大跨度钢管混凝土拱桥抗震性能及动力稳定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢管混凝土拱桥因其良好的力学性能和施工方便等优点在我国得到了广泛的应用。以跨径308的南浦大桥为工程背景,深入细致地研究了大跨度钢管混凝土拱桥的非线性地震响应特性、多维多点地震响应特性以及在地震荷载下的动力稳定性能。在对Lyapunov运动稳定理论研究的基础上,提出了拱结构的运动稳定性实用判别准则。
     联合应用虚拟激励法和伽辽金法,得到了弹性圆拱在平稳和非平稳水平随机地震作用下的随机响应的半解析解。通过算例分析并与有限元计算结果相比较,验证了该方法的计算精度和计算效率。
     对大跨度钢管混凝土拱桥进行了三维地震激励下的非线性时程分析,研究了几何非线性、材料非线性、阻尼比及桥道系参与等因素对拱桥地震响应的影响。研究结果表明:考虑桥道系后,拱脚附近截面的横向弯矩和轴力有了较大幅度的增加;几何非线性对钢管混凝土的地震响应有一定影响,由于刚度的减弱而使拱肋位移和大部分截面轴力增加,材料非线性使拱脚附近截面处于不利状态。
     对南浦大桥进行三维正交地震动多点激励下的平稳随机响应分析。数值仿真了该拱桥在一维P波、一维SH波、一维SV波多点激励下的地震响应以及考虑互谱的三维多点激励地震响应。数值分析结果表明:考虑地震动的空间效应对拱肋内力有很大改变,地震动空间变化对拱肋内力的影响主要来自行波效应。三维地震作用比单维地震作用的拱肋内力有较大增幅。对大跨度钢管混凝土拱桥,必须进行多维多点地震激励的响应分析,否则有可能严重低估结构的地震设计内力。
     提出了结构运动稳定性实用判别准则以及该准则的具体实施步骤,研究了拱结构在阶跃荷载、周期荷载以及地震激励下的失稳特征,指出结构整体刚度矩阵出现负的特征值是结构失稳的必要条件,可依此判断结构动力失稳临界荷载的下限值,位移时程曲线发散、性质发生改变或发生跳跃、运动状态混沌,可作为结构动力失稳的依据。
     对大跨桁式中承式钢管混凝土拱桥进行了静力和弹塑性动力稳定分析研究。结果表明材料非线性对大跨度拱桥的静力稳定影响是显著的。在大跨度拱桥的弹性动力稳定分析中,B-R准则失效,可采用结构整体刚度矩阵出现负的特征值来判断结构动力失稳临界荷载。横向激励是使拱桥动力失稳的最不利激励方向。初始几何缺陷对拱桥的静力稳定影响很大,而对拱桥的动力稳定影响很小。地震波扰动对拱桥静力稳定系数影响很小。拱桥的弹塑性动力失稳模态为拱肋局部屈曲失稳。
Concrete filled steel-tube (CFST) arch bridge has been widely applied in our country for its good mechanical properties and facilitated in construction et al. Taking 308m span Nanpu Bridge as the object of study, the nonlinear seismic response behavior, the seismic response characteristic under multi-dimensional and multi-support excitation and the dynamical stability properties of long-span CFST arch bridge were investigated in depth. The motion stability practical criterion of arch structure is brought forward on the base of Lyapunov theorem of motion stability.
     The semi-analytical solution of elastic circular arch under horizontal random stationary and non-stationary seismic excitation was studied by the method combining the pseudo-excitation algorithm with Galerkin algorithm. A numerical example was given to demonstrate the accuracy and efficiency by comparing the results with finite element method.
     The nonlinear time-history analysis of long-span CFST arch bridge under three-dimensional earthquake excitations was performed. The influence of geometrical non-linearity, material non-linearity, damping ratio and bridge deck was studied by seismic response analysis. The results show that the lateral bending moment and axial force around the springing of arch rib increase greatly taking account of bridge deck. Geometrical non-linearity has some effect on seismic response of CFST arch bridge. The displacement of arch rib and the axial force of most section increase because of the reduction of stiffness. Material non-linearity put the sections of springing of arch rib nearby at a disadvantage.
