特高压输电塔线体系风振响应及风振疲劳性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
输电塔线体系是风敏感型结构体系,风荷载是输电塔结构设计的控制荷载。目前,对特高压输电塔的风荷载模型、考虑塔线耦联的风振响应规律以及风振的灾害研究尚处于初期。本文以拟建的1000kV双回路特高压输电线路为背景,对特高压钢管输电塔的风荷载模型、风致振动特性、塔线耦合体系气弹性风洞试验以及风振疲劳等问题展开研究,主要包括以下几方面内容:
     (1)基于HFFB试验确定输电塔的风荷载谱。由静力三分力风洞试验得到钢管输电塔的体型系数;对输电塔半刚性模型的HFFB试验结果进行处理,去除了基底弯矩谱中共振响应的影响,并对处理后的弯矩谱进行拟合,得到各风向角下的顺风向、横风向及扭转向的基底弯矩谱公式。基于风荷载竖向相干性与风速相干性一致的假设,得到输电塔不同高度的风荷载自谱与互谱,并分析输电塔横风向激励的组成,识别出紊流激励部分与旋涡脱落激励部分约各占一半。
     (2)通过气弹性风洞试验研究双回路特高压钢管输电塔及塔线体系的风振响应特性。采用半刚性节段加“U”形弹簧片的方法设计制作输电塔的气动弹性模型,动力特性测定表明按此方法制作的模型满足气弹性风洞试验的要求。对塔线体系气弹性风洞试验时输电塔与导线采用不一致比例的问题进行数值分析,从理论角度论证了这一方法的可行性。由气弹性风洞试验结果总结了双回路特高压输电塔及塔线体系的风振响应特性,并通过试验结果反演得到了结构的固有特性和系统的输入激励。
     (3)建立塔线体系的有限元模型,分别在时域和频域对塔线耦合体系的风振响应进行理论分析,得出的结果与风洞试验吻合。推导了三节点索单元以及考虑摆动刚度的绝缘子单元的刚度与质量矩阵。在等效线性化的基础上对塔线体系的风振响应进行频域分析,结果表明导线张力较大、垂度较小时,塔线体系的频域计算结果也能达到较高的精度。
     (4)采用等效静力风荷载组合法和风振系数法计算输电塔的等效静力风荷载,为设计中考虑横风向影响提出建议。试验结果均表明,输电塔在横风向的风振响应与顺风向的动力部分在同一个数量级。为考虑输电塔横风向的等效静力风荷载,引入广义阵风效应因子和广义风振系数,为输电塔抗风设计中考虑横风向风振效应提供方便、合理的方法。
     (5)基于线性疲劳累积损伤理论,在时域与频域讨论输电塔结构的风振疲劳寿命的计算,提出估算输电塔风振疲劳的思路和方法。通过输电塔的风振时程分析和雨流计数法在时域中计算结构的风振疲劳累积损伤,并比较目前频域内计算疲劳累积损伤的各种方法,结果表明频域估算疲劳寿命偏于保守,其中等效应力法计算结果与雨流法最为接近,计算过程也较为简单方便,比较适用于基于全寿命周期的输电线路设计。
Transmission tower-line is a type of wind-load-sensitive structure , and wind load is the main control load. At present, the studies of the wind load model on the system, the response regulation and disaster induced by wind load are still at the initial stage. Therefore, based on the two-circuit 1000kV UHV power transmission line under planning, the wind load model on the steel tube tower, the wind-induced vibration character, the aeroelastic wind tunnel test of the tower-line coupled system and the estimate of the fatigue cumulative damage caused by wind-induced vibration are discussed as follows:
     (1) The wind load spectrum is formulated through the HFFB test. The shape coefficient of the two-circuit UHV steel tube transmission tower is obtained by the three-component-force test; and after the resonance response in the results of the HFFB test of the semi-rigid model of the lattice type tower is filtered, the foundation moment spectrum in the along-, cross-wind and torsion direction under different wind angles is fitted to formulation. Assumed that the coherence of the wind load in vertical is the same to the wind speed, the auto power spectrum and cross power spectrum of the wind load on the tower is formulated. Futhermore, the analysis shows that the contribution of the turbulence is about equal to the vortex shedding for the cross-wind motivation.
