2337.
    [42]Goel P K, Singh B, Murthy S S, et al. Parallel Operation of DFIGs in Three-Phase Four-Wire Autonomous Wind Energy Conversion System. IEEE Transactions on Industry Applications,2011, 47(4):1872-1883.
    [43]Nabae Akira, Takahashi Isao, Akagi Hirofumi. A New Neutral-Point-Clamped PWM Inverter. IEEE Transactions on Industry Applications,1981, IA-17(5):518-523.
    [44]Fang Zheng Peng. A generalized multilevel inverter topology with self voltage balancing. IEEE Transactions on Industry Applications,2001,37(2):611-618.
    [45]Shukla A, Ghosh A, Joshi A. Hysteresis Modulation of Multilevel Inverters. IEEE Transactions on Power Electronics,2011,26(5):1396-1409.
    [46]Young-Min Park, Ji-Yoon Yoo, Sang-Bin Lee. Practical Implementation of PWM Synchronization and Phase-Shift Method for Cascaded H-Bridge Multilevel Inverters Based on a Standard Serial Communication Protocol. IEEE Transactions on Industry Applications,2008,44(2):634-643.
    [47]Samuel P, Gupta R, Chandra D. Grid Interface of Wind Power With Large Split-Winding Alternator Using Cascaded Multilevel Inverter. IEEE Transactions on Energy Conversion,2011,26(1):299-309.
    [48]Pouresmaeil E, Montesinos-Miracle D, Gomis-Bellmunt O. Control Scheme of Three-Level NPC Inverter for Integration of Renewable Energy Resources Into AC Grid. IEEE Systems Journal,2012, 6(2):242-253.
    [49]Peng F Z. Z-source inverter. Conference Record of the 37th IAS Annual Meeting,2002:775-781.
    [50]Yi Huang, Miaosen Shen, Peng F Z, et al. Z-Source Inverter for Residential Photovoltaic Systems. IEEE Transactions on Power Electronics,2006,21(6):1776-1782.
    [51]Anderson J, Peng F Z. Four Quasi-Z-Source Inverters. IEEE PESC 2008,2008:2743-2749.
    [52]Shuitao Yang, Peng F Z, Qin Lei, et al. Current-Fed Quasi-Z-Source Inverter With Voltage Buck-Boost and Regeneration Capability. IEEE Transactions on Industry Applications,2011,47(2): 882-892.
    [53]IEC. IEC-1000-3-2, Electromagnetic compatibility part 3:Limits section 2:Limits for harmonic current emissions (equipment input current< 16 A per phase). Geneva:IEC,1995.
    [54]IEC. IEC-1000-3-4, Electromagnetic compatibility part 3:Limits section 4:Limits for harmonic current emissions (equipment input current< 16 A per phase). Geneva:IEC,1995.
    [55]IEEE. IEEE Standard 519-1992, IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems. USA:IEEE,1992.
    [56]中华人民共和国国家标准.GB/T14549-93,电能质量公用电网谐波.北京:中国标准出版社,1994.
    [57]Jovanovic M M, Jang Y. State-of-the-art, single-phase, active power-factor-correction techniques for high-power applications - an overview. IEEE Transactions on Industrial Electronics,2005,52(3): 701-708.
    [58]Hengchun Mao, Lee C Y, Boroyevich D, et al. Review of high-performance three-phase power-factor correction circuits. IEEE Transactions on Industrial Electronics,1997,44(4):437-446.
    [59]Singh B, Al-Haddad K, Chandra A. A review of active filters for power quality improvement. IEEE Transactions on Industrial Electronics,1999,46(5):961-971.
    [60]El-Habrouk M, Darwish M K, Mehta P. Active power filters:a review. IEE Proceedings Electric Power Applications,2000,147(5):403-413.
    [61]Kim S-Y, Seung-Yub Park. Compensation of Dead-Time Effects Based on Adaptive Harmonic Filtering in the Vector-Controlled AC Motor Drives. IEEE Transactions on Industrial Electronics, 2007,54(3):1768-1777.
    [62]Khaligh A, Wells J R, Chapman P L, et al. Dead-Time Distortion in Generalized Selective Harmonic Control. IEEE Transactions on Power Electronics,2008.23(3):1511-1517.
    [63]王兆安,杨君,刘进军,等.谐波抑制和无功功率补偿(2版).北京:机械工业出版社,2005:220-242.
    [64]Akagi H, Kanazawa Y, Fujita K, et al. Generalized theory of instantaneous reactive power and its application. Electronical Engineering in Japan,1983,103(4):58-66.