     The random seismic response analysis of Nanpu Bridge under multi-support excitations of three-dimensional orthogonal earthquake motion was performed. The seismic response of the arch bridge under one-dimensional P-wave, one-dimensional SH-wave, one-dimensional SV-wave and three-dimensional considering cross-power spectrum of multi-support earthquake excitations were numerically simulated. The results show that the internal forces of arch rib may be greatly changed by considering the spatial variation of seismic motion. The influence of spatial variation of seismic motion on the internal forces of arch rib primarily comes from travel ing-wave. The internal forces of arch rib under three-dimensional earthquake excitations are greater than that under one-dimensional excitation. The random seismic analysis under three-dimensional and multi-support earthquake excitations must be performed for the long-span CFST arch bridge otherwise the seismic design forces of the structure are likely to underestimate seriously.
     The practical stability criterion of structure motion and the specific steps were proposed. The instable characteristics of arch structure were investigated under step load, cyclic load and earthquake excitation. It is indicated that negative eigenvalue appearing in structure whole stiffness matrix is requirements for structure instability and the lower limit of critical load of structure dynamical instability is estimated. The displacement time-history curve becoming divergent, a change of qualities, a leap taking place or the motion chaos can be basis for structure dynamical instability.
     The static and dynamic plastical stability analysis of long-span half-through trussed CFST arch bridge were studied. The result indicates that the material non-linearity decreases static stability coefficient of long span arch bridge greatly. The Budiansky-Roth criterion is invalidate in the analysis of elastic dynamic stability of long span arch bridge and the critical load of dynamic stability can be estimated by negative eigenvalue appearing in structure whole stiffness matrix. Lateral earthquake excitation is the most disadvantageous direction in dynamic buckling analysis. Initial geometric imperfection makes no difference on dynamic stability of arch bridge but yet affect static stability of arch bridge deeply. The plastic dynamic buckling mode of arch bridge is partial buckling of arch rib and seismic wave disturbance has little influence on static stability coefficient of arch bridge.
引文
[1]韩林海.钢管混凝土结构[M].北京:科学出版社,2000.
    [2]钟善桐.钢管混凝土结构[M].北京:清华大学出版社,2003.
    [3]ACI Committee 318(ACI 318).Building code requirements for structural concrete and commentary[S].American Concrete Institute,Detroit,USA,2005.
    [4]American Institute of Steel Construction(AISC).Specification for structural steel building[S].ANSI/AISC Standard 360-05,AISC Chicago,Illinois,USA,2005.
    [5]BS5400-5:1979,Concrete and composite bridge[S].British Standard Institute.London,U.K.
    [6]Eurocode 4(EC4).Design of composite steel and concrete structures-Part-1:General rules and rules for buildings[S].EN 1994-1-1:2004,Brussels,CEN,2004.
    [7]AIJ.Recommendations for design and construction of concrete filled steel tubular structures[S].Architectural Institute of Japan,Tokyo,Japan,1997.
    [8]中国工程建设标准化协会标准CECS28∶90.钢管混凝土结构设计与施工规程[S].北京:中国计划出版社,1992.
    [9]中国工程建设标准化协会标准CECS159∶2004.矩形钢管混凝土结构技术规程[S].北京:中国计划出版社,2004.
    [10]中华人民共和国电力行业标准DL/T 5085-1999.钢-混凝土组合结构设计规程[S].北京:电力出版社,1999.
    [11]中华人民共和国国家军用标准GJB4142—2000.战时军港抢修早强型组合结构技术规程[S].北京:中国人民解放军总后勤部,2001.
    [12]钟善桐.钢管混凝土统一理论-研究与应用[M].北京:清华大学出版社,2006.
    [13]韩林海.钢管混凝土结构-理论与实践[M].北京:科学出版社,2007.
    [14]中华人民共和国国家标准GB50017-2003.钢结构设计规范[S].北京:中国计划出版社,2003.
    [15]陈宝春,郑皆连.钢管混凝土拱桥实例集(一)[M].北京:人民交通出版社,2002.
