两种含联吡啶配体单体的合成及其聚合反应尝试
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文根据聚合物太阳能电池对聚合物光伏材料的要求,综合共轭聚合物和染料敏化剂的优点,拟将金属染料以侧链的形式通过柔性链挂接到共轭聚合物主链上,这样的聚合物主链既可以保持较高的空穴迁移率,侧链染料的引入又可以大大拓宽聚合物对太阳光谱的吸收范围和增强对太阳光的吸收强度,从而制备出性能优异的光伏材料。
     含二联吡啶的噻吩基聚合物的设计与合成。首先合成了一个将联吡啶通过柔性链段连接到噻吩环上的二溴单体M1和2,5-二溴-3-辛基噻吩(化合物6)。其中M1未见文献报道。尝试了GRIM方法聚合,化合物6聚合成功,而M1与化合物6共聚却没有得到相应的共聚产物。没有得到预期聚合物的原因可能是联吡啶单元的引入导致了格氏试剂的失活。后对实验方案进行了调整,拟把二溴单体转化为二醛单体化合物8,但也没有得到目标产物,其原因可能是M1的二联吡啶单元破坏了丁基锂的化学结构。
     含二联吡啶的咔唑基聚合物的设计与合成。先将联吡啶单元和咔唑单元用柔性链段连接起来制备中间体化合物11,然后通过Vilsmeier醛基化反应使咔唑基团上生成两个醛基来合成单体M2,再用单体M2与1,4-亚苯基二乙腈通过Knoevenagel反应聚合来制备含二联吡啶的咔唑基聚合物。化合物11已经制备成功。但是再用化合物11制备M2时没有得到目标产物,其原因也可能是由于联吡啶单元的存在对Vilsmeier醛基化反应产生了不利的影响。
According to the requirements of polymeric solar cells, aiming to combine the advantages of dye sensitizer and conjugated polymers, the metal complexes will be attached to conjugated main chain as side-chain pendants through a soft linkage. The conjugated main chain of the polymers can make them have high hole-tansporting ability. And the metal complexes can improve the absorption range and absorption intensity of conjugated polymers. Thus, these polymers should have excellent performance for photovoltaic appliction.
     Design and synthesis of conjugated polymers based on thiophene containing bipyridine unit. Dibromo thiophene connected with bipyridine through flexible chain monomer M1 and 2,5-dibromo-3-octyl-thiophene (compound 6) were successfully synthesized. M1 was not reported in the literature. Although compound 6 could be polymerized by GRIM method conveniently, the copolymerization of M1 and compound 6 using the same method was not successful. The reason may be that the bipyridine unit of M1 could damage Grignard Reagent. We also tried to convert the dibromo monomer M1 to dialdehyde monomer compound 8 in an adjusted route, but the target product was not obtained.
     Design and synthesis of conjugated polymers based on carbazole containing bipyridine unit. First, compound 11 will be synthesized by connecting carbazole unit with bipyridine unit through soft linkage. Then, M2 will be synthesized by attaching two aldehyde groups to the carbazole unit of compound 11 through Vilsmeier reaction. Finally, M2 and 1,4-phenylenediacetonitrile will be copolymerized through Knoevenagel reaction. The intermediate compound 11 was successfully synthesized. Whereas, the translation of compound 11 to M2 was not successful, The reason may be that the bipyridine unit adversely affected the Vilsmeier reaction.
引文
[1]Yasuhiko S, Hiroshi K. Charge Carrier Transporting Molecular Materials and Their Applications in Devices[J]. Chemical Reviews,2007,107:953~1010
    [2]马丁·格林.太阳电池工作原理、工艺和系统的应用[M].李秀文译.北京:电子工业出版社,1987.1~2
    [3]卢金军.太阳能电池的研究现状和产业发展[J].科技资讯,2007,18:14.