    [65]Akagi H, Kanazawa Y, Nabae A. Instantaneous Reactive Power Compensators Comprising Switching Devices without Energy Storage Components. IEEE Transactions on Industry Applications,1984, IA-20(3):625-630.
    [66]李民,王兆安,卓放.基于瞬时无功功率理论的高次谐波和无功功率检测.电力电子技术,1992,2:14-17.
    [67]Katiraer F, Iravani M R. Power Management Strategies for a Microgrid With Multiple Distributed Generation Units. IEEE Transactions on Power Systems,2006,21(4):1821-1831.
    [68]Selvaraj J, Rahim N A. Multilevel Inverter For Grid-Connected PV System Employing Digital PI Controller. IEEE Transactions on Industrial Electronics,2009,56(1):149-158.
    [69]Shuitao Yang, Qin Lei, Peng F Z, et al. A Robust Control Scheme for Grid-Connected Voltage-Source Inverters. IEEE Transactions on Industrial Electronics,2011,58(1):202-212.
    [70]Guoqiao Shen, Xuancai Zhu, Jun Zhang, et al. A New Feedback Method for PR Current Control of LCL-Filter-Based Grid-Connected Inverter. IEEE Transactions on Industrial Electronics,2010,57(6): 2033-2041.
    [71]Gonzalez-Espin F, Garcera G, Patrap Ⅰ, et al. An Adaptive Control System for Three-Phase Photovoltaic Inverters Working in a Polluted and Variable Frequency Electric Grid. IEEE Transactions on Power Electronics,2012,27(10):4248-4261.
    [72]Mohamed Y A-R I, El-Saadany E F. A Robust Natural-Frame-Based Interfacing Scheme for Grid-Connected Distributed Generation Inverters. IEEE Transactions on Energy Conversion,2011, 26(3):728-736.
    [73]Hamzeh M, Farhangi Sh, Farhangi B. A new control method in PV grid connected inverters for anti-islanding protection by impedance monitoring.11th Workshop on COMPEL 2008,2008:1-5.
    [74]Mattavelli P. A modified dead-beat control for UPS using disturbance observers.2002 IEEE 33rd Annual PESC,2002,4:1618-1623.
    [75]Rong-Jong Wai, Wen-Hung Wang. Grid-Connected Photovoltaic Generation System. IEEE Transactions on Circuits and Systems Ⅰ:Regular Papers,2008,55(3):953-964.
    [76]Shang L, Sun D, Hu J. Sliding-mode-based direct power control of grid-connected voltage-sourced inverters under unbalanced network conditions. IET Power Electronics,2011,4(5):570-579.
    [77]Jurado F. Novel Fuzzy Flux Control for Fuel-Cell Inverters. IEEE Transactions on Industrial Electronics,2005,52(6):1707-1710.
    [78]Elmitwally A, Rashed M. Flexible Operation Strategy for an Isolated PV-Diesel Microgrid Without Energy Storage. IEEE Transactions on Energy Conversion,2011,26(1):235-244.
    [79]Blaabjerg F, Teodorescu R, Liserre M, et al. Overview of Control and Grid Synchronization for Distributed Power Generation Systems. IEEE Transactions on Industrial Electronics,2006,53(5): 1398-1409.
    [80]Cardenas R, Pena R. Sensorless Vector Control of Induction Machines for Variable-Speed Wind Energy Applications. IEEE Transactions on Energy Conversion,2004,19(1):196-205.
    [81]Guo X Q, Wu W Y. Improved current regulation of three-phase grid-connected voltage-source inverters for distributed generation systems. IET Renewable Power Generation,2010,4(2):101-115.
    [82]Zitao Wang, Liuchen Chang. A DC Voltage Monitoring and Control Method for Three-Phase Grid-Connected Wind Turbine Inverters. IEEE Transactions on Power Electronics,2008,23(3): 1118-1125.
    [83]Castilla M, Miret J, Matas J, et al. Linear Current Control Scheme With Series Resonant Harmonic Compensator for Single-Phase Grid-Connected Photovoltaic Inverters. IEEE Transactions on Industrial Electronics,2008,55(7):2724-2733.
    [84]Wei Zhao, Lu D D-C, Agelidis V G. Current Control of Grid-Connected Boost Inverter With Zero Steady-State Error. IEEE Transactions on Power Electronics,2011,26(10):2825-2834.
    [85]Zhilei Yao, Lan Xiao. Two-Switch Dual-Buck Grid-Connected Inverter With Hysteresis Current Control. IEEE Transactions on Power Electronics,2012,27(7):3310-3318.
