Stokes流问题中的辛体系方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在化学工程、环境工程、物理化学、生物力学、地球物理、气象等领域中大量的问题归结为粘性流体问题。因而近百年来对这个问题的研究一直没有间断,并且随着其广泛应用,近几十年来发展成为了一个比较活跃的领域和方向。Stokes流是粘性流体问题的主要的和经典的流动模型。在该问题的研究中,传统的方法是在拉格朗日体系下欧几里德空间中进行问题的求解,不可避免地带来了高阶偏微分方程的求解和边界条件处理难等问题。因此针对此问题探讨一种新的和有效的求解方法是必要的。
     本文从不可压缩牛顿流体的本构方程和Stokes方程出发,借助于耗散能导出问题的哈密顿作用量,即拉格朗日函数,从而获得哈密顿密度函数。进一步利用变分方程,建立了正则(对偶)方程组。这样将辛体系(哈密顿体系)的理论引入到了平面和空间Stokes流问题中。在辛空间中,问题的求解归结为正则方程的本征值与本征解的问题。利用本征解之间的辛共轭正交归一关系和其完备性,原问题的解可以由本征解的线性组合表示。结合边界条件可确定解析解和半解析解,从而建立了一套辛体系求解方法。
     本文以二维和三维问题的Stokes流问题作为首要研究对象,并对非定长小雷诺数流问题进行了探讨。主要研究工作如下:首先,将辛体系引入到二维Stokes流问题中,并研究了板驱动流动、剪切流动、入口流动及二维管道流动等问题,得到了问题解的解析表达式,并进行了数值计算,给出了流场的速度、应力、压强等的物理特性,同时还给出了流线图、矢量图。在分析了数值结果的基础上,揭示了Stokes流的流动机理,特点及流动的端部效应等现象。其次,将辛体系方法推广到空间Stokes流问题中,并求解出零本征值本征解和非零本征值本征解。研究了空间问题中本征解之间特殊的辛正交共轭关系,给出了各阶非零本征解的模态。研究了空间入口流问题中入口长度和入口半径之间的关系曲线,得到一些规律。对端部旋转板引起的空间流动问题也进行了研究和讨论。最后,对非定常小雷诺数流问题进行了探讨。
     研究结果表明,对偶方程(正则方程)的本征解具有明确的物理意义:零本征值本征解描述了基本的流动,而非零本征值本征解则显示着局部效应的特点,它可直接描述边界效应及其衰减过程。辛体系方法是一种简单、直接、高效的求解方法。它同时也为其它问题的研究提供了一种思路。
There are many problems that can be reduced to viscous fluid problem in the chemical industry, environment engineering, physical chemistry, biomechanics, geophysics as well as meteorology etc. The research on this subject has been ongoing for almost a century. And because of its extensive applications, it has developed into an active research field. Stokes flow is the main and typical flow model of viscous fluid. The traditional method solves this problem in Euclidean space under the Lagrange system, which involves solving higher orders of partial differential equations and faces the difficulty of handling the boundary conditions. So it is necessary to investigate a new and efficient solving method.
     Based on the principle of energy dissipation, The Lagrange function, Hamiltonian action, is derived from the constitutive equations of incompressible Newtonian fluid and Stokes equations. Then the Hamiltonian function can be obtained. Finally, the canonical (dual) equations are obtained by appling the variation principle, and the symplectic system (Hamiltonian system) is introduced into plane and space Stokes flow problems. In the system, the fundamental problem is reduced to eigenvalue and eigensolution problem. Because of the completeness of eigensolution space and adjoint relationships of the symplectic ortho-normalization for eigensolutions, the solution can be can be expanded by a linear combination of the eigensolutions. Under the given boundary conditions, the expansion coefficients can be obtained, and then the semi-analytical solution of the problem. The close method of the symplectic system is presented.
     Two and three dimensional problems are investigated, and so is non-steady low Reynolds number flow. The main research work is as follows: first, the symplectic system is introduced into two-dimensional Stokes flow problem. The lid-driven flow, shear flow as well as channel flow is studied, and the analytical expressions of the solutions are also given. After the numerical computation, the velocities, stresses and pressures of the flow are obtained, meanwhile, the streamline patterns and velocity vectors are also plotted. Based on the numerical analysis, the flow mechanism, flow characteristics and the end effects etc. are also revealed. Second, the symplectic system is introduced into three-dimensional Stokes flow problem, and the zero eigenvalue solutions and nonzero eigenvalue solutions are given. The special adjoint relationships of the symplectic ortho-normalization is investigated, and the mode of every nonzero eigensolution are given. As an example, the influence of inlet radius on Stokes flow in a circular tube is studied, and some laws are derived. The spatial flow driven by two end lids is also the example discussed. At the end of the dissertation, non-steady low Reynolds number flow problem is studied preliminarily.
