口蹄疫病毒基因重组鸡痘病毒活载体疫苗系统鉴定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以共表达FMDV衣壳蛋白前体P1-2A和蛋白酶3C基因的重组鸡痘病毒vUTAL3CP1为研究对象,较系统地进行遗传稳定性、理化学特性、生物学特性、病毒毒种系统鉴定等方面的研究,探索实验室的疫苗制备工艺;将重组鸡痘活载体疫苗分别接种小鼠、豚鼠、猪、牛,以及妊娠小鼠、豚鼠、猪、牛及其新生子代动物,利用临床观察、病理组织学、PCR、RT-PCR、ELISA、IFA、中和抗体检测、免疫组织化学等方法检测其病毒在体内的分布、病毒基因的残留、抗体消长规律、细胞毒性、组织毒性、生态环境影响;将接种动物与非接种动物同居,通过抗体水平和病毒基因检测,证明重组鸡痘活载体疫苗不会造成同居感染,接种动物不会造成垂直感染。通过临床观察、病理组织学检测等方法证明该疫苗在接种动物体内有无毒性;利用PCR、RT-PCR方法检测在免疫动物体内残留时间短,正常剂量和超大剂量对妊娠动物和子代动物无安全威胁,对生态环境无影响,从而进一步证明所构建的重组鸡痘病毒活载体疫苗的生物安全性。
With the development of molecular biology and biotechnology, viruses were used to construction virus vectors .At present, recombinant virus vector is one of the most hot spots in virus gene engineering. There are two type vectors, the replaceable recombinant virus vector and the other is nonreplaceable vector, such as recombinant viral plasmid vector.
     The use of virus vectors for heterologous antigen delivery is currently being explored in a variety of fields. The possible development and use of vaccinia virus as recombinant vaccines for protective immunization against infectious diseases have stimulated research into the development of other poxviruses as potential recombinant vectors. Consequently, avipoxviruses were considered first. Reasons for choosing them include: avipoxviruses have large DNA genomes, replicate in the cytoplasm of permissive cell, and may be genetically modified (GM) by insertion of at least 25–30 kbp of foreign DNA, i.e. a number of cDNAs may be inserted into the same genome. It has been shown that recombinant versions of avipoxviruses virus may express polypeptides coded by foreign cDNAs in immunologically attractive ways. Indeed, inoculation of avipoxvirus-based recombinants into mammalian resulted in the expression of the foreign gene and the induction of protective immunity. This showed that favorable immune responses are inducible in the absence of productive replication, while eliminating the potential for dissemination of the vector within the vaccinator and the spread of the vector to non-vaccinated contacts, or to the general environment. The bio- safety should be most important when considering constructing effective, nonreplicating vaccine vectors. Fowlpox virus, which should meet these stringent safety criteria, needs to be tested properly for ability to establish productive infection in mammalian origin.
     The picornavirus foot-and-mouth disease virus (FMDV) is the causative agent of a highly contagious disease affecting cloven-hoofed animals. From last 10 years, FMD were broken out in many countries around the world, such as in Korea, Great British, French, Dutch and several cities of China. In the countries where the disease has not yet been eradicated, vaccination plays a crucial role in FMDV control. Although inactivated virus vaccines can prevent FMD effectively, their use is accompanied by dangerous residual potency problems, inclding incomplete viral inactivation or virus escape from vaccine-producing facilities. Likewise, the new type genetically engineering vaccine of security and high-performance would be advanced stringent.
     The recombinant fowl poxvirus vUTAL3CP1 containing a FMDV capsid polypeptide and 3C coding regions of O/NY00 (Gene Bank AY333431) had been constructed. In this study, the bio-safety and immunogenicity of the recombinant fowlpox virus vUTAL3CP1 were evaluated by clinical observation, histological, viral culture, PCR, immunohistochemistry, ELISA, immunochemistry, neutralizing antibody detection.
     The physical chemistry characteristics of the recombinant vaccine strain vUTAL3CP1were researched by observing the change of TCID50 after being dealed with heat, HCl(pH3), NaOH (pH9), ether, chloroform and parenzyme separately. The results indicated that it was not sensitive to the change of pH. The TCID50 of vUTAL3CP1 was not change from pH3.0 to pH9.0. While it was sensitive to heat, chloroform, aether and parenzyme. It was inactivated by 50℃for 60 min, 55℃for 30min or 60℃for 15 min. Dealed with par enzyme in 37℃for an hour and ether for 24 hour , it depressed 2.44 log 10 TCID50 and 1.0 log10 TCID50.
     In this study, one avian and twelve mammalian cell lines were evaluated for permissive to the recombinant fowlpox virus strains vUTAL3CP1. As expected, chicken embryo fibroblast (CEF) was permissive for recombinant fowlpox virus strains. However, it was surprised that Syrian baby hamster kidney (BHK),pig kidney (PK), bovine testicular (BT), Vero cell were equally permissive to recombinant strains by multiplication assays. Results from direct negative stain electron microscopy and ultrathin section transmission electron microscopy of infected BHK, PK, BT, Vero cell revealed viral morphogenesis proceeding to various forms of infectious viruses. A number of virus-containing vesicles and plasma membrane-associated mature viruses at an early stage in the budding process were observed. By PCR, other results were certificated by the demonstration of fowlpox virus specific gene expression and foot-mouth diseases (FMD) insert gene expression. Recombinant fowlpox virus strains could stable passage in the chicken embryo fibroblast (CEF) over thirty generations, and could passage in BHK, PK, BT, Vero only two generations.