    [86]Ho C N-M, Cheung V S P, Chung H S-H. Constant-Frequency Hysteresis Current Control of Grid-Connected VSI Without Bandwidth Control. IEEE Transactions on Power Electronics,2009, 24(11):2484-2495.
    [87]Mattavelli P, Spiazzi G, Tenti P. Predictive digital control of power factor preregulators with input voltage estimation using disturbance observers. IEEE Transactions on Power Electronics,2005,20(1): 140-147.
    [88]Francis B A, "Wonham W M. The internal model principle for linear multivariable regulators. Applied Mathematics and Optimization,1975,2(2):170-194.
    [89]Francis B A, Wonham W M. The internal model principle of control theory. Automatica,1976,12(5): 457-465.
    [90]Haneyoshi T, Kawamura A, Hoft R G. Waveform compensation of PWM inverter with cyclic fluctuating loads. IEEE Transactions on Industry Applications,1988,24(4):582-589.
    [91]Shin-Chung Yeh, Ying-Yu Tzou. Adaptive repetitive control of a PWM inverter for AC voltage regulation with low harmonic distortion.26th Annual IEEE PESC'95 Record,1995:157-163.
    [92]Ying-Yu Tzou, Rong-Shyang Ou, Shih-Liang Jung, et al. High-performance programmable AC power source with low harmonic distortion using DSP-based repetitive control technique. IEEE Transactions on Power Electronics,1997,12(4):715-725.
    [93]Costa-Castello R, Grino R, Fossas E. Odd-harmonic digital repetitive control of a single-phase current active filter. IEEE Transactions on Power Electronics,2004,19(4):1060-1068.
    [94]Cho Y, Lai J. Digital Plug-In Repetitive Controller for Single-Phase Bridgeless PFC Converters. IEEE Transactions on Power Electronics,2013,28(1):165-175.
    [95]Doh T-Y, Chung M J. Repetitive control design for linear systems with time-varying uncertainties. IEE Proceedings Control Theory and Applications,2003,150(4):427-432.
    [96]Kyungbae Chang, Ilijoo Shim, Gwitae Park. Adaptive repetitive control for an eccentricity compensation of optical disk drivers. IEEE Transactions on Consumer Electronics,2006,52(2): 445-450.
    [97]邹伯敏.自动控制理论(2版).北京:机械工业出版社,2002:54-56.
    [98]颜文俊,陈素琴,林峰.控制理论CAI教程(2版).北京:科学出版社,2006:74-76.
    [99]Dorf R C, Bishop R H. Modern Control Systems (12th ed). London:Prentice Hall,2010.
    [100]Tomizuka Masayoshi, Tsao Tsu-Chin, Chew Kok-Kia. Discrete-Time Domain Analysis and Synthesis of Repetitive Controllers. American Control Conference,1988:860-866.
    [101]Tomizuka Masayoshi, Tsao Tsu-Chin, Chew Kok-Kia.. Analysis and synthesis of Diserete-Time Repetitive Controllers. Journal of Dynamic Systems, Measurement, and Control,1989,111:353-358.
    [102]陈宏.基于重复控制理论的逆变电源控制技术研究.南京航空航天大学博士学位论文,2003.
    [103]李俊林,单相逆变器重复控制和双环控制技术研究.华中科技大学硕士学位论文,2004.
    [104]游志青.基于重复控制技术的数字式逆变电源的研究.南京航空航天大学硕士学位论文,2003.
    [105]郑崇峰CVCF逆变器重复控制策略研究.浙江大学硕士学位论文,2006.
    [106]Hara S, Yamamoto Y, Omata T, et al. Repetitive control system:a new type servo system for periodic exogenous signals. IEEE Transactions on Automatic Control,1988,33(7):659-668.
    [107]Hu J, Tomizuka M. Adaptive asymptotic tracking of repetitive signals-a frequency domain approach. IEEE Transactions on Automatic Control.1993,38(10):1572-1579.
    [108]Keliang Zhou, Danwei Wang. Zero tracking error controller for three-phase CVCF PWM inverter. Electronics Letters,2000,36(10):864-865.
    [109]Keliang Zhou, Danwei Wang. Digital repetitive learning controller for three-phase CVCF PWM inverter. IEEE Transactions on Industrial Electronics,2001,48(4):820-830.
    [110]Byeong-Mun Song, Youngroc Kim, Hanju Cha, et al. Current harmonic minimization of a grid-connected photovoltaic 500kW three-phase inverter using PR control.2011 IEEE ECCE,2011: 1063-1068.
