斑点叉尾鮰病毒(CCV)ORF6基因“自杀性”DNA疫苗的构建与免疫效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究构建了斑点叉尾鮰传统DNA疫苗和“自杀性”DNA疫苗,鉴定检测了两者在细胞中的表达差异,并对两种疫苗的免疫效果进行了比较。
     1.斑点叉尾鮰病毒(Channel Catfish Virus, CCV)“自杀性”DNA疫苗的构建
     根据斑点叉尾鮰病毒(CCV) ORF6基因序列,设计合适的引物,扩增ORF6基因,分别将其克隆到“自杀性”DNA疫苗载体pSFV与常规DNA疫苗载体pcDNA3.1中,转化大肠杆菌DH5α后提取质粒,构建“自杀性”DNA疫苗ps-ORF6与常规DNA疫苗pcd-ORF6,利用转化后的大肠杆菌菌液为模板进行PCR扩增、提取质粒酶切以及序列测定等方法证实重组质粒构建正确。
     2. CCV ORF6基因在细胞中的表达
     将待验证的表达CCV ORF6基因的“自杀性”DNA疫苗和常规DNA疫苗重组质粒分别转染293T细胞(人胚肾细胞),间接免疫荧光试验表明ORF6基因在细胞中均获得表达,但“自杀性”DNA疫苗表达载体的表达量显著低于常规DNA疫苗表达载体。
     3.CCV“自杀性”DNA疫苗对斑点叉尾鮰免疫指标的影响
     用构建的“自杀性”DNA疫苗ps-ORF6(Ⅲ组)与常规DNA疫苗pcd-ORF6(IV组)两种质粒制作的疫苗及对照的另外三种免疫剂(Ⅰ组为“自杀性”空载体pSFV制成、Ⅱ组为常规载体pcDNA3.1 (+)制成、Ⅴ组为缓冲液PBS)免疫80±10g的斑点叉尾鮰,分别在第0周、第2周、第4周、第6周、第8周等不同时间取血检测血液白细胞吞噬活性、血清溶菌酶活性、血液总蛋白含量等指标。实验结果与分析如下:(1)CCV“自杀性”DNA疫苗引起的白细胞吞噬活性较对照组有显著性差异(P<0.05),均高于其它对照组。表明CCV“自杀性”DNA疫苗能够更好地增强鱼体白细胞吞噬活性,增强免疫力。本实验结果也表明,影响斑点叉尾鮰白细胞吞噬活性的因素较多,实验各组都有所增强。(2)Ⅰ、Ⅱ、Ⅲ、Ⅳ组血清溶菌酶含量比Ⅴ组高,其中Ⅲ组和Ⅳ组显著高于其它组别(P<0.05),同时,Ⅲ组显著高于Ⅳ组(P<0.05)。表明CCV“自杀性”DNA疫苗能够有效地提高斑点叉尾鮰血清溶菌酶含量。(3)各实验组均能引起斑点叉尾鮰血清蛋白含量的增加,但是从组间存在显著性差异来看,CCV“自杀性"DNA疫苗相对其它组没有明显的优势,其结果可能受到外界的影响与免疫试剂的影响有交叉共同作用。
     4.CCV“自杀性”DNA疫苗对生长的影响。
     统计免疫后各组斑点叉尾鮰的生长情况,发现各组生长情况良好,组间差异不显著,表明各组免疫剂对斑点叉尾鮰生长的影响不大。
In this study, channel catfish (Ictalurus punctatus), suicide DNA vaccine and conventional DNA vaccine were constructed and their expression levels in the cells were compared. The immunity effects were evaluated and compared after injection of conventional and suicide DNA vaccines. The main contents are as follows:
     1. The construction of suicide DNA vaccine of Channel Catfish Virus (CCV) ORF6 gene The suitable primers were designed according to CCV ORF6 gene sequence. The gene was cloned into suicide DNA vaccine vector pSFV and conventional DNA vaccine vector pcDNA3.1 respectively. After transformation into E. coli DH5a and extraction plasmid, the suicide DNA vaccines ps-ORF6 and conventional DNA vaccine pcd-ORF6 were constructed. The methods of PCR, double enzymes digestion and DNA sequencing were used to confirm that CCV ORF6 gene was correctly inserted into the vector.