     In this study, in order to detect the bio-safety of the recombinant fowlpox virus, the mice, guinea pig, chicken and pig were innoculated with recombinant fowlpox virus, respectively. Clinical, histological, PCR, neutralizing antibody were used to assess the bio-safety of the recombinant fowl pox virus. During the experiment, the mental status, hydroposia and foraging behaviors of the immune animal were assessed. The pathohistology detection was not pathological change in animal. By PCR, the viral DNA of recombinant fowlpox virus was not detected in the cohabitatio animal and progeny of inoculated animal. The neutralizing antibody of recombinant fowlpox virus was not detected in the cohabitatio animal. So the bio-safety of recombinant fowlpox virus was validated, neither horizontal transmission nor vertical transmission.
     During the experiment, the mental status, hydroposia and foraging behaviors of the mice were normal. No detectable pathological change was found in the organs of inoculated mice, cavia cobaya, swine and cattal. Using PCR, viral nucleic acids could be detected at 3 days post inoculation (DPI), viral nucleic acids could be found in all organs; none viral nucleic acids could be detected from any organs at 7 (DPI). In addition, well immunogenicity had been ensured by its ability to induce humoral responses before the bio-safety of this vaccine was study.
     Analyze the bio-safety of the recombinant fowlpox virus by clinical, histological and PCR and influence of progeny weight. During the experiment, the mental status, hydroposia and foraging behaviors of the swine were normal. No detectable pathological change was found in the organs of inoculated swine. In addition, no detriment was found in cyesis and progeny with hyper-flushing dose. None viral nucleic acids could be detected from any organs of progeny. No immature labor, abortion, fetal death, ambly-fetus was found in cyesis swine.
     In order to essese enviroment release experiment, urina,ejecta,water, soil were collected after the animals were immuned with recombinant folwpox virus at 1、3、5、7、14DPI. By PCR, viral nucleic acids could not be detected and virus could not isolated at above time.To detect survial ability of recombinant fowlpox virus, recombinant fowlpox virus were combined with urina, ejecta, water, soil set up in 37℃、4℃、-20℃. Recombinant fowlpox virus could survival for 21d in 37℃, over half year in 4℃and over two years in -20℃mixed with urina, and so on mixed with ejecta and water. Recombinant fowlpox virus could survival for 21d in 37℃, over half year in 4℃and over one year in -20℃in soil.
引文
[1]田宏,刘湘涛, 张彦明, 等.病毒载体研究进展.动物医学进展,2005,26(9):4-7
    [2]殷震,刘景华.动物病毒学.(第二版)北京:科学出版社,1997,479-499
    [3]Wu X, Li Y, Crise B, et al. Transcription start regions in the human genome are favored targets for MLV integration[J].Science,2003, 300(56):1749-1751
    [4]李忠明.当代新疫苗.北京:中国科学出版社,2003.48-78
    [5]侯云德,金冬雁.现代分子病毒学选论.北京:科学出版社,1994,284-309
    [6]Parolin C, Sodroski J. A defective HIV-1 vector for gene transfer to human lymphocytes. J Mol Med, 1995, 73 :279 -288
    [7]Naldinil. In vivo gene delivery by lentiviral vectors. Thromb Haemost, 1999, 82(2):552-554
    [8]Trono D. HIV-based vectors: getting the best out of the worst. J Gene Med, 2000, 2 (1):61-63
    [9] Jinnah H A, Friedmann T. Gene therapy and the brain.British Medical Bulletin, 1995, 51 (1):138-148
    [10]Poeschla E , Corbeau P , Wong - staal F. Development of HIV vectors for anti - HIV gene therapy. Proc Nat1 Acad Sci USA, 1996, 93 (21) :11395 – 11399
    [11]Gorbeau P, Kraus G, Wong-staal F. Efficient gene transfer by a human immunoddficiency virus type-1 (HIV-1) -derived vector utillizing a stable HIV pakaging cell line.Proc Nat1 Acad Sci USA, 1996, 93 (24) : 14070 – 14075
    [12]Rogel M E, Wu l I, Emerman M. The human immunodeficiecy virus type 1 vpr gene prevents cell proLiferation during chronic infection. J Virol, 1995, 69 : 882-888
    [13]Bothe K, Aguzzi A, Lassmann H, et al. Progressive en- cephalopathy andmyopathy in transgenic mice expressing human foamy virus genes[J]. Science,1991,253 :555-557