     (2) The wind-induced vibration of the steel tube transmission tower-line coupled system is studied by the aeroelastic wind tunnel test. The aeroelastic model is designed and made by the semi-rigid segment and U shape spring, and the checking result shows that the aeroelastic model meets the requirments of the wind tunnel test. As the tower and conducting cable can not use the same scaling factor, the distorted model is proved by numerical analysis. The character of wind-induced response of the the tower and tower-line system is summarized from the results of wind tunnel test, and the structure’s natural characteristics and the input motivation is obtained from response inversion.
     (3)After building the finite element model of the tower-line coupled system, the analysis is conducted in both time-domain and frequency-domain numerically, and the response rules of single tower and tower-line system agree well with the results obtained from aeroelastic model tunnel test. The stiffness- and mass-matrix of the three-node- cable element and the insulator element considering the swing stiffness are deduced. With the assumption of equivalent linearization, the systems wind-induced respons are analysized in frequency-domain, and the result shows that the analysis in frequency-domain is accurate while the cable is tensioned and the sag is small.
     (4) The equivalent static wind load is calculated by the load combination method and wind vibration coefficient method respectively, and the suggestion is advanced for the consideration of cross-wind load in the design. The results of the test indicats that, the wind-introduced responses in the along-wind direction equals to that in the cross-wind direction. In consideration of equivalent static wind load in the cross-wind vibration, the generalized gust factor and wind vibration coefficient are introdued to calculate the cross-wind vibration in design.
     (5) Based on the liner fatigue cumulative damage theory, the transmission tower’s fatigue life under wind-indced vibration is calculated in the time-domain and frequency-domain, and the process and method for the analysis of the tower’s wind-indced fatigue is proposed. By the time-history analysis of the tower structure and rain-flow method, the fatigue cumulative damage is calculated in time-domain. According to the comparison of differernt existing methods in frequency-domain, generally all of the methods are conservative in estimation of the fatigue life, and the result of equivalent stress method is silmilar to that of the rain-flow method. Because of its simplify in calculation, the equivalent stress method is more suitable in transmission tower’s total life cycle design.
引文
[1]胡骅,虞海泓.特高压交流输电技术的研究与发展[J].科技通报. 2006. 22(5): 675-680.
    [2]张文亮,于永清,宿志一等.湖南电网2008年冰雪灾害调研分析[J].电网技术. 2008. 32(8): 1-5
    [3]张章奎.国内外特高压电网技术发展综述[J].华北电力技术. 2006. 1-2.
    [4]胡白雪,周浩.我国发展特高压交流输电的必要性和可行性[J].能源工程. 2005.1-4.
    [5]汪秀丽.特高压输电技术的发展[J].水利电力科技. 2006.32(2):6-16.
    [6]李杰,韩新,刘威等.华东电网50万伏输电线路倒塔事故分析和检测研究报告[R].上海:同济大学出版社. 2002.
    [7]唐国安.我国500kV线路倒塔事故率浅析[J].电力建设. 1994.15(11): 18-24.
    [8]杨靖波,李正,杨风利,黄廷政. 2008年电网冰灾覆冰及倒塔特征分析[J].电网与水力发电进展. 2008. 24(4): 4-8.
    [9]张文亮,五维宁,胡毅.特高压输电技术的研究与我国电网的发展[J].高电压技术. 2003. 29(9): 16-18.
    [10]黄健.桅杆结构随机风振疲劳及控制研究[D].同济大学博士学位论文. 2004.
    [11]贺德馨.风工程与工业空气动力学[M].北京:国防工业出版社. 2006.
    [12]埃米尔·希缪,罗伯特·H·斯坎伦著.刘尚培,项海帆等译.风对结构的作用[D].同济大学出版社. 1992.
    [13] Harris R I. The nature of wind. In the modern design of wind sensitive structures[R]. Construction Industry Research and Information Association, Londaon, U. K. 1971.
    [14] Kaimal J C. Spectral characteristics of surface-layer turbulence[J]. J. Royal Meteorol. 1972. Sec. 98:563~589.
    [15] Panofsky H. A. , et al. Two-Point velocity statistics over lake Ontario[J]. Bound Layer Meteorol. 1974. 7:309-321.
    [16] Davenport A G. The dependence of wind load upon meteorological parameters[R]. In proceedings of the international research seminar on wind effects on building and structures. University of Toronto Press, Toronto. 1968. 19-82.
    [17]黄本才,王国砚,林颖儒等.体育场屋盖结构静动力荷载实用分析方法[J].空间结构. 2000. 6(3): 33-39.