     2. The expression of CCV suicide DNA vaccine in the cells. The recombinant plasmids were transfected into 293T cells(human embryo kidnet cell). Indirect immunofluorescence assay showed that both were expressed, but the express level of the suicide DNA vaccine was lower than that of conventional DNA vaccines.
     3. The effects of CCV suicide DNA vaccine to immunity of channel catfish. The channel catfish from 70 g to 90 g was divided into five groups and immunized by intramuscular injection using the suicide DNA vaccines (group III) and conventional DNA vaccines (group IV) of channel catfish and the other three control groups were injected with other three reagents, the vector of pSFV for group I, the vector of pcDNA3.1 (+) for group II and PBS for group V. At the weeks of 0,2,4,6,8, the phagocytic activity of leucocytes and bactericidal activity of phagocytes were tested by using MTT dying method, lysozyme and protein were detected by using kit.
     In the test, the significant difference was found between the suicide DNA vaccines and conventional DNA vaccines (P<0.05), which were both higher than the three control groups. The results showed that the suicide DNA vaccines may enhance the phagocytic activity of leucocytes of the channel catfish. The results also indicated that the phagocytic activity of leucocytes of the channel catfish was influenced by various factors, as the phagocytic activities of leucocytes in all the groups have been upgraded. In the test of determine the lysozyme activity, the suicide DNA vaccines and conventional DNA vaccines had significant difference with the other control groups (P<0.05), and the value in the group III was significantly higher than that in the group IV (P<0.05). The results showed that the suicide DNA vaccines can improve the content of serum lysozyme to some extent. All the groups increased the total protein of the channel catfish, while the results showed the suicide DNA vaccines had no advantage and the environments did influence the value of the total protein.
     4. The impacts of the suicide DNA vaccines on the growth performance of channel catfish
     After the suicide DNA vaccines injection, the growth performance were evaluated during the following next days. Respectively, According to statistical analysis, there was no significant difference among the five groups (P>0.05).
引文
1.安利匡,冯程强,邢维贤等.灭活疫苗对鲤鱼血清溶菌酶和腹腔吞噬细胞活性的作用.山东师大学报,1999,6:175-178
    2.陈昌福.斑点叉尾鮰的主要疾病与防治对策.科学养鱼,2004,(1):16-17
    3.陈怀青,陆承平.从比较免疫学看鱼类的免疫特性.动物学杂志,1994,29(4):56-60
    4.单红,张其中,刘强平等.灭活菌苗免疫的南方鲇外周血液细胞免疫指标的变化.中国水产科学,2005,12(3):275-280
    5.邓龙君,汪开毓.斑点叉尾鮰源嗜麦芽寡养单胞菌的PLGA微球和脂质体疫苗的制备及免疫原性研究.四川农业大学硕士论文,2008,6:40-43
    6.方六荣.猪繁殖与呼吸综合征“自杀性”DNA疫苗与或病毒载体疫苗研究.[博士学位论文].武汉:华中农业大学,2003
    7.耿毅,汪开毓.斑点叉尾鮰疑似疱疹病毒感染的病理形态学观察.中国兽医学报,2005,25(6):636-642
    8.龚非力.基础免疫学.武汉:湖北科学技术出版社,1998,45-48
    9.何海怀,梁国栋.辛德毕斯病毒载体的研究进展.病毒学报,2001,17(1):93-97
    10.洪健,周雪平.ICTV第八次报告的最新病毒分类系统.中国病毒学,2006,21(1):84-96
    11.姜勋平.基因免疫的原理和方法.北京:科学出版社,2004,99-103
    12.李静,陈昌福.草鱼肾脏吞噬细胞吞噬活性的研究.四川大学学报.1999,10:931-935
    13.李向群,刘君炎,刘焰等.结核杆菌热休克蛋白65“自杀性”DNA疫苗的构建及其免疫效应研究.免疫学杂志,2007,3:159-162
    14.李亚南,陈全震,邵健忠等.鱼类免疫学研究进展.动物学研究,1995,16(1):83-94
    15.林浩然.鱼类生理学[M].广东,广东高等教育出版社,1999:85-86
    16.刘玉林,王敏,王卫民.斑点叉尾鮰病毒性疾病综述.水利渔业,2006,26(6):84-86
    17.刘玉林,王敏,王卫民.斑点叉尾鮰病毒性疾病.水利渔业,2006,26(6),84-85
    18.孟顺龙,陈家长,胡庚东等.低浓度阿特拉津对鲫鱼超氧化物歧化酶(SOD)活性的影响.农业环境科学学报,2007,26(1):170-174
