螺栓滑移对基础非均匀沉降输电塔的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
输电线路是现代社会一项重要的生命线工程,输电塔是输电线路的基本组成单元之一,因此精确预测输电塔的静动态特性,对输电塔的设计及安全评估起到非常重要的作用。在输电线路中,等边角钢由于其便于连接的优点被广泛应用于格构式输电塔中。其中相当一部分等边角钢通过单面螺栓连接,因此载荷传递时角钢承受偏心载荷。同时在输电塔设计中,为了现场安装方便螺孔直径一般比螺栓直径大1.5mm-2mm,而螺栓连接数量多、螺栓直径小、连接杆件薄(角钢或扁钢)、夹持力低、镀锌金属表面摩擦系数低等因素,使螺栓连接在较低载荷作用下即发生滑移现象。一方面,在相同沉降下,传统的结构分析计算得到的杆件轴力远大于试验测量值,甚至出现计算显示已经破坏的输电塔,现实中仍在正常运行着。另一方面,在相同载荷下,计算得到的结构变形量和结构极限沉降量远远小于试验测量值。经过多年研究已明确,产生这些偏差的主要原因是螺栓滑移和连接偏心,但是现有结构设计分析软件大多未对它们进行有效处理。因此,在输电塔的设计与安全评估时,准确建立输电塔结构中螺栓连接结构的模型就变得非常重要。
     本文结合研究组承担的“螺栓滑移对承受非均匀沉降输电塔的安全性影响研究”项目,针对输电塔中涉及的螺栓扭矩系数、螺栓滑移机理、输电塔精确分析模型和采动区输电塔安全评估等若干力学问题展开研究,为采动区基础非均匀沉降输电塔的设计与安全评估提供重要参考。论文的主要内容包括:
     1.输电塔镀锌螺栓扭矩系数的试验研究。通过试验测试了螺栓强度等级、有无垫圈和有无润滑对螺栓连接副扭矩系数的影响,探讨了扭矩系数的控制、调整,以及螺栓连接中要注意的问题,为本研究中螺栓连接的参数控制提供依据,也为设计和施工单位提供参考。
     2.螺栓连接接头滑移特性的测试与模拟。选取室内小塔和真实输电塔中有代表性的螺栓连接接头,通过螺栓滑移性能试验,获得螺栓连接接头的位移-载荷关系曲线,探讨螺栓连接滑移机理,考察螺栓连接的破坏形态。利用有限元软件ANSYS,建立螺栓搭接角钢结构的有限元模型,模拟螺栓滑移过程,并与试验测量结果进行对比,验证所建模型的有效性。
     3.建立含螺栓滑移和连接偏心的滑移梁模型,研究输电塔的受力变形特性。基于ANSYS开发了滑移梁分析模型,该模型将试验测量得到的螺栓连接位移载荷关系曲线引入到螺栓连接的分析模型中,并且考虑连接偏心的影响。利用该模型分析了结构在基础非均匀沉降时的受力-变形特性,并与传统分析软件模拟结果和试验测量结果进行对比,验证所提模型的有效性进而模拟了基础沉降工况下,结构的极限承载力。
     4.发明了可平动顶升装置和位移传感器固定装置。结合本文研究所搭建的室内小塔和ZM11输电塔的基础非均匀沉降测试,设计发明了一种用于在线测量螺栓连接滑移的位移传感器固定装置,同时发明了一种可水平低阻力滑动、并数字显示压力的顶升装置。
     5.研究螺栓滑移和连接偏心对输电塔动态特性的影响。利用所开发的滑移梁模型对输电塔进行模态分析,首次将试验测量得到的螺栓连接的位移载荷关系曲线引入到基础非均匀沉降输电塔的动态分析中,并且考虑了连接偏心的影响。试验测量了四根塔腿固支和三根塔腿固支,第四根塔腿在不同载荷作用下,输电塔在自然激励下的固有频率与振型,与所开发滑移梁模型和传统分析软件模拟结果进行对比分析,进一步验证了所开发滑移梁模型的有效性。
     6.通过有限元商业软件ANSYS建立滑移梁模型,模拟了输电塔各种非均匀沉降工况下的极限承载力。当输电塔基础发生非均匀沉降时,通过监测塔腿沉降值作为判断输电塔失稳与否的依据。为今后在煤炭开采区或冻土区的输电塔设计及塔腿沉降时的安全评估提供参考。
     通过本文研究,建立了格构式结构的精确分析模型,完整地分析了螺栓连接对格构式输电塔结构动静态特性的影响,这将为输电塔更高精度模拟分析起推动作用。
Electric transmission towers are the vital components of overhead transmission lines which play an important role in the operation of electric systems. Accurate prediction of the behavior of electric transmission towers is very important for design and accurate reliability assessment of the transmission lines and the power grids. The equal-leg angle steel is widely used in lattice transmission towers because of its light weight with L-shaped section making it easy for storage, transmission and fabrication. The angle steel members in lattice structure are normally bolted through only one of their legs and hence the forces transfering in the members are eccentric. The bolts within the holes are oversized1.5-2mm in lattice structure in order to provide an erection tolerence. For overhead transmission line structures, bolt slippage is likely to occur as relatively the bolt diameters are small, the leg plates are thin, the bearing type joints with lower clamping force are used, and the galvanized faying surfaces have a low coefficient of friction. Conventional analysis softwares for such structures assume the bolted connections as rigid ones and ignore the effect of joint eccentricity. Thus, the calculated deformations are smaller than the experimental ones under the same load. In some instances for structure still functioning well with large non-uniform settlement, failure was predicted by structure analysis softwares. The main reasons for the discrepancy between the experimental results and the analytical solutions are bolt slippage and joint eccentricity after years of ressearch, but most of the existing design softwares have not yet treated them properly. Therefore, it is important to model the joint of the lattice transmission tower properly in the design and safety assessment of the tower.