    [18] Liang Shuguo, Zou Lianghao, Zhao Lin, et al. The generalized force spectrum of along-wind loads on lattice towers[M]. Chang-Koon Choi. Proceedings of the sixthasia-pacific conference on wind engineering. Soul:Techno-Press. 2005. 943-952.
    [19]梁枢果,邹良浩,赵林等.格构式塔架动力风荷载解析模型[J].同济大学学报(自然科学版), 2008. 36(2): 166-171.
    [20] Ballio G, Meberini F, Solari G. A 60 year old 100m high steel tower: limit states under wind actions[J]. Wind Eng. and Indus Aerodyn. 1992: 41-44; 2089-2100.
    [21] Glanville M J, Kwok K C S. Dynamic characteristics and wind induced response of a steel frame tower[J]. Journal of Wind Engineering and Industrial Aerodynamics. 1995: 54-55: 133-149
    [22] Y Momomura, H Marukawa, T Okamura, E Hongo. Full-scale measurements of wind-induced vibration of a transmission line system in a mountainous area[J]. Journal of Wind Engineering and Industrial Aerodynamics. 1997. 72: 241-252.
    [23] Hiroshi K. Wind tunnel test on 500kV transmission tower with solid web brackets[J] . Journal of Wind Engineering, 1994. 58: 54-60.
    [24]楼文娟,孙炳楠.高耸格构式结构风振数值分析及风洞试验[J].振动工程学报, 1996. 318-322.
    [25]楼文娟,孙炳楠.高耸塔架横风向动力风效应[J].土木工程学报. 1999. 32: 67-71.
    [26]楼文娟,孙炳楠.风与结构的耦合作用及风振响应分析[J].工程力学. 2000.17: 16-22.
    [27]程志军,付国宏,楼文娟等.高耸格构式塔架风荷载试验研究[J].实验力学. 2000. 15: 51-55.
    [28]付国宏,程志军,孙炳楠.等.架空输电线路风振试验研究[J].流体力学实验与测量, 2001. 15(1): 16-21.
    [29]邓洪洲,朱松晔,王肇民.大跨越输电塔线体系动力特性及风振响应[J].建筑结构. 2004. 7. 25-28.
    [30]郭勇,孙炳楠,叶尹.大跨越输电塔线体系风振响应的时域分析[J].土木工程学报. 2006. 39(12): 12-17.
    [31]李正良,肖正直,韩枫等. 1000kV汉江大跨越特高压输电塔线体系气动弹性模型的设计与风洞试验[J].电网技术. 2008. 32(12): 1-5.
    [32]韩银全,梁枢果,邹良浩等.输电塔线体系完全气弹模型设计[C].第十三届全国结构风工程学术会议论文集(上册).大连:中国土木工程学会桥梁与结构工程分会风工程委员会. 2007. 260-265.
    [33] Davenport A G. Gust loading factors[J]. Journal of the Structural Division. ASCE. 1967. 93: 11-34.
    [34] Solari G. Alongwind response estimation:closed-form solution[J]. Journal of the Structural Division, ASCE. 1982. 108: 225-244.
    [35] Solari G. Analytical estimation of the alongwind response of structures[J]. Journal of Wind Engineering and Industrial Aerodynamics. 1983. 14:467-477.
    [36] Kasperski, M. , Niemann, H. J. The L. R. C. method a general method of estimating unfavourable wind load distributions for linear and non-linear structural behaviour[J]. Journal of Wind Engineering and Industrial Aerodynamics. 1992. 43: 753-1763.
    [37] Holmes J D. Along-wind response of lattice towers:part I:derivation of expressions for gust response factors[J]. Engineering Structures. 1994. 16: 287-292.
    [38] Holmes J D. Along-wind response of lattice towers:part II:aerodynamic damping and deflections[J]. Engineering Structures. 1996. 18: 483-488.
    [39] Holmes J D. Along-wind response of lattice towers:part III:effective load distributions[J]. Engineering Structures. 1996. 18: 489-494.
    [40] Loredo-Souza A. M, Davenport A. G. The effects of high winds on transmission lines[J]. Journal of Wind Engineering and Industrial Aerodynamics. 1998. 74-76:987-994.
    [41]郭勇.大跨越输电塔线体系风振响应及振动控制研究[D].浙江大学博士学位论文. 2006.
    [42] Irvine H. M. Cable structures. The MIT Press, 1981.
    [43]程志军.架空输电线路静动力特性及风振研究[D].浙江大学博士学位论文. 2000.