    [4]李丽,张贵友,陈人杰等.太阳能电池及关键材料的研究进展[J].化工新型材料,2008,36(11):1~4
    [5]O'Regan B, Gratzel M. A Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films[J]. Nature,1991,353:737~740
    [6]李崇华.太阳能电池工作原理与种类[J].电气技术,2009,8:128~130
    [7]张正华,李陵岚,叶楚平等.有机太阳电池与塑料太阳电池[M].北京:化学工业出版社,2006.18~19
    [8]Bredas J L, Norton J E, Cornil J, et al. Molecular Understanding of Organic Solar Cells: The Challenges[J]. Accounts of Chemical Research,2009,42(11):1691~1699
    [9]Nazeeruddin M K, Kay A, Gratzel M. Conversion of Light to Electricity by Cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)Ruthenium(Ⅱ) Charge-transfer Sensitizers (X= C1-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes [J]. Journal of the American Chemical Society,1993,115(14):6382~6390
    [10]Nazeeruddin M K, Comte P, Gratzel M. Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-based Solar Cells [J]. Journal of the American Chemical Society, 2001,123(8):1613~1624
    [11]Yasuo C, Ashrafui I, Yuki W, et al. Dye-sensitized Solar Cells with Conversion Efficiency of 11.1%[J]. Japanese Journal of Applied Physics,2006,45(60):638~640
    [12]Gratzel M. Dye-sensitized Solar Cells[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews,2003,4:145~153
    [13]Tennakone K, Kumara G R R A, Kottegoda I R M, et al. An Efficient Dye-sensitized Photoelectrochemical Solar Cell Made from Oxides of Tin and Zinc[J]. Chemical Communications,1999,1:15~16
    [14]Sayama K, Suguhara H, Arakawa H. Photoelectrochemical Properties of a Porous Nb2O5 Electrode Sensitized by a Ruthenium Dye[J]. Chemistry of Materials,1998,10(12): 3825~3832
    [15]秦国旭,袁希梅,李祥飞.染料敏化太阳电池的染料敏化剂的研究进展[J].巢湖学院学报,2009,11(3):89~97
    [16]Nazeeruddin M K, Pechy P, Graetzel M. Efficient Panchromatic Sensitization of Nanocrystalline TiO2 Films by a Black Dye Based on a Trithiocyanato Ruthenium Complex[J]. Chemical Communications,1997,18:1705~1706
    [17]Klein C, Nazeeruddin M K, Liska P, et al. Engineering of a Novel Ruthenium Sensitizer and Its Application in Dye-sensitized Solar Cells for Conversion of Sunlight into Electricity[J]. Inorganic Chemistry,2005,44:178~180
    [18]Hagfeldt A, Lindquist S, Gratzel M. Charge Carrier Separation and Charge Transport in Nanocrystalline Junctions[J]. Solar Energy Materials and Solar Cells,1994,32:245~ 257
    [19]Wang P, Klein C, Moor J E, et al. Amphiphilic Ruthenium Sensitizer with 4,4'-Diphosphonic acid- 2,2'- Bipyridine as Anchoring Ligand for Nanocrystalline Dye Sensitized Solar Cells[J]. The Journal of Physical Chemistry B,2004,108:17553~17559
    [20]Hara K, Sayama K, Ohga Y, et al. A Coumarin-derivative Dye Sensitized Nanocrystalline TiO2 Solar Cell Having a High Solar-energy Conversion Efficiency up to 5.6%[J]. Chemical Communications,2001:569~570
    [21]Hara K, Kurashigo M, Dan-oh Y, et al. Design of New Coumarin Dyes Having Thiophene Moieties for Highly Efficient Organic-dye-sensitized Solar Cells[J]. New Journal of Chemistry,2003,27:783~785
    [22]Zhang G L, Hari B, Cheng Y M, et al. High Efficiency and Stable Dye-sensitized Solar Cells with an Organic Chromophore Featuring a Binary π-Conjugated Spacer[J]. Chemical Communications,2009:2198~2200
    [23]Ito S, Zakeemddin S M, Humphry Baker R, et al. High-efficiency Organic-dye-sensitized Solar Cells Controlled by Nanocrystalline-TiO2 Electrode Thickness[J]. Advanced Materials,2006,18:1202~1205
    [24]Gunes S, Neugebauer H, Sariciftci N S. Conjugated Polymer-Based Organic Solar Cells[J]. Chemical Reviews,2007,107:1324~1338