    [14]Center For Disease Control. Nonhuman primate spumavirus infection among persons with occupational exposure in United States[J]. JAMA, 1997, 227:783-785
    [15] Schmidt M, Niewiesk S, Heeney J, et al. Mouse model to study the replication of primate foamy viruses [J ]. J Gen Virol,1997,78:1929-1933
    [16]Mergia A, Lung N J, Blackwell J. Cell tropism of the simian foamy virus type 1 (SFC - 1) [J]. J Med Primatol,1996, 25:2 -7
    [17]Yu S F, Baldwin D N, Gwynn S R, et al. Human foamy virus replication: A pathway distinct from that of retroviruses and hepadna viruses [J]. Science, 1996, 271: 1579-1582
    [18]Weiss R A. Foamy virus bubble on [J]. Nature, 1996,380 :201-207
    [19]Schmidt M, Bethwilim A. Replicating foamy virus based vectors directing high level expression of foreign genes [J]. Virology,1995,210:167-178
    [20]BaltzerAw, Lattermann C, Whalen JD, et a1. Genetic enhancenentof fracture repair: healing of an experimental sepmental defect by adenoviral transfer of the BMP-2 gene [ J ]. Gene Ther, 2000,7 (9):734-739
    [21]苇芳,黄倩.腺病毒载体研究进展与展望.肿瘤.2005,22(5):506-509
    [22]陈竞,朱道银,唐恩洁.腺病毒载体的研究进展.川北医学院学报,2005,20(4):470-472
    [23]Bui LA. ButterfieLd LH, Kim JY, Ribas A, et al. In vivo therapy of hep stocellular carcinoma with a tumor-specific adenoviral vector exp ressing Interleukin -2 [ J ].Hum Gene Ther . 1997, 8 (18) : 2173 – 2182
    [24]Manome Y. Kunieds T,Wen PY, et al. Transgene exp ression in malignant glioma using a replication -defective adenoviral vector containing the Egr- 1 promoteractivation by ionizing mdiation or up take of radioactive ipdodexoxyuridine [ J ] . Hum Gene Ther, 1998, 9 (10) : 1409 – 1417
    [25]Belousova N, Korokhow N, KrndeLshchikora V, et al. Genetically targeted adenovirus vector directed to CD40-expressing cell [J]. J Virol.2003, 77 (21):11367-11377
    [26]Krepped F, Luther TT, Semkovci I, et al. Long-term transgene expression in the RPE after gene transfer with a high-capacity adenovirus vector [J].Invest Ophthalmolis.SCI.2002, 439(6):1965-1970
    [28]Rosenfeld MA,Yoshimura K,Trapnell L, et al. In vivo transfer ofthe human cystic fibrosis transmembrane conductance regulator gene to theairway ep thelium [ J ] Cell,1992,68(1):143-155
    [28]Gup ta R S. Adenosine-AMP exchange activlty is an integral part of the mammalian adenosine kinase [J]. Biochem Mo1 Biol Int,1996,39(3):493-502
    [29]Shan wen, Shannon Graf, Philip G, et al. Improved vascular gene transfer with a helper-dependent adenoviral vector [ J ]. Circulation,2004,110(11):1484-1491
    [30]曹勇,熊维宁,徐永健,等.白细胞介素 4 反义基因腺相关病毒载体质粒的构建及鉴定.华中科技大学学报(医学版),2004,35( 2):146-149
    [31]王宗仁,邵中军,李晶华,等.抗癫痫肽重组腺伴病毒载体的构建及鉴定.中草药,2005,36:(12 ),1845-1848
    [32]Flotte TR. Recombinant adenoassociated virus vectors for cystic fibrosis gene therapy. Curr Opin Mol Ther,2001,3(5):497-502
    [33]Flotte TR. Phase I trial of intranasal and endobronchial administ ration of a recombinant adeno-associated virus serotype 2(rAAV2) CFTR vector in adult cystic fibrosis patients: a twopart clinical study [J]. Hum Gene Ther,2003, 14: 1079-1088
    [34]潘秋卫.国际病毒学杂志.2006, 13(1):5-10
    [35]Manno CS,Chew AJ,Hutchison S,et al. AAV2 mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood, 2003,101(8):2963-2972
    [36]赛佳明,胡有谷,王德春.腺相关病毒载体介导 hTGFβ1、β3 体外转染退变腰椎间盘细胞的生物学效应.中华骨科杂志,2006,26(4):261-266
    [37]曹培国, 吴小兵, 阳月新, 等. 重组腺相关病毒载体介导人血管抑素 K125 基因预防和治疗 B16 黑素瘤的实验研究,肿瘤,2004,26(5 ):426-430
    [38]王晓丹,杨天忠,徐钤,等.质粒型单纯疱疹病毒载体的构建及其在真核细胞中的表达.中华微生物学和免疫学志.1997,17(4):267-270
    [39]Raggo C, Habermehl M, Griebel P, et al. The in vivo effects of recombinant bovine herpesvirus-1 expressing bovine interferon [J]. J Gen Virol, 2000, 81 :2665 – 2673
    [40]苏剑斌,鄂玲玲,徐忠涛,等.质粒型 HSV 载体介导的 GDN F 和 GFP 基因在 BHK 细胞和骨骼肌细胞中的转移和表达.神经解剖学杂志,2000,16(2):127-130
    [41]章为.两种单纯疱疹病毒载体在大鼠脑内所致炎性反应的比较. 华西医大学报,2002,33(3):381-383
    [42]杨天忠,王晓丹,颜子颖,等.利用缺陷型单纯疱疹病毒载体在大鼠中枢神经系统表达外源基因.中华实验和临床病毒学杂志,1997,11(4):304-309
    [43]Levis R, Huang H, Schlesinger S. Engineered defective interfering RNAs of sindbis virus express bacterial chloramphenicol acetyltransferase in avian cell [ J ] . Proc Natl Acad Sci USA,1987,84,4811-4815
    [44]何海怀,梁国栋.辛德毕斯病毒载体的研究进展.病毒学报,2003,17(1):93-96