    [111]Krishnan R, Doran Frank C, Latos Thomas S. Identification of Thermally Safe Load Cycles for An Induction Motor Position Servo. IEEE Transactions on Industry Applications,1987, IA-23(4): 636-643.
    [112]Shuai Jiang, Dong Cao, Yuan Li, et al. Grid-Connected Boost-Half-Bridge Photovoltaic Microinverter System Using Repetitive Current Control and Maximum Power Point Tracking. IEEE Transactions on Power Electronics,2012,27(11):4711-4722.
    [113]Ying-Yu Tzou, Shin-Liang Jung, Hsin-Chung Yeh. Adaptive repetitive control of PWM inverters for very low THD AC-voltage regulation with unknown loads. IEEE Transactions on Power Electronics, 1999,14(5):973-981.
    [114]Rech C, Pinheiro H, Grundling H A, et al. Comparison of digital control techniques with repetitive integral action for low cost PWM inverters. IEEE Transactions on Power Electronics,2003,18(1): 401-410.
    [115]Rech C, Pinheiro H, Grundling H A, et al. A modified discrete control law for UPS applications. IEEE Transactions on Power Electronics,2003,18(5):1138-1145.
    [116]Rech C, Pinheiro H, Grundling H A, et al. On the compensation of dead time and zero-current crossing for a PWM-inverter-controlled AC servo drive. IEEE Transactions on Power Electronics,2003,18(5): 1138-1145.
    [117]Kai Zhang, Yong Kang, Jian Xiong, et al. Direct repetitive control of SPWM inverter for UPS purpose. IEEE Transactions on Power Electronics,2003,18(3):784-792.
    [118]Holtz J, Hangwen Pan. Acquisition of rotor anisotropy signals in sensorless position control systems. IEEE Transactions on Industry Applications,2004,40(5):1379-1387.
    [119]Keiliang Zhou, Kay-Soon Low, Wang D, et al. Zero-phase odd-harmonic repetitive controller for a single-phase PWM inverter. IEEE Transactions on Power Electronics,2006,21(1):193-201.
    [120]Gerardo Escobar, P R Martinez J Leyva-Ramos. Analog Circuits to Implement Repetitive Controllers With Feedforward for Harmonic Compensation. IEEE Transactions on Industrial Electronics,2007, 54(1):567-573.
    [121]Mastromauro R A, Liserre M, Dell'Aquila A. Study of the Effects of Inductor Nonlinear Behavior on the Performance of Current Controller for Single-Phase PV Grid Converters. IEEE Transactions on Industrial Electronics,2008,55(5):2043-2052.
    [122]Chen S, Lai Y M, Tan S-C, et al. Analysis and design of repetitive controller for harmonic elimination in PWM voltage source inverter systems. IET Power Electronics,2008,1(4):497-506.
    [123]Bolognani S, Peretti L, Zigliotto M. Repetitive-Control-Based Self-Commissioning Procedure for Inverter Nonidealities Compensation. IEEE Transactions on Industry Applications,2008,44(5): 1587-1596.
    [124]Bin Zhang, Danwei Wang, Keliang Zhou, et al. Linear Phase Lead Compensation Repetitive Control of a CVCF PWM Inverter. IEEE Transactions on Industrial Electronics,2008,55(4):1595-1602.
    [125]Chen S, Lai Y M, Tan S-C, et al. Fast response low harmonic distortion control scheme for voltage source inverters. IET Power Electronics,2009,2(5):574-584.
    [126]Junggi Lee, Kwanghee Nam, Seoho Choi, et al. Loss-Minimizing Control of PMSM With the Use of Polynomial Approximations. IEEE Transactions on Power Electronics,2009,24(4):1071-1082.
    [127]Keliang Zhou, Danwei Wang, Bin Zhang, et al. Plug-In Dual-Mode-Strucrure Repetitive Controller for CVCF PWM Inverters. IEEE Transactions on Industrial Electronics,2009,56(3):784-791.
    [128]Mastromauro R A, Liserre M, Kerekes T, et al. A Single-Phase Voltage-Controlled Grid-Connected Photovoltaic System With Power Quality Conditioner Functionality. IEEE Transactions on Industrial Electronics,2009,56(11):4436-4444.
    [129]Dasgupta S, Sahoo S K, Panda S K. Single-Phase Inverter Control Techniques for Interfacing Renewable Energy Sources With Microgrid—Part Ⅰ:Parallel-Connected Inverter Topology With Active and Reactive Power Flow Control Along With Grid Current Shaping. IEEE Transactions on Power Electronics,2011,26(3):717-731.