    [44]程大业.悬索结构分析的精确单元方法[D].清华大学博士学位论文. 2005.
    [45] Leonard J W. Tension structures behavior and analysis[M]. New York: Mc Graw-Hill. 1988.
    [46]金问鲁悬挂结构计算理论[M].杭州:浙江科学技术出版社. 1981.
    [47]张其林.索和膜结构[M].上海:同济大学出版社. 2002.
    [48] Tang Jianmin, Shen Zuyan. A nonlinear finite element method with five-node curved element for analysis of cable structures[J]. Proceedings of IASS International Symposium, 1995. 2: 929-935.
    [49]董明,夏绍华.张力结构的非线性有限元分析[J].计算力学学报. 1997. 14(3):268-275.
    [50]张其林,张莉.连续长索非线性静动力分析的样条单元[J].工程力学. 1999. 16(1):115-121.
    [51] Jayaraman H B, et al. A curved element for the Analysis of Cable Structures[J]. Computers and Structures. 1981. 14(34): 325-333.
    [52]单圣涤,李云飞等.悬索曲线理论及其应用[M].湖南:湖南科技出版社. 1983.
    [53] Havard D G, Perry O C. Lattice tower member fatigue and its control using a novel damping scheme[J]. Power Engineering Society Summer Meeting, IEEE, Seattle, WA, USA. 2000. 4: 2560-2565.
    [54] Matsuishi M, Endo T. Fatigue of metals subjected to varying stress[C]. Presented at the1968, Japan society of mechanical engineers, held at Fukuoka, Japan.
    [55] Wirsching P H, Shehata A M, Fatigue under wide band random stresses using the rain-flow method[J]. Journal of engineering materials and technology. 1977. 7:205-211.
    [56] Nagode M, Fajdiga M. A general mufti-modal probability density function suitalbe for the rain flow ranges of stationary random process[J]. International journal of fatigue. 1998. 20: 211-223.
    [57] Tovo R. Cycle distribution and fatigue damage under broad-band random loading[J]. International Journal of fatigue. 2002. 24: 1137-1147.
    [58] Rychlik I. Extremes rain-flow cycles and damage functions in continuous random process[J]. Stochastic processes and their application. 1996. 63: 97-116.
    [59] Lee B L, Kim K S, Nam K M. Fatigue analysis under varialbe amplitude loading using an energy parameter[J]. International journal of fatigue. 2003. 25: 621-631.
    [60] Colombi P, Dolinski K. Fatigue lifetime of welded joints under random loading:rainflow cycle vs. cycle sequence method[J]. Probabilistic engineering mechanics. 2001. 16:61-71.
    [61] Anthes R J. Modified rainflow counting keeping the load sequence[J]. International journal of fatigue. 1997. 19:529-535.
    [62]王之宏.桅杆结构的风振疲劳分析,特种结构. 1994: I 1:3-8.
    [63]王世村,孙炳楠,叶尹.自立式单杆输电塔顺风向风振疲劳分析[J].浙江大学学报(工学版). 2005. 39(12): 1880-1884.
    [64] Crandall S H, Mark W D. Random vibration in mechanical system[M]. New York, Academic press. 1963.
    [65] Wirsching P H. Fatigue under wide band random stresses[J]. Journal of the Structural Division. 1980. 106: 1593-1607.
    [66] Dionne M, Davenport A G. A simple relationship between the gust response factor and fatigue damage[J]. Journal of wind engineering and industrial aerodynamics. 1988. 30:45-54.
    [67] Mikitarenko M A, Perelmuter A W. Safe fatigue life of steel towers under the action of wind vibrations[J]. Journal of wind engineering and industrial aerodynamics. 1998. 74-76:1091-1100.
    [68] Petrov A A. Dynamic response and life prediction of steel structures under wind loading[J]. Journal of wind engineering and industrial aerodynamics. 1998.74-76: 1057-1065.
    [69] Repetto M P, Solari G. Dynamic alongwind fatigue of slender vertical structures[J]. Engineering Structures. 2001. 23: 1622-1633.
    [70] Benasciutti D, Tovo R. Comparison of spectral methods for fatigue analysis of broad-bandGaussian random processes[J]. Probabilistic Engineering Mechanics. 2006. 21:287-299.
    [71] Benasciutti D, Tovo R. Fatigue life assessment in non-Gaussian random loadings[J]. International Journal of Fatigue. 2006. 28: 733-746.