    [45]Strauss E G, Rice C M, Strauss J H. Complete nucleotide sequence of the genomic RNA of sindbis virus [ J ].Virology,1984,133:92-110
    [46]Xiong C, Levis R, Shen P, et al. Sindbis virus : an efficient ,broad host range vector for gene expression in animal cell [ J ].Science,1989,243:1188-1191
    [47]Tsuji M, Bergmann C C,Takita- Sonoda Y, et al. Recombinant sindbis viruses expressing a cytotoxic T lymphocyte epitope of a malaria parasite or of influenza virus elicit protection against the corresponding pathogen in mice [J]. J Virol,1998,72: 6907 -6910
    [48]Wahlfors J J, Zullo S A, Loimas S, et al. Evaluation of recombinant alphaviruses as vectors in gene therapy [J]. Gene Ther, 2000,7:472-480
    [49]Hahn S, Guanzon A, Rice C M, et al. Class I MHC moleculeme diated inhibition of sindbis virus replication [J]. J Immunol,1999,162:69-77
    [50] Jin NY, Funahashi S,Shida H. Construction of vaccinia virus A-type inclusion body protein,tandemly repeated mutant 7.5kD protein, and hemagglutinin gene promoters support high levels of expression[J]. Arch.Virol.1994,138:315-330
    [51]Kumar S, Boyle DB. Activity of a fowlpox virus late gene promoter in vaccinia and fowlpox virus recombinants[J]. Arch.Virol.1990,112(3-4):139-148
    [52]Calvert JG, Nazerian K,Witter RL, et al. Fowlpox virus recombinants expressing the envelope glycoprotein of an avian reticuloendotheliosis retrovirus induce neutralizing antibodies and reduce viremia in chickens[J]. J.Virol.1993,67(6): 3069-3076
    [53]Taylor J, Edbauer C, Rey-Senelonge A, et al. Newcastle disease virus fusion protein expressed in a fowlpox virus recombinant confers protection in chickens [J]. J.Virol. 1990,64(4): 1441-1450
    [54]Iritani Y,Aoyama S,Takigami S, et al. Antibody response to newcastle disease virus(NDV) of recombinant fowlpox virus (FPV) expressing a hemagglutinin- neuraminidase of NDV into chickens in the presence of antibody to NDV or FPV[J]. Avian Dis.1991,35(4): 659-661
    [55]Liu X, Peng D, Wu X, et al. A recombinant fowlpox virus vaccine expressing glycoprotein B gene from CVI988/Rispens strain of MDV: protection studies in different chickens [J]. Acta Virol.1999, 43(2-3): 201-204
    [56]Ramsay AL, Leong KH, Ramshaw IA. DNA vaccination against virus infection and enhancement of antiviral immunity following consecutive immunization with DNA and viral vectors [J]. Immunol.Cell Biol.1997,75(4): 382-388
    [57]智海东,王云峰,张晶,等.传染性喉气管炎新城疫鸡痘重组病毒免疫效力的研究.畜牧兽医学报,2005,36(8):807-811
    [58]Karaca K, Sharma JM, WinsLow BJ, et al. Recombinant fowlpox viruses coexpressing chicken type I IFN and newcastle disease virus HN and F genes: influence of IFN on protective efficacy and humoral responses of chickens following in ovo or post-hatch administration of recombinant viruses [J]. Vaccine,1998,16 (16): 1496-1503
    [59]Leong KH, Ramsay AJ, Boyle DB, et al. Selective induction of immune responses by cytokines coexpressed in recombinant fowlpox virus[J]. J.Virol.1994, 68 (12): 8125-813
    [60]Domingo, E., Escarmis, C. Baronowski A, et al. Evolution of foot-and-mouth disease virus.Virus,2003,91:47-63
    [61]陈少渠,李慧娟.浅谈基因工程疫苗的类型和应用[J].河南畜牧兽医,2005,26(3):9-10
    [62]毕英佐.口蹄疫(第一版).广州:广州科技出版社, 2005, 1-7
    [63]Blanco E, Garcia-Briones M, Sanz-Parra A, et al. Identification of T-Cell epitopes in nonstructural proteins of foot-and-mouth disease Virus. J Virol, 2001, 75(7):3164-3174
    [64]王力良.杆状病毒载体的研究进展.国外医学分子生物学分册,1998,20(5): 222-226
    [65]Mcabe B J, Irvine K R, Nishimura M I, et al. Minimal determinant expressed by a recombinant vaccinia virus elicitst herapeutic antit umor cytolytic T lymphocyte responses [J]. Cancer Res, 1995 ,55 (8) :1741-1747
    [66]邱丽筠,俞淑文,张芳,等.基因治疗载体的最新研究进展[J].中华实用医药杂志,2004,4(1):12-18
    [67]郭巍,朱远茂,薛飞,等.牛疱疹病毒Ⅰ型作为活病毒载体的应用进展.中国生物工程杂志,2005,12(4):32-35
    [68]张萍,钱关祥.靶向性腺病毒研究进展.国外医学分子生物学分,2005,16(2): 101-104
    [69]Kotin RM, Siniscalco M, Samulski RJ, et al. Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA,1990,87(6):2-11
    [70]Giraud C, Winocour E, Berns KI. Recombinant junctions formed by sitespecific integration of adenoassociated virus into an episome. J Virol, 1995,69 (11) :6-17 .
    [71]Marshall E. Gene therapy’s growing pains. Science. 1995 , 269 (5227) :1050 .