    [130]Dasgupta S, Sahoo S K, Panda S K, et al. Single-Phase Inverter-Control Techniques for Interfacing Renewable Energy Sources With Microgrid—Part Ⅱ:Series-Connected Inverter Topology to Mitigate Voltage-Related Problems Along With Active Power Flow Control. IEEE Transactions on Power Electronics,2011,26(3):732-746.
    [131]Sha D, Wu D, Liao X. Analysis of a hybrid controlled three-phase grid-connected inverter with harmonics compensation in synchronous reference frame. IET Power Electronics,2011,4(7):743-751.
    [132]高军,黎辉,杨旭,等.基于PID控制和重复控制的正弦波逆变电源研究.电工电能新技术,2002,21(1):1-4.
    [133]裴雪军,段善旭,康勇,等.基于重复控制与瞬时值反馈控制的逆变电源研究.电力电子技术,2002,36(1):12-15.
    [134]刘飞,邹云屏,李辉.基于重复控制的电压源型逆变器输出电流波形控制方法.中国电机工程学报,2005,25(19):58-63.
    [135]张凯,彭力,熊健,等.基于状态反馈与重复控制的逆变器控制技术.中国电机工程学报,2006,26(10):56-62.
    [136]Weiss G, Qing-Chang Zhong, Green T C, et al. H∞ repetitive control of DC-AC converters in microgrids. IEEE Transactions on Power Electronics,2004,19(1):219-230.
    [137]Hornik T, Zhong Q-C. H∞ repetitive voltage control of gridconnected inverters with a frequency adaptive mechanism. IET Power Electronics,2010,3(6):925-935.
    [138]Hornik T, Qing-Chang Zhong. A Current-Control Strategy for Voltage-Source Inverters in Microgrids Based on Hoc and Repetitive Control. IEEE Transactions on Power Electronics,2011,26(3):943-952.
    [139]Cao Zhenwei, Ledwich G F. Adaptive Repetitive Control to Track Variable Periodic Signals With Fixed Sampling Rate. IEEE/ASME Transactions on Mechatronics,2002,7(3):378-384.
    [140]Kai Zhang, Yong Kang, Jian Xiong, et al. An Improved Maximum Power Point Tracking for Photovoltaic Grid-Connected Inverter Based on Voltage-Oriented Control. IEEE Transactions on Power Electronics,2003,18(3):794-792.
    [141]Hiti S, Boroyevich D. Control of front-end three-phase boost rectifier. Ninth Annual Conference Proceedings APEC'94,1994,2:927-933.
    [142]Hiti S, Boroyevich D, Cuadros C. Small-signal modeling and control of three-phase PWM converters. Conference Record of the 1994 IEEE IAS,1994,2:1143-1150.
    [143]徐德鸿.电力电子系统建模及控制.北京:机械工业出版社,2005:146-149.
    [144]William A B, Taylor F J. Electronic Filter Design Handbook(4th ed). New York:McGraw-Hill,2006.
    [145]Hongtao Shan, Li Peng, Xikun Chen, et al. The research on novel repetitive control technology of inverter. International Conference on ICEMS 2008,2008:1758-1762.
    [146]Yongqiang Ye, Keliang Zhou, Bin Zhang, et al. High-Performance Repetitive Control of PWM DC-AC Converters With Real-Time Phase-Lead FIR Filter. IEEE Transactions on Circuits and Systems 11:Express Briefs,2006,53(8):768-772.
    [147]Hatonen J, Freeman C, Owens D H, et al. Robustness analysis of a gradient-based repetitive algorithm for discrete-time systems.43rd IEEE Conference on Decision and Control 2004,2004:1301-1306.
    [148]Zaier R, Yamada M, Funahashi Y. Discrete-time prototype repetitive controllers considering pole-assignment and its application. International Session Papers SICE 1998,1998:985-990.
    [149]Ledwich G F, Bolton A. Repetitive and periodic controller design.IEE Proceedings D Control Theory and Applications,1993,140(1):19-24.
    [150]Yang Shuitao, Cui Bin, Zhang Fan, et al. A Robust Repetitive Control Strategy for CVCF Inverters with Very Low Harmonic Distortion. Twenty Second Annual IEEE APEC 2007,2007:1673-1677.
    [151]Weiss G, Hafele M. Repetitive Control of MIMO Systems Using H∞ Design. Automatica,1999,35(7): 1185-1199.