    19.孟思好,孟长明,陈昌福.斑点叉尾鮰病毒病(Channel catfish virus disease, CCVD)的研究现状.渔业致富指南,2010,5:67-68
    20.孟彦,肖汉兵,曾令兵.斑点叉尾鮰病毒病研究概述.淡水渔业,2007,37(5):72-75
    21.孟跃华,纪国良,刘卫红.温度对草鱼血液吞噬细胞吞噬作用的影响[J].华中农业大学学报,1990,9:302-305
    22.史春路,刘小玲.壳聚糖对黄颗鱼非特异性免疫机能和生长的影响.华中农业大学硕士论文,2008,6:33-34
    23.司徒镇强,吴军正.细胞培养[M].西安:世界图书出版公司,1996,1-363
    24.孙建和,严亚贤,陈怀青等.嗜水气单胞菌亚单位疫苗的研制.中国兽医学报,1996,16(1):11-14
    25.孙世琪,郭慧琛,谢庆阁.“自杀性”DNA疫苗.中国兽医学报,2007,1(1):142-144
    26.王红仁,王保宁,李婉宜等.HPV16 E7“自杀性”DNA疫苗的构建及其体外表达特性研究.四川大学学报(医学版),2008,39(2):165-168
    27.王军,郡庆批,苏永全,周永灿,邵勋.免疫添加物对大黄鱼血液白细胞数量及其吞噬功能的影响.海洋科学,2001,9:44-46
    28.吴金冽.生物技术在水产养殖上之应用.中国水产(台湾),1987,411:40-42
    29.夏永娟,黄威权.新型鱼用疫苗的研究进展.中国水产科学,2001,8(1):86-88
    30.向菁,王红宁,鲜凌瑾等.“自杀性”DNA疫苗研究进展.动物医学进展,2007,28(5):83-87
    31.徐豪,张志宇.四种淡水养殖鱼类血细胞的细微结构.水生生物学集刊,1983,8(1):85-91
    32.徐翔.α-甘露聚糖肽对鲫鱼免疫因子的影响[D].杨凌,西北农林科技大学,2005
    33.许信刚,张彦明.“自杀性”DNA疫苗研究进展.动物医学进展,2004,25(6):24-28
    34.杨马,汪开毓.日粮中添加维生素E对鲤鱼生产性能和免疫功能的影响.四川农业大学硕士论文,2010,6:23-24
    35.杨先乐.鱼类免疫学研究的进展.水产学报,1989,13(3):272-284
    36.余贺.医学微生物学[M].北京:人民卫生出版社,1983,1-1223
    37.张健慧,WildJ, Bieler K等.传统DNA疫苗载体与Semliki森林病毒复制子对HIV-1 Pr55gag表达与体液免疫原性的比较研究.病毒学报,2002,18:1-8
    38.张林,孟彦,罗晓松等.斑点叉尾鮰主要疾病及其防治概述.淡水渔业,2007,37(1):76-79
    39.张玉芬,亢喜刚,张文丽等.嗜水气单胞菌疫苗免疫效果研究.水产科学,2010,29(11):657-660
    40.张玉芬,亢喜刚,张文丽等.嗜水气单胞菌疫苗免疫效果研究[J].水产科学,2010,10:657-660
    41. Ainsworth AJ. Fish granulocytes:morphology, distribution and function. Annu Rev Fish Ds,1992,2:123-148
    42. Alexander JB, Ingram GA. Noncellular nonspecific defence mechanisms of fish. Annu Rev Fish Dis,1992,2:249-279
    43. Auderson ED, Mourich DV, Leong JC. Gene expression in rainbow trout (Oncorhynchus mykiss) following intramuscular injection of DNA. Mol Mar Biol Biotechnol,1996,5:105-113
    44. Barry M, Lai W C, Johnston SA. Protection against mycoplama infection using expression library immunization. Nature,1995,377:632-635
    45. Berglund P, Smerdou C, Fleeton M N, et al. Enhancing immune responses using suicidal DNA vaccines. NatBiotechnol,1998,16(6):562-565
    46. Beverly AG, Donald LD, John BG. Protection of catfish (Ictalurus punctatus) against Ichthyophtirius multifiliis (Fouqut) by immunization with varying doses of Tetrahymena pyriformis(Lwoff)cillia. Aquac,1981,23:269-273
    47. Bowser PR, Plumb JA. Growth rates of a new cell line from channel catfish ovary and channel catfish virus replication at different temperatures. Canadian Journal of Fisheries and Aquatic Scienees,1980,37:871-873
    48. Bricknell I.R., Bowden T.J., Verner-Jeffreys D.W., et al. Susecptibility of juvenile and sub-aduit Protection induced by vaccination. Fish and Shellfish Immunology, 2000,10:319-327
    49. Camino OrdasM, Amando Ordas, Carnen Beloso, et.al. SuscePtibility of juvenile and sub-adult Atlantic halibut to infection by Vibrio anguillarum and efficaey of protection induced by vaccination[J]. Fish Shellfish Immunology,2000,10(4): 319-327
    50. Castelli JC, Hassel BA, Wood KA, et.al. A study of the interferon antiviral mechanism:apoptosis activation by 2-5A system. J Exp Med,1997,186:967-972
    51. Cheng X.辛德毕斯病毒:一种在多种动物细胞中高效表达外源基因的载体.房德兴,译.Scince,1989,234(4895):1188-1191
    52. Chilmonczyk S. The thymus in fish:development and possible function in the immure response. Annu Rev Fish Dis,1992,2:181-200