    [25]Chirvaze D, Chiguvare Z, Knipper M, et al. Temperature Dependent Characteristics of Poly(3- Hexylthiophene)-Fullerene Based Heterojunction Organic Solar Cells[J]. Journal of Applied Physics,2003,93:3376~3383
    [26]Malik S, Nandi A K. Crystallization Behaviour of Regioregular Poly(3-Alkyl Thiophenes): Influence of Alkyl Chain Length[J]. International Journal of Plastics Technology,2003,6: 107~111
    [27]Reyes R M, Kim K, Carroll D L. High-efficiency Photovoltaic Devices Based on Annealed Poly(3-Hexyl thiophene) and 1-(3-Methoxycarbonyl)-Propyl-1-Phenyl-(6,6)C61 Blends [J]. Applied Physics Letters,2005,87:083506/1~083506/3
    [28]Ibrahim M A, Roth H K, Schroedner M, et al. The Influence of the Optoelectronic Properties of Poly(3-Alkylthiophenes) on the Device Parameters in Flexible Polymer Solar Cells[J]. Organic Electronics,2005,6:65~77
    [29]Ahn T, Choi B, Ahn S, et al. Electronic Properties and Optical Studies of Luminescent Polythiophene Derivatives[J]. Synthetic Metals,2001,117:219~221
    [30]Chirvaze D, Chiguvare Z, Knipper M. Electrical and Optical Design and Characterization of Regioregular Poly(3-Hexylthiophene-2,5-diyl)/Fullerene-based Heterojunction Polymer Solar Cells[J]. Synthetic Metals,2003,138 (1-2):299~304
    [31]Causin V, Marega C, Marigo A, et al. Crystallization and Melting Behavior of Poly(3-butylthiophene), Poly(3-octylthiophene), and Poly(3-dodecylthiophene) [J]. Macromolecules,2005,38 (2):409~415
    [32]Padinger F, Rittberger R, Sariciftci N S. Effects of Postproduction Treatment on Plastic Solar Cells[J]. Advanced Functional Materials,2003,13:85~88
    [33]Camaioni N, Ridolfi G, Casalbore G M, et al. The Effect of a Mild Thermal Treatment on the Performance of Poly(3-alkylthiophene)/Fullerene Solar Cells[J]. Advanced Materials, 2002,14:1735~1738
    [34]Ahn T, Lee H, Han S H. Effect of Annealing of Polythiophene Derivative for Polymer Light-emitting Diodes[J]. Applied Physics Letters,2002,80(3):392~394
    [35]Brown P J, Thomas D S, Kohler A. Effect of Interchain Interactions on the Absorption and Emission of Poly(3-Hexylthiophene)[J]. Physical Review B,2003,67:064203/1~ 064203/16
    [36]Zhang F, Svensson M, Andersson M, et al. Soluble Polythiophenes with Pendant Fullerene Groups as Double Cable Materials for Photodiodes[J]. Advanced Materials,2001,13: 1871~1874
    [37]Ibrahim M A, Ambacher O, Sensfuss S, et al. Effects of Solvent and Annealing on the Improved Performance of Solar Cells Based on Poly(3-Hexylthiophene):Fullerene [J]. Applied Physics Letters,2005,86 (20):201120/1~201120/3
    [38]Ibrahim M A, Roth H K, Zhokhavets U, et al. Flexible Large Area Polymer Solar Cells Based on Poly(3-Hexylthiophene)/Fullerene[J]. Solar Energy Materials and Solar Cells, 2005,85:13~20
    [39]Theander M, Inganas O, Mamo W. Photophysics of Substituted Polythiophenes[J]. Journal of Physical Chemistry B,1999,103:7771~7780
    [40]Shaheen S, Brabec C J, Sariciftci N S, et al.2.5% Efficient Organic Plastic Solar Cells[J]. Applied Physics Letters,2001,78 (6):841~843
    [41]Van Duren J, Yang X, Loos J, et al. Relating the Morphology of Poly(p-phenylenevinylene) /Methanofullerene Blends to Solar-Cell Performance[J]. Advanced Functional Materials, 2004,14:425~434
    [42]Zhu W, Minami N, Kazaoui S, et al.π-Chromophore-functionalized SWNTs by Covalent Bonding: Substantial Change in the Optical Spectra Proving Strong Electronic Interaction [J]. Journal of Materials Chemistry,2004,14 (13):1924~1926