    [152]Wu X H, Panda S K, Xu J X. Design of a Plug-In Repetitive Control Scheme for Eliminating Supply-Side Current Harmonics of Three-Phase PWM Boost Rectifiers Under Generalized Supply Voltage Conditions. IEEE Transactions on Power Electronics,2010,25(7):1800-1810.
    [153]Yao W S, Tsai M C. Analysis and Estimation of Tracking Errors of Plug-in Type Repetitive Control Systems. IEEE Transactions on Automatic Control,2005,50(8):1190-1195.
    [154]Mi-Ching Tsai, Wu-Sung Yao. Design of a plug-in type repetitive controller for periodic inputs. IEEE Transactions on Control Systems Technology,2002,10(4):547-555.
    [155]李锐,黄文新,储剑波.基于重复控制的抑制电机周期性负载扰动的方法.电气传动,2010,42(12):48-51.
    [156]Chung Se-Kyo. A Phase Tracking System for Three Phase Utility Interface Inverters. IEEE Transactions on Power Electronics,2000,15(3):431-438.
    [157]Shinji Shinnaka. A Robust Single-Phase PLL System With Stable and Fast Tracking. IEEE Transactions on Industry Applications,2008,44(2):624-633.
    [158]Thacker T, Boroyevich D, Burgos R, et al. Phase-Locked Loop Noise Reduction via Phase Detector Implementation for Single-Phase Systems. IEEE Transactions on Industrial Electronics,2011,58(6): 2482-2490.
    [159]Freijedo F D, Yepes A G, Malvar J, et al. Frequency tracking of digital resonant filters for control of power converters connected to public distribution systems. LET Power Electronics,2011,4(4): 454-462.
    [160]Ramirez F A, Arjona M A. Development of a Grid-Connected Wind Generation System With a Modified PLL Structure. IEEE Transactions on Sustainable Energy,2012,3(3):474-481.
    [161]Rodriguez P, Pou J, Bergas J, et al. Decoupled Double Synchronous Reference Frame PLL for Power Converters Control. IEEE Transactions on Power Electronics,2007,22(2):584-592.
    [162]杨勇,阮毅,汤燕燕,等.基于锁相环和虚拟电网磁链的三相并网逆变器.电工技术学报,2010,25(4):109-114.
    [163]孔雪娟,罗昉,彭力,等.基于周期控制的逆变器全数字锁相环的实现和参数设计.中国电机工程学报,2007,27(1):60-64.
    [164]Salamah A M, Finney S J, Williams B W. Three-phase phase-lock loop for distorted utilities. LET Electric Power Applications,2007,1(6):937-945.
    [165]da Silva C H, Pereira R R, da Silva L E B, et al. A Digital PLL Scheme for Three-Phase System Using Modified Synchronous Reference Frame. IEEE Transactions on Industrial Electronics,2010,57(11): 3814-3821.
    [166]Gardner F M. Phaselock Techniques. New York:Wiley,1979.
    [167]Yang Y, Zhou K, Lu W. Robust repetitive control scheme for three-phase constant-voltage-constant-frequency pulse-width modulated inverters. IET Power Electronics,2012, 5(6):669-677.
    [168]Escobar G, Hernandez-Briones P G, Martinez P R, et al. A Repetitive-Based Controller for the Compensation of 6±1 Harmonic Components. IEEE Transactions on Industrial Electronics,2008, 55(8):3150-3158.
    [169]Shuai Jiang, Dong Cao, Peng F Z, et al. Low THD, Fast Transient, and Cost-Effective Synchronous-Frame Repetitive Controller for Three-Phase UPS Inverters. IEEE ECCE 2011,2011: 2819-2826.
    [170]Shuai Jiang, Dong Cao, Yuan Li, et al. Low THD, Fast Transient, and Cost-Effective Synchronous-Frame Repetitive Controller for Three-Phase UPS Inverters. IEEE Transactions on Power Electronics,2012,27(6):2994-3005.
    [171]Mohapatra K K, Gopakumar K, Somasekhar V T, et al. A harmonic elimination and suppression scheme for an open-end winding induction motor drive. IEEE Transactions on Industrial Electronics, 2003,50(6):1187-1198.
    [172]Das A, Sivakumar K, Ramchand R, et al. A Combination of Hexagonal and 12-Sided Polygonal Voltage Space Vector PWM Control for IM Drives Using Cascaded Two-Level Inverters. IEEE Transactions on Industrial Electronics,2009,56(5):1657-1664.