     This dissertation is a part of research project Effect of Bolted Joint on the Safty of Transmission Tower with Non-uniform Settlement, which is focused on some mechanics issues of the transmission tower, including the bolt torque coefficient, the slippage mechanism of bolted connection, the accurate modeling of the lattice transmission towers, and the safety assessment of transmission tower in the coal-mining area. The proposed algorithm and simulation results would provide good reference for further engineering applications. The main contents are as follows.
     1. Research on the torque coefficient of bolts in transmission towers. The torque coefficients of bolts in transmission towers are obtained by experimental measurement. The influence factors on the torque coefficient are analyzed, such as the strength grade of bolt connection and whether washer and lubrication are adopted. Furthermore, how to control the torque coefficient well and some other key issues on the bolt connection are discussed, which would provide the basis for the parameters control of the bolted joints in this study and provide good reference for other engineering applications.
     2. Test measurement and simulation of bolt slippage. For the representative bolted joints in the lattice structures used in this work, the load-displacement curves, the slippage mechanism and the failure modes of the bolted joints were investigated by tests. Using the finite element software ANSYS, the model of overlap angle steel bolt was established to simulate the bolt sliding process, and compared with the measured results.
     3. A slipping beam model is established to study the effect of bolted joint on the static characteristics of transmission tower with non-uniform settlement. The slipping beam model was developed based on the ANSYS, to which the deformation-load relationships of representative bolted joints were introduced and the load eccentricity in the structure component was also considered. This model was applied to analyze the deformation characteristics of a designed test tower and the calculated results are compared with those obtained from the traditional rigid-bolt treatment and the experimental measurement, verifying the validity of the proposed model. Observations have also been made for the ultimate load-carrying capacity and deformation properties of the test tower with different non-uniform settlements.
     4. A horizontal movable lifting device and displacement sensor fixing device are invented served for the test of the designed test tower and the ZM11transmission tower with non-uniform settlements, the displacement sensor fixing device has been invented for the slippage measurement of bolted joint online, and a horizontal movable lifting device has also been invented, which has low horizontal sliding resistance and digital pressure display.
     5. The effect of bolted joint on the dynamic characteristics of transmission tower was studied for the first time. The modal analysis of the transmission tower was performed by using the slipping beam model, into which the deformation-load relationships of the representative bolted joints were introduced and the load eccentricity in the structure components was also considered. The frequencies and mode shapes of transmission tower under natural excitation with four legs clamped and three legs clamped, the fourth leg under different loads were measured by tests, and compared well with the simulation results.
     6. The ultimate settlement displacements of the transmission tower with different non-uniform settlements were simulated by the slipping beam model, developed based on the ANSYS. When the transmission tower is subject to non-uniform settlements, we can judged the safety situation of the transmission tower through monitoring tower leg's subsidence, which would provide good reference for future engineering applications.