    [72]Olada H , Miyamura K, Itoh T,et al. Gene therapy against an experimental glioma using adenoassociated virus vectors. Gene Ther, 1996,3 (11):957-958
    [73]顾万钧,金宁一.鸡痘苗病毒载体研究进展.吉林农业大学学报.1995,17 (1):93-99
    [74]王国富.基因治疗中病毒载体的研究进展.大理学院学报,2005,4(5):79-83
    [75]Mayr GA, O'Donnell, Chinsangaram J, et al. Immune responses and protection against foot-and-mouth disease virus (FMDV) challenge in swine vaccinated with adenovirus- FMDV constructs. Vaccine, 2001, 19(15-16): 2152-2162
    [76]Moraes MP, Mayr GA, Mason PW,et al. Early protection against homologous challenge after a single dose of replication-defective human adenovirus type 5 expressing capsid proteins of foot-and-mouth disease virus (FMDV) strain A24.Vaccine,2002,22;20(11-12):1631-1639
    [77] Sanz, Boursnell ME, TomLey FM, et al. Analysis of the fowlpoxvirus gene encoding the 4b core polypeptide and demonstration that it possesses efficient promoter sequences[J]. Virolog.1989,170(1): 288-291
    [78]张兴旺,王勤,柳纪省,等.FMDV 全 ORF 编码基因的克隆及其腺病毒穿梭质粒的构建. 中国兽医科学,2006,36 (2):93-97
    [79]卢曾军,曹轶梅,刘在新,等.口蹄疫病毒多基因腺病毒穿梭质粒的构建.中国兽医科技,2004,34 (2):21-24
    [80]Liu Y, Hu R, Zhang S,et al. Expression of the foot-and-mouth disease virus VP1 protein using a replication-competent recombinant canine adenovirus type 2 elicits a humoral antibody response in a porcine model. Viral Immunol, 2006, 19 (2):202-209
    [81]Furler S, Paterna JC, Weibel M, et al. Recombinant AAV vectors containing the foot-and-mouth disease virus 2A sequence confer efficient bicistronic gene expression in cultured cell and rat substantia nigra neurons. Gene Ther, 2001, 8(11):864-873
    [82]Roosien, Kumar S, Boyle DB. Comparative analysis of vaccinia virus promoter activity in F and vaccinia virus recombinant [J]. Virus Res, 1990,16(1): 43-57
    [83]Tami C, Farber M, Palma EL, et al. Presentation of antigenic sites from foot-and-mouth disease virus on the surface of baculovirus and in the membrane of infexted cell.Arch Virol 2000,145(9):1815-1828
    [84]鲁会军,金宁一,韩松,等.口蹄疫病毒 3D 基因在重组杆状病毒中的表达及检测.中国预防兽医学报,2005,27(3):175-178
    [85]韩松,金宁一,鲁会军,等.O 型口蹄疫病毒 VP1 基因的克隆及其在重组杆状病毒中的表达. 中国兽医学报, 2006,26(1):42-44
    [86]李向东,刘怀然,张文杰,等.O 型口蹄疫病毒 VP1 基因在昆虫细胞 P 杆状病毒中的表达.中国比较医学杂志,2006,16(3):174-179
    [87]冷青文,郭慧琛,刘在新,等.口蹄疫病毒 P12X3C3D 多基因编码蛋白在昆虫细胞中的表达与检测.中国兽医学报,2006,26( 3):292-232
    [88]Saiz JC, Cairo J, Medina M, et al. Unprocessed foot-and-mouth disease virus capsid precursor displays discontinuous epitopes involved in viral neutralization J Virol. 1994Jul;68(7): 4557-4564
    [89]云涛,冷青文,郭慧琛,等。口蹄疫多基因杆状病毒转移载体的构建. 动物医学进展, 2004,25(4):104-106
    [90]罗宝正,薄清如,陈金顶,等。昆虫杆状病毒系统表达口蹄疫病毒 3ABC 基因。中国病毒学,2005,20(3):303-306
    [91]Kit M, Kit S, Little S P, et al. Bovine herpesvirus-1 infectious bovine rhinotracheitis virus-based viral vector which expresses foot-and-mouth disease epitopes [J]. Vaccine, 1991,9:564-572
    [92]Berinstein A, Tami C, Taboga O, et al. Protective immunity agaist foot-and- mouth disease virus induced by a recombinant vaccine. 2000,28;18(21):2231-2238
    [93]Belsham GJ, McInerney GM, Ross-Smith N.Foot-and-mouth disease virus 3C protease induces cleavage of translation initiation factors eIF4A and eIF4G within infected cell.2003,74 (1):272-80
    [94]Sanz- Parra A, Uazquez B, Sobrino F, et al. Evidence of partial protection against foot-and-mouth disease in cattle immunized with a recombinant adenovirus vector expressing the precursor poly peptide(P1) of foot-and-mouth disease virus capsid proteins[J ] . J Gen Virol,1999,80:671-679
    [95]Cox S J, Barnett P V, Dani P, et al. Emergency vaccinationof sheep against foot –and-mouth disease: protection against disease and reduction in contact transmission.Vaccine,1999,9;17(15-16):1858-1868
    [96]Kit S, Kit M, Dimarchi RD, et al. Modified-live infectious bovine rhinotracheitis virus vaccine expressing monomer and dimmer forms of foot-and-mouth diseasecapsid protein epitopes on surface of hybrid virus particles [J]. Arch Virol,1991,120:1-17
    [97]刘艳红,李炯,刘俊林,等。口蹄疫病毒 P12A 和 3C 基因重组逆转录病毒表达载体的构建。中国兽医科学,2006,36(8):606-610
    [98]Brun A, Rodriguez F, Parra F, et al. Design and construction of african swine fever virus chinmeras incorporating forgei viral neutralization. J Virol, 1994, 144(7):1287-1298
    [99]金梅林,李祥敏,钱平,等.表达口蹄疫病毒 P1 基因的重组伪狂犬病病毒TK-/gG- /PgG-P1 的构建.中国兽医学报,2004,124(16):525-528
    [100]Kitson JD, Burke KL, Pullen LA, et al. Chimeric polioviruses that include sequences derived from two independent antigenic sites of foot-and-mouth disease virus (FMDV) induce neutralizing antibodies against FMDV in guinea pigs. J Virol,1991,65(6):3068-3075
    [101]舒俭德. 新疫苗临床考察及使用[ M] .中国计划免疫,2000 ,(4) :22-26
    [102]Roth HJ, GayGG, Espeseth DA. Risk analysis for the importation of veterinary biologicals into the united states [J]. Rev Sci ,1995,2000,12(2):213-117
    [103]范书才. 兽用基因工程生物制品的安全控制对策与措施( I)[J ]1 中国兽药杂志, 2001,24(3):124-129
    [104]Cyril G Gay, Richard L. Risk analysis for veterinary biologics [J ]APHIS, 1994,15(3):45-49
    [105]Panicali D, Paoletti E. Construction of poxviruses as cloning vectors: insertion of the thymidine kinase gene from herpes simplex virus into the DNA of infectious vaccinia virus[J].Proc .Natl.Acad.Sci.U.S.A,1982,79(16): 4927-4931