    [16]陈宝春,郑皆连.钢管混凝土拱桥实例集(二)[M].北京:人民交通出版社,2008.
    [17]杨溥,李英明,王亚勇等.结构静力弹塑性分析方法的改进[J].建筑结构学报,2000,21(1):44-51.
    [18]Applied Technology Council.Seismic evaluation and retrofit of concrete building[R].Report ATC-40,1996.
    [19]Building Seismic Safety Council.NEHRP Guidelines for the Seismic Rehabilitation of Buildings[s],FEMA356.Washington D C:Federal Emergency Management Agency,2000.
    [20]中华人民共和国国家标准GBS0011-2001.建筑抗震设计规范[S].北京:中国建筑工业出版社,2002.
    [21]林家浩,张亚辉.随机振动的虚拟激励法[M].北京:科学出版社.2004.
    [22]李涛.大跨度钢管混凝土拱桥的抗震分析[J].公路,1996,41(1):10-13.
    [23]彭大文,王忠.中承式钢管混凝土肋拱桥的地震响应分析[J].工程力学,1997,14(增刊):220-223.
    [24]郑家树.大跨度钢管混凝土拱桥非线性地震反应分析[D].成都:西南交通大学,2000.
    [25]赵灿晖,周志祥.大跨度钢管混凝土拱桥非线性地震反应分析[J].重庆建筑大学学报.2006,28(2):47-51.
    [26]胡世德,苏虹,王君杰.钢管混凝土拱桥的三维弹塑性地震反应理论分析[J].中国公路学报.2004,17(1):57-61.
    [27]谢开仲,秦荣,李秀梅等.钢管混凝土拱桥的材料非线性地震反应分析[J].世界地震工程.2005,21(3):40-44.
    [28]胡世德,王君杰,魏红一等.丫髻沙大桥主桥抗震性能研究[J].铁道标准设计,2001,21(6):21-25.
    [29]郑史雄,周述华,丁桂保.大跨度钢管混凝土拱桥的地震反应性能[J].西南交通大学学报,1999,34(3):320-324.
    [30]赵灿辉,周志祥.大跨度钢管混凝土拱桥在多维多点地震激励作用下的平稳随机响应[J].世界地震工程.2007,23(4):66-71.
    [31]熊峰.钢管混凝土拱桥的抗震性能研究[D].成都:四川大学,2001.
    [32]符华.鲍络金.弹性体系的动力稳定性[M].北京:高等教育出版社,1960.
    [33]P.G德拉津,W.H.雷德.流体动力稳定性[M].北京:宇航出版社,1990.
    [34]李俊峰,王照林.非保守线性陀螺系统的稳定性[J].应用数学和力学.1996,17(12):1107-1111.
    [35]周纪卿,朱因远.非线性振动[M].西安:西安交通大学出版社.1998.
    [36]舒仲周.运动稳定性[M].成都:西南交通大学出版社.1989.
    [37]Simitses.G.J.Dynamic Stability of Suddenly Loaded Structures[M].Springer-Verlag New York Inc,1990.
    [38]Pinto da Costa A,Martins J A C,Brance F,et al.Oscillations of bridge stay cables included by periodic motions of deck and/or towers[J].Journal of Engineering Mechanics,1996,122(7):613-622.
    [39]亢战,钟万勰.斜拉桥参数共振问题的数值研究[J].土木工程学报,1998,31(4):14-22.
    [40]汪志刚,孙炳楠.斜拉桥参数振动引起的拉索大幅振动[J].工程力学,2000,18(1):103-109.
    [41]赵跃宇,王涛,康厚军.斜拉索主参数共振的稳定性分析[J].动力学与控制学报,2008,6(2):112-117.
    [42]Hoff,N.J.,Bruce,V.C.Dynamic Analysis of the Buckling of Laterally Loaded Flat Arches[J].Journal of Mathematics and Physics,1954,32:276-288.
    [43]Movchan A A.The direct method of Lyapunov in stability problems of elastic systems[J].J Appl Math,1959,23:670-686.
    [44]Movchan A A.Stability of processes with respect to two metrics[J].J Appl Math,1959,24:1506-1524.