     Through the research in this dissertation, an accurate modeling algorithm for the lattice structure has been established. It has the ability to analyze of the bolted connection effect on the static and dynamic characteristics of the lattice transmission tower. This would promote the higher accuracy of simulation for the transmission towers.
引文
110~500kV架空送电线路施工及验收规范(GB 50233-2005).2005.北京:中国计划出版社.
    110~750kV架空输电线路设计技术规定(Q/DGW 179-2008).2008.北京:中国电力出版社.
    Ahmed K.I.E., Rajapakse R.K.N.D., Gadala M.S.2009. Influence of Bolted-Joint Slippage on the Response of Transmission Towers Subjected to Frost-Heave[J]. Advances in Structural Engineering,12(1):1-17.
    Al-Bermani F.G. and Kitipornchai S.1992. Nonlinear analysis of transmission towersfJ], Engineering Structure,14(3):139-51.
    Al-Bermani F.G., Kitipornchai S. and Chan R.W.K.2009. Failure analysis of transmission towers[J], Engineering Failure Analysis,16(3):1922-8.
    白海峰.2007.输电塔线体系环境荷载致振响应研究[D].大连:大连理工大学.
    Bursi O.S. and Jaspart J.P.1997. Benchmarks for finite element modelling of bolted steel connections[J]. Journal of Constructional Steel Research,43(13):17-42.
    Bursi O.S. and Jaspart J.P. 1997. Calibration of a finite element model for isolated bolted end-plate steel connections[J]. Journal of Constructional Steel Research,44(3):225-62.
    Cho S.H. and Chan S.L.2008. Second-order analysis and design of angle trusses, Part Ⅱ:Plastic analysis and design[J]. Engineering Structures,30:626-631.
    Chan S.L. and Cho S.H.2008. Second-order analysis and design of angle trusses, Part Ⅰ:Elastic analysis and design[J]. Engineering Structures,30:616-625.
    Chung K.F. and Ip K.H.2000. Finite element modeling of bolted connections between cold-formed steel strips and hot rolled steel plates under static shear loading[J]. Engineering Structures,22:1271-1284.
    Chung K.F. and Ip K.H.2001. Finite element investigation on the structural behaviour of cold-formed steel bolted connections[J]. Engineering Structures,2001,23:1115-1125.
    Citipitioglu A.M, Haj-Ali R.M, White D.W.2002. Refined 3D finite element modeling of partially-restrained connections including slip[J]. Journal of Constructional Steel Research, 58:995-1013.
    Croccolo D., Agostinis M.De, Vincenzi N.2010. Experimental and numerical analysis of clamped joints in front motorbike suspensions[C].14th International Conference on Experimental Mechanics.6:1-8.
    Croccolo D., Agostinis M.De, Vincenzi N.2011. Failure analysis of bolted joints:Effect of friction coefficients in torque-preloading relationship[J]. Engineering Failure Analysis,1(18): 364-374.
    曹枚根,徐忠根,刘智勇.2005.大跨越输电钢管组合塔动力特性的理论分析[J].电力建设,26(12):51-54.
    曹枚根,徐忠根等.2006.振动模态识别技术在输电塔线动力特性研究中的应用[J].电力建设,27(11):22-25,28.
    查剑锋.2005.采动影响下高压输电线路变形机理及其控制研究[D].徐州:中国矿业大学.
    陈骥.1999.单轴对称截面轴心受压构件的弯扭屈曲设计问题[J].钢结构,14(46):49-52.
    陈希孺.2006.概率论与数理统计[M].合肥:中国科学技术大学出版社.
    程睿,何井运等.2009.单角钢螺栓连接节点板拉剪性能研究[J].深圳大学学报理工版,26(4):382-388.
    邓洪洲,龙海波,董建尧.2009.单面螺栓连接单角钢压杆的承载力试验[J].建筑科学与工程学报,26(4):80-86.
    邓洪洲,黄誉.2011.钢管塔十字节点板强度理论与试验研究[J].同济大学学报(自然科学版),39(10):80-86.
    Ewins D.J.2000. Model testing:theory, practice and application[M]. Baldock:Reasearch Studies Press.