    [106] Patterson JB, Scheiflinger F, Manchester M, et al. Structural and functional studies of the measles virus hemagglutinin: identification of a novel site required for CD46 interaction [J]. Virology.1999, 256(1): 142-151
    [107]Parks RJ, Krell PJ, Derbyshire JB, et al. Studies of fowlpox virus recombination in the generation of recombinant vaccines[J]. Virus Res. 1994, 32(3): 283-297
    [108]Afonso CL, TuLman ER, Lu Z, et al.The genome of fowlpox virus[J]. J.Virol.2000,74(8): 3815-3831
    [109]Scheiflinger F, Falkner FG, Dorner F. Role of the fowlpox virus thymidine kinase gene for the growth of FPV recombinants in cell culture[J]. Arch.Virol.1997,142(12): 2421-2431
    [110]Zantinge JL, Krell PJ, Derbyshire JB,et al. Partial transcriptional mapping of the fowlpox virus genome and analysis of the EcoRI L fragment[J]. J.Gen.Virol.1996, 77(4): 603-614
    [111]Moss B. Poxiviridae: the viruses and their repLication.[M]. In: Fields B, nipe D et al. Fields Virology, Philadelphia,Pa.:lippincott-Raven,1996,2637-2671
    [112]BoyLe DB. Quantitative assessment of poxvirus promoters in fowlpox and vaccinia virus recombinants[J]. Virus Genes1992,6(3): 281-290
    [113]Hearst JE. The structure of photolyase: using photon energy for DNA repair[J]. Science, 1995,268(5219): 1858-1859
    [114]Mishra SS, Mallick BB. Structural proteins of fowlpox virus vaccine strain and field isolates[J]. Indian J.Exp.Biol.1994,32(11): 826-831
    [115]Jenkins S, Gritz L, Fedor CH, et al. Formation of lentivirus particles by mammalian cell infected with recombinant fowlpox virus[J]. AIDS Res. Hum .Retroviruses, 1991,7(12): 991-998
    [116]Yanagida N,Ogawa R,Li Y,et al. Recombinant fowlpox viruses expressing the glycoprotein B homolog and the pp38 gene of Marek's disease virus[J]. J.Virol.1992,66(3): 1402-1408
    [117]Bradshaw RA, Blundell TL, Lapatto R, et al. Nerve growth factor revisited[J]. Trends Biochem.Sci.1993,18(2): 48-52
    [118]Garaci E, Caroleo MC, Aloe L, et al. Nerve growth factor is an autocrine factor essential for the survival of macrophages infected with HIV[J]. Proc.Natl.Acad.Sci.U.S.A1999,96(24): 14013-14018
    [119]ALoe L, Simone MD, Properzi F.Nerve growth factor: a neurotrophin with activity on cell of the immune system [J]. Microsc.Res.Tech.1999,45(4-5): 285-291
    [120]Marshall JS, Gomi K, Blennerhassett MG, et al. Nerve growth factor modifies the expression of inflammatory cytokines by mast cell via a prostanoid- dependent mechanism[J]. J.Immunol.1999,162(7): 4271-4276
    [121]Melchers F, Rolink AG, Schaniel C. The role of chemokines in regulating cell migration during humoral immune responses[J]. Cell1999,99(4): 351-354
    [122]Beisser PS, Grauls G, Bruggeman CA, et al. Deletion of the R78 G protein-coupled receptor gene from rat cytomegalovirus results in an attenuated, syncytium-inducing mutant strain[J]. J.Virol.1999,73(9): 7218-7230
    [123]MicalLef MJ,Tanimoto T,Torigoe K, et al. Simultaneous exposure to interleukin-18 and interleukin-10 in vitro synergistically augments murine spleen natural killer cell activity[J]. Cancer Immunol.Immunothe.1999,48(2-3): 109-117
    [124]Somogyi P, Frazier J, Skinner MA. Fowlpox virus host range restriction: gene expression, DNA replication, and morphogenesis in nonpermissive mammalian cell[J]. Virology, 1993,197(1): 439-444
    [125]Serageldin I. From green revolution to green revolution [J].Economic perspectives-biotechnology:Food security and safety[C], 1999,17(6):234-241
    [126]严谨.基因工程生物安全性研讨.科学通报,2001,44(10):231-237
    [127]Swayne D E, GarciaM. Protecion against diverse highly pathogenic H5 avian influenza viruses in chickens immunized with a recombinant fowlpox vaccine containing an H5 avian influenza haemagglutinin gene insert[ J ]. Vaccine, 2000,18 (11-12) : 1088-1099
    [128]王云峰,智海东,王玫,等.表达传染性喉气管炎病毒 gB 基因重组鸡痘病毒疫苗的遗传稳定性评价. 中国预防兽医学报,2005,23(6):426-429
    [129]张体银, 孙蕾, 刘武杰,等.表达新城疫病毒 F 基因重组鸡痘病毒的遗传稳定性.中国预防兽医学报,2005,28(4):405-407
    [130]Nazerian K, Dhawale S. Structural analysis of unstable intermediate and stable forms of recombinant fowlpox virus[J]. J.Gen.Virol,1991,72(11): 2791-2795
    [131]McMillen JK,Cochran MD, Junker DE,et al. The safe and effective use of fowlpox virus as vector for poultry vaccines[J]. Dev.Biol. Stand,1994, 82: 137-145
    [132]冀德君,彭大新,刘红旗等.表达 H9 亚型禽流感病毒血凝素基因重组鸡痘病毒活载体疫苗的遗传稳定性[J]. 中国兽医学报,2003,23(4):347-349
    [133]McMillen JK, Cochran MD, Junker DE,et al. The safe and effective use of fowlpox virus as a vector poultry vaccines.Dev Biol Stand,1994,82(1):37-45
    [134]Ma MX, Jin NY, Wang ZG, et al. Construction and immunogenicity of rFP vaccines co-expressing of AIV H5N1 and chicken. Vaccine, 2006, 15:24: 4304-4311
    [135]Lee LE, Witter RL, Reddy SM, et al. Protection and synergism by recombinant fowlpox vaccines expressing multiple genes from Marek's disease virus. Avian Dis, 2003,47 (3):549-558
    [136]Lee LF, Bacon LD, Yoshida S, et al. The efficacy of recombinant fowlpox vaccine protection against marek's disease: its dependence on chicken line and B haplotype. Avian Dis, 2004,48(1): 129-137