    [45]Budiansky.B,Roth.R.S.Axisymmetric Dynamic Buckling of Clamped Shallow Spherical Shells[C]// Collected Papers on Instability of Shells Structures.NASA TND-1510,Washington D.C,1962:597-606.
    [46]Budiansky.B,Hutchinson.J.W.Dynamic Buckling of Imperfection-Sensitive Structures[C]//Proc.ⅩⅠ International Congress of Applied Mechanics.Munich,1964:120-128.
    [47]Budiansky.B.Dynamic Buckling of Elastic Structures:Criteria and Estimates[C]//Dynamic Stability of Structures(Edited by G.Herrmann),Pergamon Press,NewYork,1967:20-28.
    [48]Hus.C.S.On Dynamic Stability of Elastic Bodies with Prescribed Initial Conditions[J].Int.J.Nonlinear Mech.,1968,4(1):1-21.
    [49]Hus.C.S.Stability of Shallow Arches Against Snap-Through under Timewise Step Loads[J].J.Appl.Mech.,1968,35(1):31-39.
    [50]Simitses.G.J.Instabilities of Dynamic Loaded Structures[J].Applied Mechanics Reviews,1987,40(10):1403-1408.
    [51]Simitses,G.J.On the Dynamic Buckling of Shallow Spherical Caps[J].J.Appl.Mech.,1974,41(1):299-300.
    [52]杨桂通,王德禹.结构的冲击屈曲问题[C]//冲击力学进展.合肥:中国科学技术大学出版社,1992.
    [53]Akkas N,Asymmetric buckling behavior of spherical caps under uniform step pressure[J].J Appl Math,1972,39:293-294.
    [54]Izzuddin.B.A,Elnashai.A.S,Dowling.P.J.Large Displacement Nonlinear Dynamic Analysis of Space Frames[C]// 1st European Conf on Structural Dynamics.A.A.Balkema Publishers,Netherlands,1991:491-496.
    [55]叶继红.单层网壳结构的动力稳定性分析[D].上海:同济大学,1995.
    [56]沈祖炎,叶继红.运动稳定性理论在结构动力分析中的应用[J].工程力学,1997,14(3):21-28.
    [57]叶继红,沈祖炎.单层网壳结构在简单荷载下动力稳定分析[J].哈尔滨建筑大学学报,1997,30(1):24-31
    [58]王策,沈世钊.单层球面网壳结构动力稳定分析[J].土木工程学报,2000,33(6):17-24
    [59]李忠学.杆系钢结构的非线性动力稳定性分析[D].上海:同济大学,1998
    [60]李忠学,沈祖炎,邓长根.广义位移控制法在动力稳定问题中的应用[J].同济大学学报,1998,26(6):609-612.
    [61]李忠学,沈祖炎,邓长根.杆系钢结构非线性动力稳定性识别与判定准则[J].同济大学学报,2000,27(2):148-151.
    [62]张其林,Udo Peil.任意激励下弹性结构的稳定分析[J].土木工程学报,1998,33(1):26-32.
    [63]Humphreys.J.S.On dynamic snap buckling of shallow arches[J].AIAA Journal,1966,5:878-886.
    [64]Hoff.N.J,Bruce.V.C.Dynamic analysis of the buckling of the laterally loaded flat arches[J].J.Math.phys.,1954,32:276-288.
    [65]Gregory.W.E,Plaut.R.H.Dynamic boundaries for shallow arches[J].Journal of the Engineering Mechanics Division.1982,12:1036-1050.
    [66]姚坚,宋伯铨.弹性圆拱在考虑几何非线性和初始缺陷情况下的动力稳定分析[J].计算 结构力学及其应用,1992,9(3):253-262.
    [67]徐艳,胡世德.钢管混凝土模型拱的弹性动力稳定性研究[J].同济大学学报(自然科学版),2005,33(1):6-10.
    [68]徐艳,胡世德.钢管混凝土拱桥的动力稳定极限承载力研究[J].土木工程学报,2006,39(9):68-73.