    53. Chu F L E, La Peyre J F. Development of disease caused by the parasite Perkinsus marinus and defense-related hemolymph factors in three populations of oysters from the Chesapeake Bay[J]. USA.Journal of shellfish Reserch,1993,12:21-27
    54. Cipriano R, Starliper CE. Immersion and injection vaccination of saimonids against furunculosis wih an a virulent strain of Aeromomas salmonicida. Prog Fish-cult, 1982,44:167-169
    55. Corbel M J. The immune response in fish:a review. J Fish Bio,1975,7:539-563
    56. Dalmo R A, Ingebrigtsen K, Bogwald J. Non-specific defence mechanisms in fish, with Particular refence to the retieulo endothelial system(RES)[J]. Journal of Fish Diseases,1997,20:241-273
    57. Davison A J. Channel catfish virus:A new type of herpesvirus. Virology,1992,186: 9-14
    58. De KP. Immunization against virus diseases occurring in cold water. In:De KP eds. Symposium of Fish vaccination. Paris:O.I.E.,1984,167-198
    59. DiCommo DP, Bremner RR. High level protein production using DNA-based Semliki Forest virus vectors. J Biol Chem,1998,273:18060-18066
    60. Dorson M, De KP, Torchy C. Interferon synthesis in rainbow trout fry following infection with infectious pancreatic necrosis virus. Fish Shellfish Immunol,1992,2: 311-313
    61. Duff DCP. The oral immunization of trout against Bacterium salmaonicida. J Immune,1942,44:87-94
    62. Emmenegger E, Huang C, Landolt M, et al. Immune response to syntheic peptides representing antigenic sites on the glycoprotein of infectious hematopoietic necrosis virus. Vet Res,1995,26(5-6):374-378
    63. Engelking HM, Leong JC. The glycoprotein of infectious hematopoietic necrosis virus elicits neutralizing antibody and protective responses. Virus Res,1989,13(3): 213-230
    64. Evans DL, Jaso-Friedmann L. Nonspecific cytotoxic cells as effectors of immunity in fish. Annu Rev Fish Dis,1992,2:109-121
    65. Evans DL, McKinney EC. Phylogeny of cytotoxic cells. In:Warr G W, Cohen N, ed. Phylogenesis of immune functions. Boca Raton, Florida:CRC Press,1991.215-239
    66. Fijan N. Progress report on acute mortality of channel catfish fingerlings caused by a virus. Bull Of Int Epizoot,1968,69(7):1167-1168
    67. Fleeton MN, Liljestrom P, Sheahan BJ, Atkins GJ. Reeombinant Semliki Forest virus particles expressing louping ill virus antigens induce a better protective response than plsmid-based DNA vaccines or an inaetivated whole particle vaccine. J Gen Virol,2000,81:749-758
    68. Fouriner-Betz V, Quentel C, Lamour F, LeVen A. Immunocyto-chemical detection of Ig positive cells in blood, lymphiod organs and the gut associated lymphoid tissue of the turbot (Scophthalmus maximus). Fish Shellfish Immunol,2000,10:187-202
    69. Gil J, Alcami J, Esteban M. Induction of apoptosis by double-stranded RNA-cependent protein kinase (PKR) involves the alpha subunit of eukaryotic transla:ion initiation factor 2 and NF-kappa B. Mol Cell Biol,1999,19 (7): 4653-4663
    70. Gilmore RD, Engelking HM, Manning DS, Leong JC. Expression in Excherichia coli of an epitope of the glycoprotein of infectious hematopoietic necrosis virus protects against viral challenge. Bio/Technolog,1988,6(3):295-300
    71. Gomez-Chiarri M, Chiaverini LA. Evaluation of eukaryotic promoters for the construction of DNA vaccines for aquaculture. Genet Anal-Biomol E,1999,15: 121-124
    72. Goven BA, Dawe DL, Gratzek JB. Protection of channel catfish, Ictalarus punctaus Rafinesque, against Ichthyoptirius multifiliis Fouquet, by immunization. J Fish Bio, 1980,17:311-316