     The research results show that the eigensolutions of the canonical equations have their definite physical meanings: zero eigenvalue solutions are the fundamental flows; and the nonzero eigenvalue solutions reveal the local effects, they can describe end effect and its decay process. The symplectic system method is simple, direct and efficient. It also provides a path for solving other problems.
引文
[1].严宗毅.低雷诺数理论.北京:北京大学出版社,2002.
    [2].Happel J,Brenner H.Low Reynolds number hydrodynamics.The Hague:Martinus Nijhoff Publisher,1965(1th ed.),1973,1983(reprint).
    [3].钟万勰.弹性力学求解新体系.大连:大连理工大学出版社,1995.
    [4].钟万勰.应用力学对偶体系.北京:科学出版社,2002;Zhong W X.Duality system in applied mechanics and optimal control.New York:Kluwer,2004.
    [5].徐新生.哈密顿体系与非线性浅水波:(博士后研究工作报告).大连:大连理工大学,1995.
    [6].Joseph D D.The convergence of biorthogonal series for biharmonic and Stokes flow edge problems Part Ⅰ.SIAM J.Appl.Math.,1977,33:337-347.
    [7].Joseph D D,Sturges L.The convergence of biorthogonal series for biharmonic and Stokes flow edge problems Part Ⅱ.SIAM J.Appl.Math.,1978,34:7-26.
    [8].Shankar P N.Three-dimensional eddy structure in a cylindrical container.J.Fluid Mech.,1997,342:97-118.
    [9].Shankar P N.Three-dimensional flow in a cylindrical container.Phys.Fluids,1998,10:540-549.
    [10].Tran-Cong T,Blake J R.General solution of the Stokes' flow equations.J.Math.Anal.Appl.,1982,90:72-84.
    [11].章梓雄,董曾南.粘性流体力学.北京:清华大学出版社,1999.
    [12].吴望一.流体力学(上,下).北京:北京大学出版社,1982-1983.
    [13].陈矛章.粘性流体动力学基础.北京:高等教育出版社,1993.
    [14].周光垌,严宗毅,许世雄,章克本.流体力学(上,下).北京:高等教育出版社,第一版,1992-1993;第二版,2000.
    [15].Aderogba K.On stokeslets in a two-fluid space.J.Eng.Math.,1976,10:143-151.
    [16].Blake J R.A note on the image system for a stokeslet in a no-slip boundary.Proc.Camb.Phil.Soc.,1971,70:303-310.
    [17].Blake J R,Chwang A T.Fundamental singularities of viscous flow,Part 1:The image system in the vicinity of a stationary no-slip boundary.J.Eng.Math.,1974,8(1):23-29.
    [18].Liron N,Mochon S.Stokes flow for a stokeslet between two parallel flat plates.J.Eng.Math.,1976,10:287-303.
    [19].Liron N.Fluid transport by cilia between parallel plates.J.Fluid Mech.,1978,80:705-726.
    [20].Hackborn W W.Asymmetric Stokes flow between parallel plates due to a rotlet.J.Fluid Mech.,1990,218:531-546.
    [21].Liron N,Shahar R.Stokes flow due to a stokeslct in a pipe.J.Fluid Mech.,1978,86:727-744.
    [22].Lamb H.Hydrodynamics.London:Cambridge Univ.Press,1932(6th cd);New York:Dover Publishcations,1945.
    [23].庄宏,严宗毅,吴望一.三维斯托克斯流动在扁球坐标系中的基本解及其应用.应用数学和力学,2002,23:459-476.
    [24].Brenner H.The slow motion of a sphere through a viscous fluid towards a plane surface.Chem.Eng.Sci.,1961,16:242-251.
    [25].Goldman A J,Cox R G,Brenner H.The slow motion of two identically arbitrarily oriented spheres through a viscous fluid.Chem.Eng.Sci.,1966,21:1151-1170.
    [26].Majumdar S R,O'Neill M E.An axisymmetric Stokes flow past a torus.ZAMP,1977,28:541-550.