    [43]Cheng Y J, Yang S H, Hsu C S. Synthesis of Conjugated Polymers for Organic Solar Cell Applications[J]. Chemical Reviews,2009,109:5868~5923
    [44]Scherf U, List E J W. Semiconducting Polyfluorenes-Towards Reliable Structure-Property Relationships[J]. Advanced Materials,2002,14:477~487
    [45]Bernius M T, Inbasekaran M, O'Brien J, et al. Progress with Light-Emitting Polymers [J]. Advanced Materials,2000,12:1737~1750
    [46]Schulz G L, Chen X, Holdcroft S. High Band Gap Poly(9,9-dihexylfluorene-alt-bithiophene) Blended with [6,6]-Phenyl C61 Butyric Acid Methyl Ester for Use in Efficient Photovoltaic Devices[J]. Applied Physics Letters,2009,94 (2):023302/1~023302/3
    [47]Herguth P, Jiang X, Liu M S, et al. Highly Efficient Fluorene-and Benzothiadiazole-Based Conjugated Copolymers for Polymer Light-Emitting Diodes [J]. Macromolecules,2002, 35:6094~6100
    [48]Campbell A J, Bradley D D C, Antoniadis H. Dispersive Electron Transport in an Electroluminescent Polyfluorene Copolymer Measured by the Current Integration Time-of-flight Method[J]. Applied Physics Letters,2001,79(14):2133~2135
    [49]Arias A C, MacKenzie J D, Stevenson R, et al. Photovoltaic Performance and Morphology of Polyfluorene Blends: A Combined Microscopic and Photovoltaic Investigation [J]. Macromolecules,2001,34:6005~6013
    [50]Arias A C, Corcoran N, Banach M, et al. Vertically Segregated Polymer-blend Photovoltaic Thin-Film Structures through Surface-mediated Solution Processing[J]. Applied Physics Letters,2002,80(10):1695~1697
    [51]Snaith H J, Greenham N C, Friend R H. The Origin of Collected Charge and Open-Circuit Voltage in Blended Polyfluorene Photovoltaic Devices[J]. Advanced Materials,2004,16: 1640~1645
    [52]Kim H, Shin M, Kim Y. Distinct Annealing Temperature in Polymer:Fullerene:Polymer Ternary Blend Solar Cells[J]. The Journal of Physical Chemistry C,2009,113,1620~ 1623
    [53]McNeill C R, Halls J J M, Wilson R, et al. Efficient Polythiophene/Polyfluorene Copolymer Bulk Heterojunction Photovoltaic Devices:Device Physics and Annealing Effects[J]. Advanced Functional Materials,2008,18:2309~2321
    [54]Grazulevicius J V, Strohriegl P, Pielichowski J, et al. Carbazole-containing Polymers: Synthesis, Properties and Applications[J]. Progress in Polymer Science,2003,28:1297~ 1353
    [55]Solomeshch O, Yu Y J, Medvedev V. Wide Band Gap Cross-linkable Semiconducting Polymer LED[J]. Synthetic Metals,2007,157:841~845
    [56]Ohmori Y, Kajii H, Sawatani T, et al. Enhancement of Electroluminescence Utilizing Confined Energy Transfer for Red Light Emission[J]. Thin Solid Films,2001,393:407~ 411
    [57]Drolet N, Morin J F, Leclerc N, et al.2,7-Carbazolenevinylene-Based Oligomer Thin-Film Transistors: High Mobility Through Structural Ordering[J]. Advanced Functional Materials,2005,15:1671~1682
    [58]Wakim S, Aich B R, Tao Y, et al. Charge Transport, Photovoltaic, and Thermoelectric Properties of Poly(2,7-Carbazole) and Poly(Indolo[3,2-b]Carbazole) Derivatives [J]. Polymer Reviews,2008,48:432~462
    [59]Iraqi A, Wataru I. Preparation and Properties of 2,7-Linked N-Alkyl-9H-carbazole Main-Chain Polymers[J]. Chemistry of Materials,2004,16:442~448
    [60]Zhang Z B, Fujiki M, Tang H Z, et al. The First High Molecular Weight Poly(N-alkyl-3,6-carbazole)s[J]. Macromolecues,2002,35:1988~1990