    [137]Qiao C,Yu K,Jiang Y,et al. Development of a rFPV vector-based vaccine of H5N1 subtype avian influenza. Dev Biol, 2006,124:127-132
    [138]Edbauer C, Weinberg R, Taylor J, et al. Protection of chickens with a recom -binant fowlpox virus expressing the newcastle disease virus hemagglutin in-neuraminidase gene [J]. Virology,1990,179(2): 901-904
    [139]Boursnell ME, Green PF, Campbell JI, et al. Insertion of the fusion gene from newcastle disease virus into a non-essential region in the terminal repeats of fowlpox virus and demonstration of protective immunity induced by the recombinant[J], J.Gen.Virol, 1990,71(3): 621-628
    [140]Taylor J, Edbauer C, Rey-SeneLonge A, et al. Newcastle disease virus fusion protein expressed in a fowlpox virus recombinant confers protection in chickens [J]. J.Virol,1990,64(4): 1441-1450
    [141]Heine HG, Hyatt AD, Boyle DB. Modification of infectious bursal disease virus antigen VP2 for cell surface location fails to enhance immunogenicity[J]. Virus Res,1994,32(3): 313-328
    [142]Jones L,Tenorio E,Gorham J,et al. Protective vaccination of ferrets against canine distemper with recombinant poxvirus vaccines expressing the H of F genes of rinderpest virus, J.Virol ,1997,58(6):590-593
    [143]Sanda MG, Smith DC, Charles LG, et al. Recombinant vaccinia-PSA (PROSTVAC) can induce a prostate-specific immune response in androgen -modulated human prostate cancer. Urology, 1999,53 (2):260-266
    [144]Robinson HL, Montefiori DC, Johnson RP,et al. DNA priming and recombinant pox virus boosters for an AIDS vaccine . Dev Biol (Basel), 2000, 104: 93-100
    [145]Kent SJ, Zhao A, Dale CJ, et al. A recombinant aviposvirus HIV-1 vaccine expressing interfere on-gamma is safe and immunogenic in macaques. Vaccine, 2000,28; 18(21):2250-2256
    [146]Dale CJ, Zhao A, Jones SL, et al. Induction of HIV-1-specific T-helper responses and type 1 cytokine secretion following therapeutic vaccination ofmacaques with a recombinant fowlpoxvirus co-expressing interferon-gamma. J Med Primatol, 2000,29(3-4):240-247
    [147]Taracha EL, Bishop R, Musoke AJ, et al. Heterologous priming - boosting immunization of cattle with mycobacterium tuberculosis 85A induces antigen-specific T-cell responses.Infect Immun. 2003 ,71 (12): 6906-6914
    [148]Rosenberg SA, Yang JC, Schwartzentruber DJ,et al. Recombinant fowlpox viruses encoding the anchor-modified gp100 melanoma antigen can generate antitumor immune responses in patients with metastatic melanoma.Clin Cancer Res, 2003,9(8):2973-2980
    [149]Zanotto C, Elli V, Basavecchia V, et al. Evaluation in rabbits of different anti-SHIV vaccine strategies based on DNA/fowlpox priming and virus-like particle boosting. FEMS Immunol Med Microbiol, 2003,21; 35(1):59-65
    [150]MarshalL JL,Gulley JL,Arlen PM,et al. Phase I study of sequential vaccinations with fowlpox-CEA (6D)-TRICOM alone and sequentially with vaccinia-CEA (6D)-TRICOM, with and without granulocyte-macrophage colony-stimulating factor,in patients with carcinoembryonic antigen- expressing carcinomas. J Clin Oncol, 2005,23 (4):659-61
    [151]EmeryS, Workman C, Puls RL, et al. Randomized, placebo-controlled,phase I/IIa evaluation of the safety and immunogenicity of FPV expressing HIV gag-pol and interferon-gamma in HIV-1 infected subjects. Hum Vaccin. 2005,1(6):232-238
    [152]De Rose R, Chea S, Dale CJ, et al. Subtype AE HIV-1 DNA and recombinant fowlpoxvirus vaccines encoding five shared HIV-1 genes: safety and T cell immunogenicity in macaques. Vaccine, 2005 ,14; 23(16): 1949-1956
    [153]Matthew G. Cottingham, Andre van Maurik, Manola Zago, et al. Different levels of immunogenicity of two strains of fowlpox virus as recombinant vaccine vectors eliciting T-Cell responses in heterologous prime-boost vaccinationstrategies. Clinical and vaccine immunology, 2006,13(7): 747-757
    [154]Walther M, Thompson FM, Dunachie S, et al. Safety, immunogenicity and efficacy of prime-boost immunization with recombinant poxvirus FP9 and modified vaccinia virus ankara encoding the full-length plasmodium falciparum circumsporozoite protein.Infect Immun, 2006,74(5):2706-2716
    [155]Li X, Jin N, Mi Z, et al. Antitumor effects of a recombinant fowlpox virus expressing apoptin in vivo and in vitro.Int J Cancer, 2006,15;119(12):2948-2957
    [156]ELke Ja¨ ger, JuLia Karbach, Sacha Gnjatic, et al. Recombinant vaccinia fowlpox NY-ESO-1 vaccines induce both humoral and cellular NY- ESO-1 -specific immune responses in cancer patients. Proc Natl Acad Sci U S A, 2006, 26:103 (39):14453-14458
    [157]Bejon P, Peshu N, GiLbert SC, et al. Safety profile of the viral vectors of attenuated fowlpox strain FP9 and modified vaccinia virus ankara recombinant for either of preerythrocytic malaria antigens, ME-TRAP or the ircumsporo -zoite protein, in children and adults in Kenya, 2006 ,15;42(8):1102-1110
    [158]Zheng M, Jin NY, Zhang HY, et al. Construction and immunogenicity of a rFPV containing the caspid and 3C proteasecoding rrgions of foot-and-mouth disease virus. Journal virological methods, 2006,9: 230-237
    [159]Jiang W Z, Jin N Y, Cui SF, et al. Construction and characterization of rFPV coexpressing HIV-1CN gp120 and I L-2. J Virol Methods, 2005; 130:95-101.