    [173]Miret J, Castilla M, Matas J, et al. Selective Harmonic-Compensation Control for Single-Phase Active Power Filter With High Harmonic Rejection. IEEE Transactions on Industrial Electronics,2009,56(8): 3117-3127.
    [174]Huang S-J, Pai F-S. Design and operation of grid-connected photovoltaic system with power-factor control and active islanding detection. IEE Reoceedings-Generation, Transmission and Distribution, 2001,148(3):243-250.
    [175]Yun Wei Li, Panda M, Zargari N R, et al. An Input Power Factor Control Strategy for High-Power Current-Source Induction Motor Drive With Active Front-End. IEEE Transactions on Power Electronics,2010,25(2):352-359.
    [176]Jung J H. Data reduction method of sine look-up tables in microprocessor's memory storage. Electronics Letters,2010.46(25):1656-1658.
    [177]Dinavahi V R, Reza Iravani M, Bonert R. Real-time digital simulation of power electronic apparatus interfaced with digital controllers. IEEE Transactions on Power Delivery,2001,16(4):775-781.
    [178]Yi Fei Wang, Yun Wei Li. Analysis and Digital Implementation of Cascaded Delayed-Signal-Cancellation PLL. IEEE Transactions on Power Electronics,2011,26(4):1067-1080.
    [179]Yigang Wang, Danwei Wang, Bin Zhang, et al. Fractional Delay Based Repetitive Control with Application to PWM DC/AC Converters. IEEE International Conference on CCA 2007,2007: 928-933.
    [180]张炳达,罗彬,张洁华.基于正序基波电压合成相量的发电机并网条件核算法.中国电机工程学报,2006,26(16):52-56.
    [181]Pigazo A, Liserre M, Mastromauro R A, et al. Wavelet-Based Islanding Detection in Grid-Connected PV Systems. IEEE Transactions on Power Electronics,2009,56(11):4445-4455.
    [182]Espi J M, Castello J. Garcia-Gil R, et al. An Adaptive Robust Predictive Current Control for Three-Phase Grid-Connected Inverters. IEEE Transactions on Industrial Electronics,2011,58(8): 3537-3546.
    [183]Gabe I J, Montagner V F, Pinheiro H. Design and Implementation of a Robust Current Controller for VSI Connected to the Grid Through an LCL Filter. IEEE Transactions on Power Electronics,2009, 24(6):1444-1452.
    [184]Seul-Ki Kim, Jin-Hong Jeon, Chang-Hee Cho, et al. Dynamic Modeling and Control of a Grid-Connected Hybrid Generation System With Versatile Power Transfer. IEEE Transactions on Industrial Electronics,2008,55(4):1677-1688.
    [185]Lopez O, Freijedo F D, Yepes A G, et al. Eliminating Ground Current in a Transformerless Photovoltaic Application. IEEE Transactions on Energy Conversion,2010,25(1):140-147.
    [186]Liserre M, Blaabjerg F, Teodorescu R. Grid Impedance Estimation via Excitation of LCL-Filter Resonance. IEEE Transactions on Energy Conversion,2007,43(5):1401-1407.
    [187]Mohamed Y A-R I. Mitigation of Dynamic, Unbalanced, and Harmonic Voltage Disturbances Using Grid-Connected Inverters With LCL Filter. IEEE Transactions on Industrial Electronics,2011,58(9): 3914-3924.
    [188]Xiaolin Mao, Ayyanar R, Krishnamurthy H K. Optimal Variable Switching Frequency Scheme for Reducing Switching Loss in Single-Phase Inverters Based on Time-Domain Ripple Analysis. IEEE Transactions on Power Electronics,2009,24(4):991-1001.
    [189]Mohamed Y A-R I, A-Rahman M, Seethapathy R. Robust Line-Voltage Sensorless Control and Synchronization of LCL-Filtered Distributed Generation Inverters for High Power Quality Grid Connection. IEEE Transactions on Power Electronics,2012,27(1):87-98.
    [190]Zhilei Yao, Lan Xiao, Yangguang Yan. Seamless Transfer of Single-Phase Grid-Interactive Inverters Between Grid-Connected and Stand-Alone Modes. IEEE Transactions on Power Electronics,2010, 25(6):1597-1603.
    [191]Figueres E, Garcera G, Sandia J, et al. Sensitivity Study of the Dynamics of Three-Phase Photovoltaic Inverters With an LCL Grid Filter. IEEE Transactions on Industrial Electronics,2009,56(3):706-717.
    [192]Liserre M, Teodorescu R, Blaabjerg F. Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values. IEEE Transactions on Power Electronics,2006, 21(1):263-272.
