羧甲基壳聚糖局部医药用膜材料的研制及性能评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文拟从设计出优良的牙周局部给药体系出发,采用先进的高分子材料加工工艺,复合羧甲基壳聚糖(CMCS)和聚乙烯醇(PVA)材料制备出CMCS/PVA共混膜和Cs2Ms-PVA多元结构微球嵌膜体系,研究两种膜材料的药剂学及生物学方面的特性,重点考察了羧甲基壳聚糖膜体系作为牙周局部药剂材料的潜力。现将实验过程及结果报道如下:
     通过碱化壳聚糖和氯乙酸的取代反映,制备了两组不同规格的羧甲基壳聚糖样品,随后采用红外和核磁技术刻画了制备的羧甲基壳聚糖样品,电位滴定方法分析了样品分子上羧基和氨基的解离情况,特别是研究了内在因素(Ds和Dd)和外在因素(离子强度及pH)对可电离基团解离系数的影响。其结果表明,羧甲基壳聚糖样品上的羧基和氨基在由酸至碱的滴定过程中,质子化的羧基和氨基历经了分别的去质子化过程。羧基和氨基的解离明显不同于CMC上羧基和CS上氨基的解离行为。表现为羧基pKa值随解离度呈现出先下降后平缓的解离趋势,对于此规律的解离趋势,可以用数学公式模拟出氨基解离曲线,进而可以考察而羧基固有pK的变化,也可以观测出各因素对羧基pK的影响,结果显示Ds和Dd的变化都轻微的改变了羧基的解离曲线;氨基pKa值在整个解离过程中表现为复杂的递增趋势,Ds对其解离影响明显。另外,离子强度增加总是表现出屏蔽氨基和羧基解离的效应。
     使用机械共混的方法制备了一系列CMCS/PVA共混膜,并在共混膜中加载了奥硝唑药物,通过肉眼和电镜观察观察了共混膜的外观,考察了共混膜的溶胀和体外药物释放特性,同时研究了共混膜对大肠杆菌和金黄色葡萄球菌的抑制效果。结果表明共混膜透明均匀,但在微观下其相容性较差;高CMCS含量共混膜吸水剧烈,药物从中释放迅速,而高PVA含量的共混膜pH敏感性不强烈,抑菌性较差。
     为了考察CMCS/PVA共混膜作为药物包膜的潜力,我们也研究了小分子药物透过共混膜的释放情况。同样采用共混的方法制备CMCS/PVA共混膜,SEM检测提高共混膜中CMCS含量将造成共混膜表面粗造,横断面结构疏松,当CMCS含量升高到膜总重的50%时,吸水状态的共混膜呈现出多孔泡沫微观状态。CMCS的添加使共混膜具有了pH敏感性,表现为溶胀度随pH的升高而增大,高CMCS含量的共混膜尤其如此。采用改进的静态通透装置,研究了小分子模型药物透过共混膜的扩散情况,研究表明药物透过共混膜的扩散呈现出0级的药物释放趋势,提高CMCS含量,降低膜厚度以及增大介质pH值,都能使药物透膜的扩散加快。因此推测共混膜对小分子药物屏蔽不仅仅遵循孔型渗透机制。
     共混膜的体外血浆蛋白吸附是一种电性吸附为主导,疏水作用为辅助的吸附模式。当改变共混膜中CMCS含量,变动吸附蛋白类型,调整吸附介质(pH和离子强度)时,都会对膜上蛋白的静态平衡吸附量产生影响。总的来说,高CMCS含量膜的蛋白吸附量小,BSA比BFG更容易在膜上吸附,在偏酸环境中蛋白更易吸附,离子强度低的条件下蛋白更容易吸附。除了白蛋白及纤维蛋白原在膜上有吸附之外,共混膜还会对其它的血浆蛋白产生吸附。蛋白吸附模式表明了共混膜良好的生物相容性,甚至优于PVA膜。采用体内埋植的方法同样证明了共混膜优良的生物相容性,当共混膜埋植一定时间后,CMCS成分被机体溶解吸收,剩余PVA成分成为多孔蜂窝状微观结构。
     加载奥硝唑的共混药膜可以作为局部治疗牙周病的释药体系,载药共混膜具有强烈的抗厌氧菌性能,对豚鼠皮肤和大鼠牙周粘膜无刺激、无毒性,采用大鼠牙周炎动物模型实验显示药物在牙周局部浓度能长时间的维持较高浓度。
     我们设想一种新型的局部用药膜剂,该膜剂由载药微球分散包嵌在可溶性的外膜中构成。当用在局部位点时,外膜溶解,释放出载药微球,发挥药物特性。使用乳化交联的方法制备了羧甲基壳聚糖微球,同时在微球中加载了奥硝唑。载药微球的外观、粒经、药物包载量和包封率,以及体外药物释放速率都可以通过改变制备条件而加以控制。增加投料药材比可以增大药物包载量和减慢体外药物释放速率;而在制备时使用DMSO对药物助溶能够改善微球的外观,但是药物包载量降低,并且药物突释明显。综合考虑,使用不含DMSO的高载药微球分散在PVA膜中,形成一个多元结构复合膜。对于多元结构复合膜而言,外膜在接触水介质30 min时就开始溶解破碎,100 min时完全溶解释放载药微球,并能把微球封闭在局部。此性质有益于多元结构复合膜用在牙周局部。奥硝唑从微球和多元结构复合膜中释放表现出2级释放现象,在前两小时内为药物突释,紧随其后的一个缓慢释药过程。因此,可以通过改变微球或者多元结构复合膜的制备工艺达到调节药物释放速度的目的。
     新颖的多元结构复合膜的设计目的是针对牙周炎的治疗,因此需要对其生物安全性进行评价。生物学评价针对多元结构复合膜的核心(羧甲基壳聚糖微球,Cs2Ms)。采用溶血实验、蛋白吸附实验、及大鼠体内埋植实验对核心微球进行了评价,同时使用壳聚糖微球和PVA外膜作对照。体外实验结果显示,羧甲基壳聚糖微球无溶血性,且蛋白吸附量较壳聚糖微球少,蛋白吸附能力较弱,表明了羧甲基壳聚糖微球更高的生物相容性;体内埋植实验显示,微球埋植导致的炎症程度要高于PVA膜的埋植,虽然无法从体内埋植炎症判断羧甲基壳聚糖微球同壳聚糖微球的生物相容性优劣,但是微球埋植炎症反应对机体造成的伤害不甚明显,大鼠存活良好;体内外羧甲基壳聚糖微球的降解速度明显要快于壳聚糖微球,体外浸泡和体内埋植都能造成羧甲基壳聚糖微球的快速溶蚀,而壳聚糖微球降解缓慢,最终我们确信较短体内滞留时间就能使羧甲基壳聚糖被机体完全吸收,因此,羧甲基壳聚糖微球作为多元结构复合膜的核心适合牙周局部释药的目的。
     总之,能够使用羧甲基壳聚糖复合其它高分子材料设计出合理的牙周局部用药剂型。我们使用羧甲基壳聚糖所设计的两种膜材料在应用到牙周局部时仍有不完善之处,在其推广应用之前仍有很多工作要继续。