    [273.Kanwal R P.Slow steady rotation of axially symmetric bodies in a viscous fluid.J.Fluid Mech.,1961,10:17-24.
    [28].Goren S L,O'Neill M E.Asymmetric creeping motion of an open torus.J.Fluid Mech.,1980,101:97-110.
    [29].Sampson R A.On Stokes current function.Philos.Trans.R.Soc.London.Ser.A,1891,182:449.
    [30].Goldman A J,Cox R J,Brenner H.Slow viscous motion of a sphere parallel to a plane wall-Ⅰ,motion through a quiescent fluid.Chem.Eng.Sci.,1967,22:637-651.
    [31].O'Neill M E.A slow motion of viscous liquid caused by a slowly moving solid sphere.Mathematika.1964,11:67-74.
    [32].Goldman A J,Cox R J,Brenner H.Slow viscous motion of a sphere parallel to a plane wall-Ⅱ,coquette flow.Chem.Eng.Sci.,1967,22:653-660.
    [33].Shankar P N,Deshpande M D.Fluid mechanics in the driven cavity.Annu.Rev.Fluid Mech.,2000,32:93-136.
    [34].Burggraf O R.Analytical and numerical studies of the structure of steady separated flows.J.Fluid Mech.,1966,24:113-151.
    [35].Pan F,Acrivos A.Steady flows in rectangular cavities.J.Fluid Mech.,1967,28:643-655.
    [36].Smith R C T.The bending ofa semi-infinte strip,Austral.J.Sci.Res.,1952,5:227-237.
    [37].Sturges L D.Stokes flow in a two-dimensional cavity with moving end walls.Phys.Fluids,1986,29:1731-1734.
    [38].Shankar P N.The eddy structure in Stokes flow in a cavity.J.Fluid Mech.,1993,250:371-383.
    [39].Gaskell P H,Savage M D,et al.Stokes flow in closed rectangular domains.Applied Mathematical Modelling,1998,22:727-743.
    [40].Khuri S A.Biorthogonal series solution of Stokes flow problems in sectorial regions.SIAM JOURNAL ON APPLIED MATHEMATICS,1996,56(1):19-39.
    [41].Khuri S A,Wang C Y.Stokes flow around a bend.Q.J.Appl Math.,1997,55(3):573-600.
    [42].Gurcan F,Gaskell P H,et al.Eddy genesis and transformation of Stokes flow in a double-lid-driven cavity[J].Proceedings of the Institution of Mechanical Engineers Part C:Journal of Mechanical Engineering Science,2003,217(3):353-364.
    [43].Gurcan F.Streamline topologies in Stokes flow within Lid-Driven Cavities.Theoret.Comput.Fluid Dynamics.,2003,17:19-30.
    [44].Gurcan F.Streamline topologies near a stationary wall of Stokes flow in a cavity,Applied Mathematics and Computation,2005,165:329-345.
    [45].Meleshko V V.Steady Stokes flow in a rectangular cavity.Proc.Roy.Soc.London,1996,A452:1999-2022.
    [46].Meleshko V V.Gomilko A M.Infinite systems for a biharmonic problem in a rectangle.Proc.Roy.Soc.London,1997,A453:2139-2160.
    [47].Lame G.Lemons sur la Theorie Mathematique de I'Elasticite des Corps Solids.Paris:Bachelier,1852.
    [48].Srinivasan R.Accurate solutions for steady plane flow in the driven cavity.I.Stokes flow.Zeitschrift f(u|¨)r Angewandte Mathematik und Physik,1995,46(4):524-545.
    [49].林长圣.双板驱动矩形空腔Stokes流动的数值模拟.南京工程学院学报(自然科学版),2004,2(4):29-35.
    [50].林长圣,陈惠琴.二维空腔运动边界Stokes流动的数值模拟.南昌大学学报(理科版).2005,29:474-481.
    [51].Young D L,Jane S C,et al.Solutions of 2D and 3D Stokes laws using multiquadrics method.Engineering Analysis with Boundary Elements,2004,28:1233-1243.
    [52].Young D L,Jane S J,Fan,C M,Murugesan K,Tsai C C.The method of fundamental solutions for 2D and 3D Stokes problems.Journal of Computational Physics,2006,211:1-8.
    [53].Fan C M,Young D L.Analysis of the 2D Stokes flows by the non-singular boundary integral equation method.Int.Math.J.,2002,2:1199-1215.
    [54].Eid R.Higher order isoparamctric finite element solution of Stokes flow.Applied Mathematics and Computation,2005,162:1083-1101.