    [193]郭小强,邬伟扬,顾和荣,等.并网逆变器LCL接口直接输出电流控制建模及稳定性分析.电工技术学报,2010,25(3):102-109.
    [194]孙绍华,李春鹏,贲洪奇.采用LCL滤波的三相并网逆变器.电工技术学报,2011,26(1):107-112.
    [195]刘飞,查晓明,段善旭.三相并网逆变器LCL滤波器的参数设计与研究.电工技术学报,2010,25(3):110-116.
    [196]Arcuri S, Liserre M, Ricchiuto D, et al. Stability analysis of grid inverter LCL-filter resonance in wind or photovoltaic parks.37th Annual Conference on IEEE Industrial Electronics Society,2011: 2499-2504.
    [197]Jinwai He, Yun Wei Li. Generalized Closed-Loop Control Schemes with Embedded Virtual Impedances for Voltage Source Converters with LC or LCL Filters. IEEE Transactions on Power Electronics,2012,27(4):1850-1861.
    [198]王要强,吴凤江,孙力,等.阻尼损耗最小化的LCL滤波器参数优化设计.中国电机工程学报,2010,30(27):90-95.
    [199]Serpa L A, Ponnaluri S, Barbosa P M, et al. A Modified Direct Power Control Strategy Allowing the Connection of Three-Phase Inverters to the Grid Through LCL Filters. IEEE Transactions on Industry Applications,2007,43(5):1388-1400.
    [200]Guoqiao Shen, Dehong Xu, Luoing Cao, et al. An improved control strategy for grid-connected voltage source inverters with a LCL filter. IEEE Transactions on Power Electronics,2008,24(4): 1899-1906.
    [201]Yi tang, Poh Chiang Loh, Peng Wang, et al. Exploring Inherent Damping Characteristic of LCL-Filters for Three-Phase Grid-Connected Voltage Source Inverters. IEEE Transactions on Power Electronics,2012,27(3):1433-1443.
    [202]Erika Twining, Holmes D G. Grid current regulation of a three-phase voltage source inverter with an LCL input filter. IEEE Transactions on Power Electronics,2003,18(3):888-895.
    [203]Dannehl J, Fuchs F W, Hansen S, et al. Investigation of Active Damping Approaches for Pi-Based Current Control of Grid-Connected Pulse Width Modulation Converters With LCL Filters. IEEE Transactions on Industry Applications,2010,46(4):1509-1517.
    [204]Agorreta J L, Borrega M, Lopez J, et al. Modeling and Control of N-Paralleled Grid-Connected Inverters With LCL Filter Coupled Due to Grid Impedance in PV Plants. IEEE Transactions on Power Electronics,2010,26(3):770-785.
    [205]彭双剑,罗安,荣飞.LCL滤波器的单相光伏并网控制策略.中国电机工程学报,2011,31(21):17-24.
    [206]许津铭,谢少军,肖华锋.LCL滤波器有源阻尼控制机制研究.中国电机工程学报,2012,32(9):27-33.
    [207]徐志英,许爱国,谢少军.采用LCL滤波器的并网逆变器双闭环入网电流控制技术.中国电机工程学报,2009,29(27):36-41.
    [208]王要强,吴凤江,孙力,等.带LCL输出滤波器的并网逆变器控制策略研究.中国电机工程学报,2011,31(12):34-39.
    [209]白志红,阮新波,徐林.基于LCL滤波器的并网逆变器的控制策略.电工技术学报,2011,26(1):118-124.
    [210]侯朝勇,胡学浩,惠东.基于离散状态空间模型的LCL滤波并网变换器控制策略.中国电机工程学报,2011,31(36):8-15.
    [211]Ellabban O, Van Mierlo J, Lataire P. A DSP-Based Dual-Loop Peak DC-link Voltage Control Strategy of the Z-Source Inverter. IEEE Transactions on Power Electronics,2012,27(9):4088-4097.
    [212]Bor-Ren Lin, Ta-Chang Wei, Huann-Keng Chiang. Novel AC line conditioner for power factor correction. IEEE Transactions on Aerospace and Electronic Systems,2004,40(1):168-179.
    [213]Rahmani S, Hamadi A, Mendalek N, et al. A New Control Technique for Three-Phase Shunt Hybrid Power Filter. IEEE Transactions on Industrial Electronics,2009,56(8):2904-2915.
    [214]Franklin G F, Powell J D, Workman M. Digital Control of Dynamic Systems. London:Pearson Education,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700