In order to design suitable localized drug films with carboxymethyl-chitosan (CMCS), we prepared two types of CMCS film systems by using high technologic process of polymer materials, one is CMCS/PVA blend films and the other is CMCS microspheres (Cs2Ms) in PVA film forming a multi-structure system (Cs2Ms-PVA). In the paper, the two CMCS film systems that used for localized delivering drug were prepared. The pharmaceutical and biological properties of the two film systems were characterized, and their feasibilities for using as periodontal treatments were investigated. The results were reported as follow:
     Several carboxymethyl-chitosan (CMCS) samples with different deacetylation degree (Dd) and/or substituent degree (Ds) were prepared from the carboxymethylation reaction of chitosan under soft conditions. The products were dissolved in standard HCl aqueous solution (0.1 M) to carry out potentiometric titration by using NaOH as titrating solution at different ionic strengths. Then the dissociation behaviors of protonated carboxyl and amine groups of CMCS were investigated under their degree of dissociation (α) and protonation constant (pKa) had been calculated. Moreover, influence of the intrinsic parameters (e.g. Dd and Ds) and extrinsic parameters (e.g. pH and ionic strength) on the dissociation behavior of CMCS were also considered in this paper. As a result, dissociations of carboxyl and amine on CMCS exhibited unusual behaviors in comparison with carboxyl on carboxymethyl-cellulose and amine groups on chitosan, respectively. The pKa values of carboxyl declined slightly at early dissociation stage but subsequently maintained constant. For that, we obtained the modeling equations by means of mathematic simulation. In contrast, the pKa of ammonium increased with its dissociation degree (αn) despite that there was an inflexed change on itsαn-pKa curve. The potentiometric behavior of carboxyl was hardly affected by variation of Dd or Ds. However, the intrinsic parameters (Dd and Ds) played more important role on dissociations of ammonium on CMCS. The ionic strength of media could bring screening effect on dissociaciation of both sorts of ionizable groups on CMCS. With increasing the ionic strength of media, screening effect on dissociations increased significantly. The distinguishable films composed of PVA and CMCS were prepared by
     blending/casting method, and loaded with ornidazole as local drug delivery system. In vitro test, the blend films showed pH-depended swelling behavior and seemly drug release action, and also exhibited a little antibacterial activity for E.coil and S.aureus strains. Those characteristics of CMCS/PVA blend films were controlled by the weight ratio of CMCS and PVA in the blended films. Increasing the content of PVA in blended films reduced the swelling ratio and decelerated the drug release. However, increasing the content of CMCS would enhance the antibacterial activity.