    73. Grace MF, Manning MJ. Histogenesis of the lymphoid organs in rainbow trout Salmo Gairdnert Rich 1836. Dev Comp Immunol,1980,4:255-264
    74. Gray WL, Williams RJ, Jordan RL, Griffin BR. Detection of channel catfish virus DNA in latently infected catfish. J Gen Virol,1999,80:1817-1822
    75. Greenlee AR, Brown RA, Ristow SS. Nonspecific cytotoxic cells of rainbow trout (Oncorhynchus mykiss) kill YAC-1 targets by both necrotic and apoptic mechanisms. Dev Comp Immunol,1991,15:153-164
    76. Guri E, Atle M, Solveig L. Vaccination of Atlantic salmon(Salmo salar L.) before and during smoltification; effects on smoltification and immunological protection. Aquacilture,1999,170:101-112
    77. Hariharan M J, Driver D A, Townsend K et al. DNA immunization against herpes simplex virus:enhanced efficacy using a Sindbis virus-based vector. J Virol,1998, 72:950-958
    78. Hart S, Wrathmell AB, Harris JE, Grayson TH. Gut immunology in fish:a review. Dev Comp Immunol,1988,12:453-480
    79. Hsu K F, Hung C F, ChengW F, et al. Enhancement of suicidal DNA vaccine potency by linking Mycobac terium tuberculosis heat shock protein 70 to an antigen. Gene Ther,2001,8(5):376-383
    80. Hsu KF, Hung CF, Cheng W, et al. Enhancement of suicidal DNA vaccine potency by linking Mycobacterium tuberculosis heat shock protein 70 to an antigen. Gene Therapy,2001,8(5):376-383
    81. Imagawa T, Hashimoto Y, Kon Y, Sugimura M. Immunoglobulin containnig cells in the head kidney of carp (Cyprinus carpio L) alter bovine serum albumin injection. Fish shellfish Immunol,1991,1:173-185
    82. Jiangyan H, Zhan Y, Guoliang X, et al. Protection of goldfish against Ichthyophthirius multifiliis by immunization with a recombinant vaccine. Aquaculture,1997,158:1-10
    83. Kenneth E N, Bruce F S, Patricia D, et al. Protective immunity induced by DNA vaccination of channel catfish with early and late transcripts of the channel catfish herpesvirus (IHV-1). Veterinary Immunology and Immunopathology.2002,84 (3-4): 151-168
    84. Kenneth EN, Bruce FS, Patricia D, Curtis RB. Protective immunity induced by DNA vaccination of channel catfish with early and late transcripts of the channel catfish herpesvirus (IHV-1). Veterinary immunology and immunopathology,2002,84: 151-168
    85. Kim T W, Hung C F, Juang J, et al. Enhancement of suicidal DNA vaccine potency by delaying suicidal DNA induced cell death.Gene Ther,2004, 11(3):336-342
    86. Kirman JR, Turon T, Su H, et al. Enhanced immunogenicity to Mycobacterium tuberculosis by vaccination with an alphavirus plasmid replicon expressing antigen 85A. Infect Immun,2003,71:575-579
    87. Koener JF, Leong JAC. Expression of the glycoprotein gene from a fish rhabdvirus by using baculovirus vector. J Virol,1990,64(1):428-430
    88. Kohno A, Emi N, Kasai M, Tanimoto M, Saito H. Semliki forest virus-based DNA expression vector:transient protein production followed by cell death. Gene Ther, 1998,5:415-418
    89. Kucuktas H, Brady J A. Molecular biology of channel catfish virus. Aquaculture, 1999,172:147-161
    90. Leirner WW, Ying H, Restifo NP. DNA and RNA-based vaccines:prineiples, progress and prospects. Vaceine,2000b,18:765-777
    91. Leitner W W, Hwang L N, Deveer M J et al. Alphavirus-based DNA vaccine breaks immmulogical tolerance by activating innate antiviral pathways. Nat Med,2003,9: 33-39