    [160]Petrulio CA, Kaufman HL. Development of the PANVAC-VF vaccine for pancreatic cancer. Expert Rev Vaccines, 2006 ,5(1):9-19
    [161]李萍萍,陈乃民,应保龄,等.重组痘苗狂犬病毒糖蛋白的构建、表达及其遗传稳定性研究.微生物学杂志,2002,22(2):18-20
    [162]王明俊.兽医生物制品学[M].北京:中国农业出版社,1996
    [163]司徒镇强, 吴军正. 细胞培养.第一版 西安:世界图书出版社, 2004:61-84
    [164]Nakajima K. The mechanism of antigenic shift and drift of human influenza virus. Nippon Rinsho. 2003 Nov;61(11):1897-1903
    [165]Iskra V. S., Anton I. K., Konstantin B. S., et al. Investigation of the morphology of cell clones, derived from the mammalian EBTr cell line and their susceptibility to vaccine avian poxvirus strains FK and Dessau. Journal of virological methods, 2005, 124 :37–40
    [166]Simon C. W., ?ivind N., Terje T. Avipoxvirus multiplication in a mammalian cell line. Virus research, 2005, 109:39–49
    [167]Sainova I.V., Kril A.I., Ivanov I.G. Propagation of avain poxvirus vaccine strains in EBTr cell line: a pilot study.Exp. Pathol. Parasitol.2001,7:40-46
    [168]Ivanov I. G., Kril A.I., Sainova I.V., et al. Propagation of avain poxvirus vaccine strains in the permant duck embryo cell line DEC 99. Exp. Pathol. Parasitol. 2001, 5:31-34
    [169]Simeonov K.B., Ivanov I. G.,Popova T.P., et al. Propagation of avain poxvirus vaccine strains in mammalian MDBK cell line.Macedonian Vet.Rev.2000, 29 (2):45-50
    [170]Ingo DrexLer, Karl Heller, Britta Wahren, et al. Highly attenuated modified vaccinia virus Ankara replicates in baby hamster kidney cell, a potential host for virus propagation. Journal of general virology ,1998, 79:347–352
    [171]Nicola B., Daniel E.H.. Vaccina Virus infection during murine pregnancy: a pathogenesis model for vaccine fetalis. Joural of Virology, 2004,3:3 133-3 139
    [172]杨晓燕,罗薇,齐雪峰,等.应用 PCR 检测成年鸭体内鸭瘟强毒的分布.中国兽医科技,2004,34(1):66~69
    [173]程安春,汪铭书..鸭瘟病毒强毒株在急性人工感染成年鸭病例体内分布规律.中国兽医学报,2004,24(3):228-230
    [174]Margaret M.morris-Downes, Kerry V.Phenix, Semliki Joan Smyth, et al. Forestvirus-based vaccines: persiatence distribution and pathological analysis in two animal syatems. Vaccine 2001, 19:1978-1988
    [175]J.C.Ramirez, D.Fonke, M.Esteban, et al. Tissue distribution of the Ankata strine of vaccine virus (MVA) after mucosal or systemic administration. Arch Virol 2003, 148:827-83922
    [176]Davor OjLic, Eva Nagy. Antibody response and virus tissue distribution in chickens inoculated with wild-type and recombinant adnoviruses. Vaccine, 2003, 22 .42-48
    [177]徐敬龙.新城疫法氏囊重组鸡痘病毒免疫原性研究.动物医学进展 2005,26(3):84-85
    [178]Snorior. Virus tissue distribution in chickens inoculated with wild-type and recombinant adnoviruses. Arch Virol ,2001, 22 .42-48
    [179]鲁必钧,邓伤军.家畜注射口蹄疫疫苗发生过敏反应的救治措施.当代畜牧.2004,1:17-18
    [180]宋焕军,纪连峰.注射口蹄疫疫苗诱发奶牛瘫痪的诊断与治疗.黑龙江畜牧兽医.2005, 2:15-16
    [181]Qian P, Li Xiang-Min, Jin Mei-Lin, et al. An approach to a FMD vaccine based on genetic engineered attenuated pseudorabies virus: one experiment using VP1 gene alone generates an antibody responds on FMD and pseudorabies in swine. Vaccine, 2004, 22:2129-2136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700