    房强汉.2004.高强度螺栓扭矩系数测试系统的设计[D].山东:山东大学.
    冯云巍.2008.输电塔架ANSYS建模及动力特性研究[J].钢结构,23(103):21-23.
    傅鹏程,邓洪洲,吴静.2005.输电塔结构动力特性研究[J].特种结构,22(1):47-49.
    Groper M.1985. Microslip and macroslip in bolted joints[J]. Experimental Mechanics,6:171-174.
    高康,陈海波,王朋等.2012.螺栓滑移对非均匀沉降输电塔承载能力的影响初探[J].中国科学技术大学学报,45(12):984-989.
    高康.2012.螺栓滑移对承受非均匀沉降输电塔影响的数值模拟[D].合肥:中国科学技术大学.
    郭勇,沈建国,应建国.2012.输电塔组合角钢构件稳定性分析[J].钢结构,27(155):11-16.
    郭绍宗.1998.国内外输电线铁塔的发展与展望[J].特种结构,3(15):43-46.
    顾庆鸿,蒋丽君.1985.高强度螺栓连接副定扭矩系数工艺试验[J].机械制造,12:19-21
    钢结构工程施工质量验收规范(GB 50205-2001).北京:中国计划出版社.
    Holmes J.D.1994. Along-wind response of lattice towers:part I-derivation of expressions for gust response factors[J]. Engineering Structure,16(4):287-292.
    Holmes J.D.1996a. Along-wind response of lattice towers:part Ⅱ-aerodynamic damping and deflections[J]. Engineering Structure,18(7):483-488.
    Holmes J.D.1996b. Along-wind response of lattice towers:part Ⅲ-effective load distributions [J]. Engineering Structure,18(7):489-494.
    郝际平,钟炜辉.2006.薄壁杆件的弯曲与扭转[M].北京:高等教育出版社.
    何国清,杨伦等.1989.矿山开采沉陷学[M].北京:中国矿业大学出版社.
    胡松,唐国安,杨元春.2000.输电线路大跨越塔的自振特性研究[J].钢结构,15(47):39-41.
    胡定钟.1979.单一工况下结构的满应力设计[J].吉林大学自然科学学报,3:9-19
    胡大柱,李国强等.2008.半刚性连接框架结构附加有效阻尼比[J].沈阳建筑大学学报,24(1):26-30.
    胡宇滨,马人乐.2002.江阴500kV输电塔动力性能测试[J].结构工程师,62(3):22-26.
    黄伟东,陈海波等.2012.螺栓滑移过程的数值模拟,第21届全国结构工程学术会议论文集,主编:崔京浩,《工程力学》杂志社,10,第三册:014-017.
    黄伟东.2013.输电铁塔螺栓滑移的数值模拟[D].合肥:中国科学技术大学.
    黄誉.2010.输电线路钢管塔节点强度理论与试验研究[D].上海:同济大学.
    Jaroslav M.2003. Finite element analysis of fastening and joining:A bibliography (1990-2002) [J]. International Journal of Pressure Vessels and Piping,80:253-271.
    Jiang W.Q., Wang Z.Q., et al.2011. Accurate modeling of joint effects in lattice transmission towers[J], Engineering Structures,33:1817-1827.
    John D.R. and Nicholas R.H.2005. Detailed modeling of bolted joint with slippage[J]. Finite Element in Analysis and Design,41:547-562.
    贾贤安,李昊,袁皖安.2004.高强度螺栓扭矩系数影响因素的实验研究[J].机械工程师,2:42-44.
    姜凯,郭连水.2010.基于有限元技术的螺纹联接扭矩系数分析与计算方法[J].制造业信息化,5:62-64.
    建筑结构荷载规范[M].2012.中国建筑工业出版社。
    Kitipornchai S., AI-Bermani F., Peyrot A.H.1994. Effect of bolt slippage on ultimate behavior of lattice structures[J]. Journal of Structural Engineering ASCE,120(8):2281-2287.
    Knight G. and Santhakumar A.1993. Joint effect on behavior of transmission towers[J]. Journal of Structure Engineering,119(3):698-712.
    Kroeker D.2001. Structural analysis of transmission towers with connection slip modeling[D]. University of Manitoba, Canada.