    92. Leitner WW, Ying H, Driver DA, et al. Enhancement of tumor-specific immune response with plasmid DNA repliecon vectors. Canecer Res,2000a,60:51-55
    93. Lobb CJ, Clem LW. Fish lymphocytes differ in the express of surface immunoglobulin. Dev Comp Immunol,1982,6:473-479
    94. Loon V. Development of the immune system in carp(Cyprinus carpio). In:Solomon JB eds. Aspects of developmental and comparative immunology I. Oxford: pergamon Press,1981.469
    95. Lorenzsn N, Lorenzen E, Einer JK, Heppell J, Davis HL. Gennetic vaccination of rainbow trout against viral haemorfiagic septicaemia virus small amounts of plasmid DNA protect againsta heterologous sero type. Virus Res,1999,63 (1-2):19-25
    96. Lund V, Joergensen T, Holm KO, Eggset G. Humoral immune response in Atlantic salmon, Salmo salar L., to cellular and extracellular antigens of Aeromonas salmonicida.J Fish Dis,1991,14(4):443-452
    97. Manga.a JH, David AD, Kay T, et al. DNA immunization against herpes simplex virus:enhanced efficacy using a Sindbis virus-based vector. J Virol,1998,4472(2): 950-958
    98. Manning MJ. Fishes. In:Turner R J, ed. ImmunologyA Comparative Approach. Britain:John Wiley & Sons Ltd,1994.69-100
    99. Mansoon FDC, Fletcher TC, Gooday GW. Localisation of chitinolytic enzymes in blood of turbot, Scophthalmus maximus and their possible roles in defence. J Fish Biol,1992,40:919-927
    100.Moore RJ, Lenghaus C, sheedy SA, Doran TJ. Improved vectors for expression library immunization-application to Mycoplasma hyopneumoniae infection in pigs. Vaccine,2002,20:115-120
    101.Niles OS, Geir OM, Heidrun IW. Antibodies against Vibrio salmonicida lipopolysaccharide (LPS) and whole bacteria in sera from Atlantic salmon (Salmo salar .) vaccinated during the smolting and early post-smolt period. Fish and Shellfish Immunology,2001,11:39-52
    102.Nobuyuki T, Mitsuharu S, Marc S, et al. Type I interferons are essential mediators of apoptotic death in virally infected cell. Genes cells,1998,3:29-37
    103.Noonan B, Enzmann PJ, Trust TJ. Recombinant infectious hematopoietic nercosis virus and viral hemorr hagic septicemia virus glycoprotein epitopes expressed in Aeromanas salmonicida induce protective immunity in rainbow trout (Oncorhynchus mykiss). Appl Environ Microbiol,1995,61(10):3586-3591
    104.O1a BR. Mast cells/eosinophilic granule cells of salmonids:staining properties and responses to noxious agents. Fish shellfish Immunol,1997,7:567-584
    105.Partula S. Surface markers of fish T-cell. Fish Shellfish Immunol,1999,9:241-257
    106.Perlmutter A, Sarot DA, Yu ML, Filazzola RJ, Seeley RJ. The effect of crowding on the immune response of the blue gourami, Trichogaster trichopterus, to infectious pancreatic necrosis (IPN) virus. Life Sci,1976,13(4):363-375
    107.Phillip HK, Craig AS, Joyce JE. Efficacy of single and combined Streptococcus iniae isolate vaccine administered by intraperitoneal and intramuscular routes in tilapia(Oreochromis niloticus). Aquaculture,2000,188:237-246
    108.Pinto RM, Pinto, Juan J, Albert B. Interferon-like activity in sea base affected by viral erythrocytic infection. Fish Shellfish Immunol.1993,3(2):89-96
    109.Rowley AF, Hunt TC, Page MP, Rate NA. Fish. In:Rowley AF, Ratc NA, ed. Vertebrate Blood Cells. Cambridge:Cambridge University Press,1988.119-127