    [55].Auteri F,Quartapelle L,Vigevano L.Accurate ω-ψ spectral solution of the singular driven cavity problem.Journal of Computational Physics,2002,180:597-615.
    [56].Moffatt H K.Viscous and resistive eddies near a sharp corner.J.Fluid Mech.,1964,18:1-18.
    [57].Perry A E,Chong M S.A description of eddying motions and flow patterns using critical-point concepts.Ann.Rev.Fluid Mech.,1987,19:125-155.
    [58].Weiss R F,Florsheim B H.Flow in a cavity at low Reynolds number.Phys.Fluids,1965,8:1631-1635.
    [59].Ratkowsky D A,Rotem Z.Viscous flow in a rectangular cut out.Phys.Fluids,1968,11:2761-2763.
    [60].Munson B R,Sturges L D.Low Reynolds number flow in a rotating tank with barriers.Phys.Fluids,1983,26:1173-1176.
    [61].Shen C,Floryan J M.Low Reynolds number flow over cavities.Phys.Fluids,1985,28:3191-3202.
    [62].Taneda S.Visualization of separating Stokes flows.J.Phys.Soc.Jpn.,1979,46:1935-1942.
    [63].O'Brien V.Closed streamlines associated with channel flow over a cavity.Phys.Fluids,1972,15:2089-2097.
    [64].Pozrikidis C.Shear flow over a plane wall with an axis-symmetric cavity or a circular orifice of finite thickness.Phys Fluids,1994,6:68-79.
    [65].Wang C Y.Flow over a surface with parallel grooves.Phys Fluids,2003,15:1114-1121.
    [66].Wang C Y.Stokes flow through a zig-zag channel.Acta Mechanica,1998,126:115-125.
    [67].Wang C Y.The Stokes drag due to the sliding of a smooth plate over a finned plate.Phys.Fluids,1994,6:2248-2252.
    [68].Wang C Y.Stokes flow through a two-dimensional filter.Phys.Fluids A,1993,5:1113-1116.
    [69].Jeong J T.Slip boundary condition on an idealized porous wall.Phys.Fluid,2001,13:1884-1890.
    [70].Driesen C H,Kuerten J G M,Streng M.Low-Reynolds-number flow over partially covered cavities.J.Eng.Math.,1998,34:5-20.
    [71].Driesen C H,Kuerten J G M.An accurate boundary element method for Stokes flow in partially covered cavities.Comp.Mech.,2000,25:501-513.
    [72].Pozrikidis C.Boundary element grid optimization for Stokes flow with comer singularities.J.Fluids Eng.,2002,124:22-28.
    [73].Bezine G,Bonneau D.Integral equation method for the study of two dimensional Stokes flow.Acta Mechanica,1981,41:197-209.
    [74].Koseff J R,Street R L.Visualization of a shear driven three-dimensional recirculating flow.J.Fluids Eng.,1984a,106:21-29.
    [75].Koseff J R,Street R L.On the endwall effects in a lid-driven cavity flow.J.Fluids Eng.,1984b,106:385-389.
    [76].Koseff J R,Street R L.The lid-driven cavity flow:a synthesis of qualitative and quantitative observations.J.Fluids Eng.,1984c,106:390-398.
    [77].Shankar P N.Three-dimensional eddy structure in a cylindrical container.J.Fluid Mech.,1997,342:97-118.
    [78].Shankar P N.Three-dimensional Stokes flow in a cylindrical container.Phys.Fluids,1998a,10:540-549.
    [79].Morse P M,Feshbach H.Methods of Theoretical Physics,Part 2.New York:McGraw-Hill,1953.
    [80].Nouar C,Ouldrouis M,Salem A,Legrand J.Developing laminar flow in the entrance region of annuli-review and extension of standard resolution methods for the hydrodynamic problem.Int.J.Engug.Sci.,1995,33:1517-1534.
    [81].Goldstein S.Modern developments in fluid mechanics.New York:Dover Publication,1965.
    [82].Rosenhead L.Laminar boundary layers.London:Oxford University Press,1963.
    [83].Schlichting H.Boundary layer theory,4th Edition,New Yoke:McGraw-Hill,1962.
    [84].Thompson B R,Maynes D,Webb D B W.Characterization of the Hydrodynamically Developing Flow in a Microtube Using MTV.J.Fluids Eng-Trans ASME,2005,127:1003-1021.