    [69]徐艳,胡世德.地震作用下钢管混凝土拱桥的动力稳定性[J].同济大学学报(自然科学版),2007,35(3):315-319,340.
    [70]尼格姆.随机振动概论[M].上海:上海交通大学出版社.1985.
    [71]向天宇,赵人达.大跨度拱在空间变化的非平稳随机地震动作用下的随机响应[J].中国公路学报.2001,14(1):39-41.
    [72]Lin J H,Williams F W,Bennett P N.Direct Ritz Method for Random Seismic Responses for Non-Uniform Beams[J].Structure Engineering and Mechanics,1994,2(3):285-294.
    [73]Lin J H,Song G Z,Sun Y,et al.Non-Stationary Random Seismic Responses of Non-Uniform Beams[J].Soil Dynamics and Earthquake Engineering,1995,14:301-306.
    [74]项海帆,刘光栋.拱结构的稳定与振动[M].北京:人民交通出版社,1991.
    [75]林家浩.随机地震响应功率谱快速算法[J].地震工程与工程振动,1990,10(4):38-46.
    [76]林家浩.随机地震响应的确定性算法[J].地震工程与工程振动,1985,5(1):89-94.
    [77]Lin J H.AFast CQC Algorithm of PSD Matrices for Random Seismic Responses[J].Computers & Structure,1992,44(3):683-687.
    [78]林家浩.非平稳随机地震响应的精确高效算法[J].地震工程与工程振动,1993,13(3):24-29.
    [79]Davenport A G.Note on the Distribution of the Largest Value of a Random Function with Application to Gust Loading[J].Proceeding of the Institution of Civil Engineers.1964,28:187-196.
    [80]李国豪.工程结构抗震动力学[M].上海:上海科学技术出版社,1980.
    [81]唐锦春,孙炳楠,郭鼎康.计算结构力学[M].杭州:浙江大学出版社.1989.
    [82]A.H.金尼克.拱的稳定性[M].吕子华,译.北京:建筑工程出版社,1958:13-20.
    [83]Shinozuka M,Sato Y.Simulation of nonstationary random process[J].J Engrg Mech ASCE,1967,93(1):11-40.
    [84]陈宝春.钢管混凝土拱桥计算理论研究进展[J].土木工程学报,2003,36(12):47-57.
    [85]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社,2004.
    [86]郭乙木,陶伟民,庄茁.线性与非线性有限元及其应用[M].北京:机械工业出版社,2004.
    [87]蒋友谅.非线性有限元法[M].北京:北京工业学院出版社,1988.
    [88]孙炳楠.淳安南浦大桥整桥模型试验报告[M].杭州:浙江大学土木工程学系,2001.
    [89]李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社,1996.
    [90]郑家树,金邦元.大跨度钢管混凝土拱桥空间地震反应分析[J].西南交通大学学报,2003,38(1):53-56.
    [91]欧享德,韦明吉.柳州文惠钢管混凝土中承载拱桥[C]//中国公路学会桥梁和结构工程学会1996年桥梁学术会议论文集.北京:人民交通出版社,1996:56-67.
    [92]Kiureghian A D,Neuenhofer A.Response Spectrum Method for Multi-Support Seismic Excitations[J].Earthquake Engineering and Structural Dynamics,1992,21(8):713-740.
    [93]Nazmy A D,Abdel-Ghaffar AM.Effects of ground motion spatial variability on the response of cable-stayed bridges[J].Earthquake Engineering and Structural Dynamics,1992,21(1):1-20.
    [94]Ernesto H Z,Yanmarcke E H.Seismic random vibration analysis of multi-support structural system[J].Journal of Engineering Mechanics,ASCE,1994,120(5):1107-1128.
    [95]Rassem M,Ghobarah A,Heidebrecht A C.Site effects on the seismic response of a suspension bridge[J].Engineering Structures,1996,18(5):363-370.
    [96]Nicholas A,Alexander.Multi-support excitation of single span bridges,using real seismic ground motion recorded at the SMART-1 array[J].Computers and Structures,2008,86(1):88-103.
    [97]王君杰,王前信,江近仁.大跨拱桥在空间变化地震动下的响应[J].振动工程学报,1995,8(2):119-126.