    Lee P.S. and McClure G.2006. A general three-dimensional L-section beam finite element for elasto-plastic large deformation analysis[J]. Computers & Structure,84(3):215-29.
    Lee P.S. and McClure G.2007. Elastoplastic large deformation analysis of a lattice tower structure and comparison with full-scale tests[J]. Journal of Constructional Steel Research,63((5): 709-17.
    Li H.N.1996. Seismic response analysis methodfor coupled system of transmission lines and towers[J]. Earthquake Engineering and Engineering Vibration,16(4):23-27.
    Li H.N.1997. Response of transmission tower system to horizontal and rock earthquake excitation[J]. Earthquake Engineering and Engineering Vibration,17(4):32-39.
    Liang S.G.1999. An analysis of wind induced responses for Dashengguan electrical transmission tower-line system across the Yangtze River[C]. Copenhagen:Proceedings of the 10th International Conference on Wind Engineering:565-570.
    Luo Y., Peng S., Zhu Z.H.2012. Upgraded comprehensive and integrated subsidence prediction model CISPM-W.27th International Conference on Ground Control in Mining:123-130.
    梁峰.2006.输电塔的风振控制研究[D].武汉:华中科技大学。
    梁峰,李黎,尹鹏.2007.大跨越输电塔-线体系抗灾研究的现状和发展趋势[J].土木工程学报,26(2):61-65.
    李湘红,唐歆熙,王璋奇.1999.输电线路铁塔构造设计的发展与现状[J].电力情报,2:4-6.
    李喜来,王开明等.2010.大跨越输电塔动力特性[J].电力建设,31(5):43-48.
    李云天,谢家安等.2007.HHT在电力系统低频振荡模态参数提取中的应用[J].中国电机工程学报,27(28):79-83.
    李逢春,郭广礼,邓喀中.2002.开采沉陷对架空输电线路影响预测方法及其应用[J].矿业安全与环保,29(2):18-21.
    李峰,邓洪洲等.2006.输电铁塔设计中角钢构件稳定计算问题的讨论[J].特种结构,23(2):4-7.
    刘群,杨进春,周粼波.1997.高压架空输电线路钢结构塔架与导线风致耦合振动现象研究[J].中国电力,30(9):50-52.
    刘涛.2008.采动区自立式直线输电塔破坏机理及抗变形性能研究[D].徐州:中国矿业大学.
    刘沪昌,唐国安.2007.轴心受压热轧等边角钢肢边缘局部屈曲稳定计算方法的探究[J].电力建设,28(9):1-4,17.
    刘正林.2009.摩擦学原理[M].北京:高等教育出版社.
    楼文娟,孙炳楠,唐锦春.1996.高耸格构式结构风振数值分析及风洞试验[J].振动工程学报,9(3):318-322.
    螺纹紧固件紧固通则(GB/T 16823.2-1997)[S].北京:中国标准出版社.
    卢修连,刘晓峰.2008.输电塔振动状态远程监测系统研究[J].江苏电机工程,27(6):30-32.
    Mayumi T., Junji M., Nobuyuki I.2010. Aerodynamic damping properties of two transmission towers estimated by combining several identification methods[J]. Journal of Wind Engineering and Industrial Aerodynamics,98:872-880
    Marjerrison M.1968. Electric transmission tower design[J], Journal of Structural Division, Proceedings American Society Civil Engineers,94(1):1-23.
    Moze P., Beg D.2011. Investigation of high strength steel connections with several bolts in double shear[J]. Journal of Constructional Steel Research,67:333-347.
    Nassar S. A. and Zaki A. M.2009. Effect of thickness on the friction coefficient and torque-tension relationship in threaded fasteners[J]. Journal of Tribology,4(131):1-13.
    Ozono S., Maeda J, Makino M.1998. Characteristics of in-plane free vibration of transmission line systems[J]. Engineeing Structures,10(10):272-280.
    Ozono S. and Maeda J.1992. In-plane dynamic interaction between a tower and conductors at lower frequencies[J]. Engineeing Structures,14(4):210-216.
    Peterson W.O.1962. Design of EHV steel tower transmission lines[J]. Journal of Structural Division, Proceedings American Society Civil Engineers,88(1):39-65.
    邱宣怀,郭可谦.1997.机械设计(第四版)[M].北京:高等教育出版社.