    110.Rukyan RT. The survial rate of dumbo catfish (Clarias gariepinus) vaccinate against Ichthyophtirius multifiliis with Tetrahymena pyriformis at various time exposure. In: Arthur JR eds. Asian Fish Health Bibligraphy amd Abstracts I:Southeast Asia. Manila:Fish Health Section, AFS,1990,22
    111.Scapigliati G, Romano N, Abelli L, Meloni S, Ficca A G, Buonocore F, Bird S, Secombes CJ. Immunopurification of T-cell from sea bass Dicentrarchus labrax(L.). Fish Shellfish Immunol,2000,10(4):329-341
    112.Secombes CJ, Fletcher TC. The role of phagocytes in the protective mechanisms of fish. Annu Rev Fish Dis,1992,2:53-71
    113.Secombes CJ, Manning MJ. Comparative studies on the immune system of fishes and amphibians:antigen localization in the carp (Cyprinus carpio L.). J Fish Dis, 1980,3(5):399-412
    114.Secombes CJ. Cellular defences of fish:an update. In:Pike A W,ewis J W, ed. Parasitic Diseases of Fish. Dyfed, Great Britain:Samara Publishing Limited,1994. 209-224
    115.Seeley KR, Weeks-Perkins BA. Preliminary characterisation of the non-specific cytoxic cells of the oyster toadfish(Opsanus tau, L.). Fish Shellfish Immunol,1993, 3:131-141
    116.Shih-Chu Chen, Terutoyo yoshida, Alexandra Adams, et.al..Immune response of Rainbow Trout to extracellular Products of mycobacterium SPP [J] Journal of Aquatic Animal health,1996,8:216-222
    117.Sommerset I, Krossoy B, Biering E, Frost P. Vaccines for fish in aquaculture. Expert Rev Vaccines,2005,4 (1):89-101
    118.Terutoyo yoshida, Alexandra Adams, et.al.Immune response of Rainbow Trout to extracellular Products of mycobacterium SPP [J] Journal of Aquatic Animal health, 1996,8:216-222
    119.Thuvander A, Fossum C, Lorenzen N. Monoclonal antibodies to salmorid immunoglobulin, characterization and applicability in immuno-assays. Dev Comp Immunol,1990,14:415-423
    120.Traxlet GS, Anderson E, Lapatra SE, Richard J, Shewmaker B, Kurath G. Naked DNA vaccination of Atlantic salmon Salmo salar against IHNV. Dis Aquat Organ, 1999,28 (3):183-190
    121.Vestergaard-Jorgensen PE. Paratial resistance of rainbow trout (Salmo gairdneri) to viral hamorrhagic (VHS) following exposure to non-virulent Egtved virus. Nord. Vet Med,1976,28:570-571
    122.Vidalir_ O, Fournillier A, Renard N, Chen M, Depla E, Bouereux D, Brinster C, Baumert T, Nakano I, Fukuda Y, Liljestrom P, Trepo C, Inchauspe G. Use of conventional or replicating nucleic acid-based vaccines and recombinant Semliki forest virus-derived particles for the induction of immune responses against hepatitis C virus core and E2 antigens. Virology.2000,276(2):259-270
    123.Wolff A, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL. Direct gene transfer into mouse muscle in vivo. Science,1990,247:1465-1468
    124. Wolfgang WL, Han Y, David AD, Thomes WD, Nicholas PR. Enhancement of tumor-specific immune response with plasmid DNA replicon vectors. Cancer Res, 2000,60:51-55
    125.Xiao S B, Chen H C, Fang L R et al. Comparison of immune responses and protective efficacy of suicidal DNA vaccine and conventional DNA vaccine encoding glycoprotein C of pseudorabies virus in mice. Vaccine,2004,22(3-4):345-351
    126.Zwollc P, Cole S, Bromage E, Kaattari S. B cell heterogeneity in the teleost kidney: evidence fro a maturation gradient from anterior to posterior kidney. J Immumol, 2005,174(11):6608-6616

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700