    [98]胡聿贤.地震工程学[M].北京:地震出版社,1988.
    [99]Housner G W.Characteristic of strong-motion earthquakes[J].Bulletin of the Seismological Society of America,1947,37(1):19-31.
    [100]Kanai K.An empirical formular for the spectrum of strong earthquake motion[J].Bulletin of Earthquake Research Institute,1961,39(1):85-95.
    [101]胡聿贤,周锡元.弹性体系在平稳和平稳化地面运动下的反应[C]//中国科学研究院土木建筑研究所地震工程研究报告集第一集.北京:科学出版社,1962.
    [102]Ruiz P,Penzien J.Probabilistic study of the behavior of structure during earthquakes[R]Earthquake Engineering Center University of California,Berkeley,CA,Report No.EERC 69-03,1969
    [103]欧进萍,牛荻涛,杜修力.设计用随机地震动的模型及其参数确定[J].地震工程与工程振动,1991,11(3):45-53.
    [104]杜修力,陈厚群.地震动随机模拟及其参数确定[J].地震工程与工程振动,1994,14(4):1-5.
    [105]史志利,李忠献.随机地震动场多点激励下大跨度桥梁地震反应分析方法[J].地震工程与工程振动,2003,23(4):124-130.
    [106]全伟,李宏男.大跨结构多维多点输入抗震研究进展[J].防灾减灾工程学报,2006,26(3):343-351.
    [107]薛素铎,王雪生,曹资.空间网格结构多维多点随机地震响应分析的高效算法[J].世界地震工程,2004,20(3):43-49.
    [108]Clough R W,Penzien J.Dynamics of structures[M].New York:McGraw-Hill,Inc.,1993.
    [109]张翠红,吕令毅.大跨度斜拉桥在多点随机地震激励作用下的响应分析[J].东南大学学报(自然科学版),2004,34(2):249-252.
    [110]屈铁军,王君杰,王前信.空间变化的地震动功率谱的实用模型[J].地震学报,1996,18(1):55-62.
    [111]李庆伟,李宏男.输电塔结构的动力稳定性研究[J].防灾减灾工程学报,2008,28(2):202-207.
    [112]刘慧娟,韩庆华,周全智.弦支穹顶结构在地震作用下的动力稳定性研究[J].天津理工大学学报,2007,23(2):84-88.
    [113]智菲,车伟,李海旺.单层椭圆抛面网壳在地震作用下的动力稳定性分析[J].太原理工大学学报,2007,38(4):356-360.
    [114]Ishikawa K and Kato S.Elastic-plastic dynamic buckling analysis of reticular domes subjected to earthquake motion[J].International Journal of Space Structures,1997,12(3-4):205-215.
    [115]Kato S,Ueki T and Mukaiyama.Study of dynamic collapse of single layer reticular domes subjected to earthquake motion and the estimation of statically equivalent seismic forces.International Journal of Space.Structures,1997,12(3-4):191-203.
    [116]Vamvatsikos D,Cornel C A.Incremental dynamic analysis[J].Earthquake Engineering and Structural dynamics,2002,31:491-514.
    [117]郭海山,沈世钊.单层网壳结构动力稳定性分析方法[J].建筑结构学报,2003,24(3):1-9.
    [118]韩强,张善元,杨桂通.结构静动力屈曲问题研究进展[J].力学进展,1998,28(3):349-360.
    [119]谢肖礼,赵国藩,邹存俊.钢管混凝土拱桥肋拱面内极限承载力全过程计算机模拟[J].土木工程学报,2004,37(5):54-58.
    [120]叶继红,沈祖炎.初始缺陷对网壳结构动力稳定性能的影响[J].土木工程学报,1997,30(1):37-42.
    [121]李忠学.初始几何缺陷对网壳结构静、动力稳定性承载力的影响[J].土木工程学报,2002,35(1):11-14,24.
    [122]王连华,易壮鹏,张辉.周期荷载作用下几何缺陷拱的动力稳定性[J].湖南大学学报(自然科学版),2007,34(11):16-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700