    [61]Morin J F, Leclerc M. Syntheses of Conjugated Polymers Derived from N-Alkyl-2,7-carbazoles[J]. Macromolecules,2001,34:4680~4682
    [62]Dierschke F, Grimsdale A C, Mullen K. Efficient Synthesis of 2,7-Dibromocarbazoles as Components for Electroactive Materials[J]. Synthesis,2003,16:2470~2472
    [63]Cravino A, Sariciftci N S. Organic Electronics:Molecules as Bipolar Conductors[J]. Nature Materials,2003,2 (6):360~361
    [64]陈涛,徐慎刚,王艳荣等.含金属配合物的共轭聚合物研究进展[J].高分子通报,2010,2:27~40
    [65]Chan W K. Metal Containing Polymers with Heterocyclic Rigid Main Chains [J]. Coordination Chemistry Reviews,2007,251:2104~2118
    [66]Kelch S, Rehahn M. High-Molecular-Weight Ruthenium(Ⅱ) Coordination Polymers: Synthesis and Solution Properties[J]. Macromolecules,1997,30:6185~6193
    [67]Chan W K, Hui C S, Man K Y K. Synthesis and Photosensitizing Properties of Conjugated Polymers that Contain Chlorotricarbonyl Bis(Phenylimino)acenaphthene Rhenium(Ⅰ) Complexes[J]. Coordination Chemistry Reviews,2005,249:1351~1359
    [68]Wong C T, Chan W K. Yellow Light-Emitting Poly(phenylenevinylene) Incorporated with Pendant Ruthenium Bipyridine and Terpyridine Complexes[J]. Advanced Materials,1999, 6:455~459
    [69]Cheng K W, Mak C S C, Chan W K, et al. Synthesis of Conjugated Polymers with Pendant Ruthenium Terpyridine Trithiocyanato Complexes and Their Applications in Heterojunction Photovoltaic Cells[J]. Journal of Polymer Science:Part A:Polymer Chemistry,2008,46:1305~1317
    [70]吴晓宏,杨古成,秦伟等.钯碳催化法合成4,4’-二甲基-2,2’-联吡啶[J].有机化学,2006,26(2):260~262
    [71]Berg K E, Tran A, Raymond M K, et al. Covalently Linked Ruthenium(Ⅱ)-Manganese(Ⅱ) Complexes:Distance Dependence of Quenching and Electron Transfer [J]. European Journal of Inorganic Chemistry,2001,4:1019~1029
    [72]Hou J H, Yang C H, Li Y F. Synthesis of Regioregular Side-chain Conjugated Polythiophene and Its Application in Photovoltaic Solar Cells[J]. Synthetic Metals,2005, 153:93~96
    [73]Chochos C L, Economopoulos S P, Deimede V, et al. Synthesis of a Soluble N-type Cyano Substituted Polythiophene Derivative: Potential Electron Acceptor in Polymeric Solar Cells[J]. Journal of Physical Chemistry C,2007,111(28):10732~10740
    [74]Chen T A, Wu X M, Rieke R D. Regiocontrolled Synthesis of Poly(3-alkylthiophenes) Mediated by Rieke Zinc:Their Characterization and Solid-state Properties[J]. Journal of the American Chemical Society,1995,117:233~244
    [75]Loewe R S, Ewbank P C, Liu J S, et al. Regioregular, Head-to-Tail Coupled Poly(3-alkylthiophenes) Made Easy by the GRIM Method: Investigation of the Reaction and the Origin of Regioselectivity[J]. Macromolecules,2001,34:4324~4333
    [76]Banishoeib F, Henckens A, Fourier S, et al. Synthesis of Poly(2,5-Thienylene Vinylene) and Its Derivatives: Low Band Gap Materials for Photovoltaics[J]. Thin Solid Films,2008, 516:3978~3988
    [77]花文廷.杂环化学[M].北京:北京大学出版社,1991.305~315
    [78]Abramovitch R A, Spenser I D. The carbolines[J]. Advances in Heterocyclic Chemistry, 1964,3:79~207
    [79]兰志银,丘昌隆.格氏试剂交义偶联反应制备2-丁基吡啶[J].化学世界,1993,6:307~308
    [80]Kim D W, Moon H. Synthesis of Photoconducting Nonlinear Optical Side-chain Polymers Containing Carbazole Derivatives[J]. Reactive and Functional Polymers,1999,42:73~ 86
    [8l]孟杰,田宝芝,黄枢.新的酚型开链冠醚及由其衍生的二苯并冠醚的合成[J].有机化学,1996,16:253~257
    [82]Xu S G, Liu Y L, Cao S K. Conjugated Polymers for Optoelectronic Applications [J]. Macromolecular Symposia,2008,270:161~170

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700