    Rao N.P. and Kalyanaraman V.2001. Non-linear behavior of lattice panel of angle towers[J]. Journal of Constructional Steel Research,57:1337-1357.
    Roy S., Fang S.J., Rossow E.C.1984. Secondary stresses on transmission towers structures[J]. Journal of Engineering,110(2):157-172.
    Silvaa J.G.S., Vellascob P.C.G., et al.2005. Structural assessment of current steel design models for transmission and telecommunication towers[J]. Journal of Constructional Steel Research, 61(8):1108-1134.
    史巍,杜冰,李会杰.2012.输电塔线体系脱冰跳跃动力响应分析[J].水电能源科学,30(3):155-157、211.
    孙冬明,夏军武.2009.地下开采对送电线路铁塔附加内力影响的有限元分析与试验研究[J].2009年全国博士生论坛优秀论文集.长沙:中南大学:400-407
    孙冬明,夏军武,常鸿飞.2010.地下开采后送电线路铁塔的受力性能研究[J].武汉理工大学学报,32(10):58-61,90.
    孙冬明.2010.采动区送电线路铁塔力学计算模型及塔-线体系共同作用机理研究[D].徐州:中国矿业大学.
    田岛二郎著,刘志斌译.1990.高强度螺栓摩擦连接概论[M].沈阳紧固件研究所.
    铁摩辛柯,盖莱.1965.弹性稳定理论[M].科学出版社.
    Ungkurapinan N.2003. A study of Joint Slip in Galvanized Bolted Angle Connections[D]. University of Manitoba Winnnipeg, Canada.
    Ungkurapinan N., Chandrakeerthy S.R.D., et al.2003. Joint slip in steel electric transmission towers[J]. Engineering Structures,25:779-788.
    WANG P., CHEN H.B., et al.2014. Effect of bolt slippage on the static response of lattice structure. Applied mechanics and materials,444-445:90-95.
    汪江,杜晓峰等.2009.淮蚌线淮河大跨越输电塔有限元建模和修正研究[J].钢结构,24(1):21-24.
    汪江,杜晓峰等.2009.500kV淮蚌线淮河大跨越输电塔振动测试与模态识别[J].中国电力,42(2):30-33.
    王朋,高康等.2013.螺栓滑移对格构式结构静动态特性的影响研究[J].固体力学学报,10(33):211-215.
    王继武,凌玲等.2008.垫片对摩擦型高强度螺栓抗滑移性能影响分析[J].重庆交通大学学报(自然科学版),27(5):695-697.
    许强,孙焕.1991.离散变量桁架结构优化设计的组合算法[J].大连理工大学学报,31(6):625-632.
    徐金波.2010.螺纹紧固件连接副扭矩系数测试技术应用研究[D].机械科学研究总院.
    徐建设,陈以一等.2003.普通螺栓和承压型高强螺栓抗剪连接滑移过程[J].同济大学学报,31(5):510-514.
    许镇宇,朱景梓等.1960.机械零件[M].北京:人民教育出版社.
    杨慧敏,李丰,刘国明.2008.大电网低频功率振荡阻尼比问题的研究[J].科技创新导报,36:100-102.
    叶君龙,张华等.2010.影响钢结构用高强度大六角头螺栓连接副扭矩系数的因素[J].理化检验-物理分册,46(1):7-10.
    殷惠君.2003.大跨越输电线路的风振反应分析与振动控制[D].武汉:武汉理工大学
    于翔,陈绪宏,杨章程.2008.高强度大六角头螺栓连接副的扭矩系数和抗滑移系数的测定方法[J].理化检验-物理分册,44(9):475-478.
    赵海涛,郭广礼,查剑锋.2008.高压输电线路杆塔采动变形规律研究[J].煤矿安全,(5):17-19.
    赵滇生,金三爱.2004.有限元模型对输电塔架结构动力特性分析的影响[J].特种结构.21(3):8-11.
    赵滇生.2003.输电塔架结构的理论分析与受力性能研究[D].浙江:浙江大学.
    振动及动态信号采集分析系统(V7.0)[R].2005.南京安正软件有限责任公司.
    詹肖兰.1989.输电塔K型腹杆系的计算长度[J].长沙铁道学院学报.7(2):59-67.
    邹友峰,邓喀中,马伟民.2003.矿山开采沉陷工程[M].徐州:中国矿业大学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700