    [72]邓洪洲,屠海明,王肇民.桅杆结构随机风振疲劳研究[J].土木工程学报, 2003. 36(4):19-23.
    [73]屠海明.桅杆结构风振疲劳分析[D].同济大学硕士学位论文. 2000.
    [74]徐建波.桅杆结构风振响应及疲劳分析[D].同济大学博士学位论文. 2004.
    [75]周春良,梁枢果.风荷载作用下钢塔架的疲劳寿命预估[J].建筑技术开发. 2005. 32(3):1-3.
    [76] T. Tschanz, A. G. Davenport. The base balance technique for the determination of dynamic wind loads[J]. Jurnal of Wind Engineering and Industrial Aerodynamics. 1983. 13:429-439.
    [77] N J Cook. A sensitive 6-component high frequency-range balance for building aerodynamics[J]. Journal of Physics E: Scientific Instruments. 1983. 16: 390-393.
    [78] D. W. Boggs. Validation of the aerodynamic model method[J]. Journal of Wind Engineering and Industrial Aerodynamics. 1992. 41-44:1973-1983.
    [79]李会知,关罡,吴义章.建筑物风荷载测量技术与动态响应的研究[J].工程力学. 2004. 21(1): 143-147.
    [80]李会知,吴义章,郑冰.高层建筑动态和静态风荷载的确定[J].世界地震工程. 2004. 20(2): 101-105.
    [81]李会知,郑冰,张伟.高层建筑风响应及等效静态风荷载的研究[J].郑州大学学报(工学版). 2004. 25(3): 60-64.
    [82]李会知,樊友景.高层建筑等效静态风荷载的确定[J].建筑结构. 2006.36(7): 82-84.
    [83]顾明,王凤元,全涌等.超高层建筑风荷载的试验研究[J].建筑结构学报. 2000. 21(4): 48-54.
    [84]顾明,周印,张锋等.用高频动态天平方法研究金茂大厦的动力风荷载和风振响应[J].建筑结构学报. 2000b. 21(4): 55-61.
    [85]顾明,周印,张锋等.金茂大厦风致振动的实验研究[J].振动工程学报. 2000. 13(2): 188-193.
    [86]李庆祥,孙炳楠,楼文娟等.高耸异型烟囱结构风压和风振系数试验研究[J].实验力学. 2005. 20(4): 615-622.
    [87]张亮亮,罗声,余洋,等.基于复杂外型建筑物的风振系数[J].重庆大学学报(自然科学版). 2006. 29(5): 96-98.
    [88]张亮亮,吴云芳,余洋等.高层建筑风荷载高频测力天平试验技术[J].重庆大学学报(自然科学版). 2006. 29(2): 99-102.
    [89]张建国,叶丰,顾明.典型超高层建筑横风向气动力谱的构成分析[J].北京工业大学学报. 2006. 32(2):104-114.
    [90]邹良浩,梁枢果.半刚性模型风洞试验荷载谱的处理方法[J].实验流体力学. 2007. 21(3):76-80
    [91]全涌.超高层建筑横风向风荷载及响应研究[D].同济大学博士学位论文. 2002.
    [92]张相庭.结构风工程—理论规范实践[M].北京:中国建筑工业出版社. 2006.
    [93]叶丰.高层建筑顺、横风向和扭转方向风致响应及静力等效风荷载研究[D].同济大学博士学位论文. 2004.
    [94] Solari G. Mathematical Model to Predict 3-D Wind Loading on Buildings[J]. Journal of Engineering and Mechanics. 1985. 111(2):254-276.
    [95]顾明,叶丰.高层建筑的横风向激励特性和计算模型的研究[J].土木工程学报2006. 39(2):1-5.
    [96] Solari G, Pagnini L C, Piccardo G. A numerical algorithm for the aerodynamic identification of structures[J]. Journal of wind engineering and industrial aerodynamics. 1997. 69-71, 719-730.
    [97] Flay R G J, Yip D Y N. Wind induced dynamic response of building with coupled 3D modes[J]. Wind engineering into the 21st century. 1999. 645-652.
    [98] Katagiri J, Nakamura O, Ohkuma T, Marukawwa H, Tsujimoto T, Kondo K. Wind-induced lateral-torsional motion of a tall building[J]. Journal of wind engineering and industrial aerodynamics. 1992. 41-44, 1127-1137.
    [99]唐意.高层建筑弯扭耦合风致振动及静力等效风荷载研究[D].同济大学博士学位论文. 2006.