    [85].Perry R H,Green D W,Maloney J O.Perry's Chemical Engineer's Handbook,6th ed.,New York:McGraw-Hill,1984.
    [86].Lew H S,Fung Y C.On the Low Reynolds number entry flow in a circular cylindrical tube.J.Biomech.,1969,2:105-119.
    [87].吴望一,Richard S.半无穷长圆管内的低雷诺数入口流.应用数学和力学,1983,4:743-756.
    [88].王鲁男,王敏中.半无限长圆管内Stokes流的入口流.应用数学和力学,1990,11:447-455.
    [89].Bhattacharyya S.On the flow between two rotating disks enclosed by a cylinder.Acta Mechanica,1999,135:27-40.
    [90].Pao H P.Numerical solution of the Navier-Stokes equations for flows in the disk-cylinder system.Phys.Fluids,1972,15:4-11.
    [91].Bertela M,Gori F.Laminar flow in cylindrical container with a rotating cover.J.Fluid Eng.-T.ASME,1982,104:31-41.
    [92].Duck P W.On the flow between two rotating shrouded disks.Comp.Fluids,1986,14:183-196.
    [93].Dijkstra D,Van Heijst G J F.The flow between two finite rotating disks enclosed by a cylinder.J.Fluid Mech.,1983,128:123-154.
    [94].Vogel H U.Experimentelle Ergebnisse uber die laminare stromung in einem zylindrischen Gehause mit darin rotierender Scheibe.Max-Planck-Institut fur Stromungsforschung.Gottingen Bericht,1968,6.
    [95].Escudier M P.Observation of the flow produced in a cylindrical container by a rotating endwall.Exp.Fluids,1984,2:189-196.
    [96].Hall M G.Vortex breakdown.Ann.Rev.Fluid Mech.,1972,4:195-218.
    [97].Leibovich S.Vortex Stability and breakdown:survey and extension.AIAA J,1984,22:1192-1206.
    [98].Escudier M P.Vortex breakdown:observation and explanations.Prog.Aero.Sci.,1988,25:189-229.
    [99].Lugt H J,Abboud M.Axisymmetric vortex breakdown with and without temperature effects in a container with a rotating lid.J.Fluid Mech.,1987,179:179-200.
    [100].Lopez J M.Axisymmetric vortex breakdown,Part 1.Confined swirling flow.J.Fluid Mech.,1990,221:533-551.
    [101].Valentine D T,Jahnke C C.Flows induced in a cylinder with both end walls rotating.Phys.Fluids,1994,6:2702-2710.
    [102].Gelfgat A Y,Bar-Yoseph P Z,Solan A.Stability of combined swirling flow with and without vortex breakdown.J.Fluid Mech.,1996,311:1-36.
    [103].冯康,秦孟兆.Hamilton体系的辛几何算法.杭州:浙江科技出版社,2004.
    [104].Timoshenko S P,Goodier J N.Theory of elasticity,3rd ed.,New York:McGraw-Hill,1970.
    [105].Timoshenko S P,Woinowsky Krieger S.Theory of plates and shells.New York:McGraw-Hill,1959.
    [106].Watson J P,Neitzel G P.Numerical evaluation of a vortex breakdown criterion.Phys.Fluids,1996,8:3063-3071.
    [107].Brady J F,Durlofsky L.On rotating disk flow.J.Fluid Mech.,1987,175:363-394.
    [108].Gaskell P H,Savage M D,Wilson M.Stokes flow in a half-filled annulus between rotating coaxial cylinders.J.Fluid Mech.,1997,337:263-282.
    [109].姚伟岸,钟万勰.辛弹性力学.北京:高等教育出版社,2002.
    [110].徐新生,吕玉麟等,钟万勰.Hamilton体系与多层流体中的非线性浅水波.水利学报,1997,21(SI):127-136.
    [111].张鸿庆,阿拉坦仓,钟万勰.Hamilton体系与辛正交系的完备性.应用数学和力学,1997,18:217-221.
    [112].Xu X S,Wang M Z.General complete solutions of the equations of spatial and axisymmetric Stokes flow.Q.JI.Mech.Appl.Math.,1991,44(Pt4):537-548.
    [113].徐新生,王敏中.Stokes流和理想流体轴对称问题的解析函数法.应用数学和力学,1992,5:88-94.
    [114].庄宏,严宗毅,吴望一.三维斯托克斯流动在扁球坐标系中的基本解及其应用.应用数学和力学,2002,23:459-476.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700