    [100]肖正直.特高压输电塔风振响应及等效风荷载研究[D].重庆大学博士学位论文. 2009.
    [101] Lou Wenjuan, Sun Bingnan, Tan Jinchun. Wind tunnel test and numerical computation on wind-induced vibration for tall lattice tower[J].Journal of Vibration Engineering, 1996. 9(3): 318-322.
    [102] Loredo-Souza A M, Davenport A G. A novel approach for wind tunnel modeling of transmission lines [J]. Journal of wind engineering and industrial aerodynamics. 2001. 89:1017-1029.
    [103]郭勇,孙炳楠,叶尹.大跨越输电塔线体系气弹模型风洞试验[J].浙江大学学报(工学版). 2007. 41(9) 1482-1486.
    [104]克莱斯·迪尔比耶,斯文·奥勒·汉森著.薛素铎,李雄彦译.结构风荷载作用[M].北京:中国建筑工业出版社. 2006.
    [105]李国强,李杰.工程结构动力检测理论与应用[M].北京:科学出版社. 2002. 4.
    [106]林家浩,张亚辉.随机振动的虚拟激励法[M].北京:科学出版社. 2004.
    [107]晏致涛.大跨度中承式拱桥风致振动研究[D].重庆大学博士学位论文. 2006.
    [108] Shinozuka M, Jan C M. Digital Simulation of random processes and is applications[J]. J. of Sound and vibration. 1972. 25(1):111-128.
    [109] Shinozuka M, Deotatis G. Simulation of stochastic processes by spectral representation[J]. Applied Mechanics Reviews. 1991. 44:191-204.
    [110] Deodatis G. Simulation of ergodic multivariate stochastic processes[J]. ASCE, 1996. 122(8): 778-787
    [111]刘静.特高压输电塔线耦联体系风振响应及风洞试验研究[D].重庆大学硕士学位论文. 2008.
    [112] Desai Y M, P. Popplewell Yu N. Shah A H. Finite element modelling of transmission line galloping[J]. Computers & Structures. 1995. 57(3):407-420.
    [113] Mathur R K, Shah A H, Trainor P G S, Popplewell N. Dynamics of a guyed transmission tower system[J]. IEEE Transactions on Power Delivery. 1987. 2(3): 908-916.
    [114] Piccardo G, Solari G. Closed form prediction of 3-D wind-excited response of slender structures[J]. Journal of Wind Engineering and Industrial Aerodynamics. 1998. 74-76: 697-708.
    [115]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社. 2003.
    [116]倪侃.随机疲劳累积损伤理论研究进展[J].力学进展. 1999. 29(1):43-65.
    [117]高镇同,熊峻江.疲劳可靠性[M].北京:北京航空航天大学出版社. 2000.
    [118]董乐义,罗俊,程礼.雨流计数法及其在程序中的具体实现[J].计算机技术与应用. 2004. 24(3):38-40.
    [119]邓洪洲,屠海明,王肇民.桅杆结构随机风振疲劳研究[J].土木工程学报, 2003. 36(4): 19-23.
    [120] Chaudhury G K, Dover W. Fatigue analysis of offshore platforms subject to sea wave loading[J]. International journal of fatigue. 1985. 7:13-19.
    [121] Chow C L, Li D L. An analytical solution for fast fatigue assessment under wide-band random loading[J]. International journal of fatigue. 1991. 5:395-404.
    [122]王世村.高耸结构风振响应和风振疲劳研究[D].浙江大学博士学位论文. 2005.
    [123] Zhao W, Baker MJ. On the probability density function of rainflow stress range for stationary Gaussian processes[J]. International Journal of Fatigue. 1992. 14(2): 121–35.
    [124]顾明,叶丰.高层建筑风致响应和等效静力风荷载的特征[J].工程力学. 2006. 23(7):93-98.
    [125]王修琼,崔剑峰. Davenport谱中系数K的计算公式及其工程应用[J].同济大学学报.2002. 30(7):849-852.
    [126] Benasciutti D, Tovo R. Spectral methods for lifetime prediction under wide-band stationary random processes[J]. International Journal of Fatigue. 2005. 27(8): 867–877.
    [127] Repetto M P, Solari G. Wind-induced fatigue of structures under neutral and non-neutral atmospheric conditions[J]. Journal of Wind Engineering and Industrial Aerodynamics. 2007. 95: 1364-1383.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700