     A background for study CMCS/PVA blend film was the intended use of polymer films as coating material in a site-specific drug delivery system. The surface morphology of compact dried films and swollen blend films were detected using scanning electron microscopy. Roughness image was shown on the surface of high CMCS content blend films. The structure of 50%C films (i.e. content of CMCS in the blend was 50%) became loosen and porous after adsorbing water. Blending PVA with CMCS also brought the coating films with some pH-sensitive swelling properties. Low swelling degree was found at acidic condition, but high swelling degree was found at high pH conditions. Permeation of model drugs through blend films was studied using a modified side-to-side static diffusion-vessels. The results showed that drugs permeation was affected by several impacts. Enhancement of the CMCS content in the blend film, decrease of the drugs’molecule weight, increase the pH of medium and rational attenuation of the film thickness would all accelerated the solutes permeating the blend coating films.
     Bovine serum albumin (BSA) and bovine fibrinogen (BFG) were chose as representative plasma proteins to carry out adsorption test. Equilibrium adsorption amount of proteins onto the blends decreased with the increase of CMCS content in film matrix, and BSA was more easily adsorbed onto the films than BFG at the same conditions. The blend films also exhibited different trend for BSA and BFG adsorption when pH of the media changed, but maximum adsorption approximately occurred at the isoelectric point of proteins. Moreover, increasing the ionic strength would always decrease the adsorptions of protein onto the films. In animal experiments, it was found that incorporation of CMCS and PVA brought lower tissue reaction than pure PVA films as they were subcutaneously implanted in Wister rat. After two weeks subcutaneous implantation, surfaces of PVA became wrinkled and cracked, however, the blend implants exhibited alveolate porous microstructure.
     The bioactivities of the blend film were also checked using anaerobic bacterial and some animal molds. This blend drug system was of no hemolysis, no toxicity to skin of Guinea pig and periodontium of Wister rat, and exhibited excellent antibacterial activity to ATCC 25586 and ATCC 25175. After embedding the 30%C blend drug films in the periodontum of rat model, the systems kept a good retention at the application site and maintained high drug concentration in long time (5 days) more extended the period in vitro (220 mins).
     Carboxymethyl-chitosan microspheres (Cs2Ms) were prepared by a method of emulsification combined with two-step solidification and loaded ornidazole as model drug. The ornidazole loaded Cs2Ms were incorporated into PVA film to form a multi-structure drug system (Cs2Ms-PVA) for feasibly releasing drug in local site. The appearance, particle size, drug loading and encapsulation efficiency, and drug release profiles of Cs2Ms could be tailored in the preparation. Appropriate enhancement of drug amount in the microsphere would bring optimum effect on drug loading percentage and release profile. The use of dimethylsulfoxide (DMSO) could produce spherical spheres with smooth surface and small size, but depress the drug loading and encapsulation efficiency and hasten the burst drug release. For the multi-structure carrier materials, the outer PVA film rapidly breaks up to pieces after about 30 min of placement in water and then entirely dissolved. Drug release from the multi-structure carriers was a little faster than that from the pure Cs2Ms. Ornidazole release from the carriers performed a burst release in the initial 2 hours then followed a gradual release. It could be achieved the controlled release pattern of ornidazole by dispersing the well prepared Cs2Ms into PVA film.
     As core parts of the novel formulation of Cs2Ms-PVA, chitosan-based microsphere was prepared form chitosan and/or carboxymethyl-chitosan (CM-chitosan) by using water in oil emulsification method. Then basic in vitro and in vivo experiments focusing on biocompatibility and biodegradability of the chitosan-based microspheres were carried out to evaluate the feasibility of the novel film formulation. In vitro tests, besides having no hemolysis, CM-chitosan microsphere (Cs2Ms) have adsorbed little proteins on their surfaces. Moreover, plasma proteins adsorbed on Cs2Ms, most of which can easily desorbed, are much less than that adsorbed on Cs1Ms. This indicates that Cs2Ms perhaps has better biocompatibility than Cs1Ms. In vivo tests, subcutaneous implantation of Cs1Ms and Cs2Ms in rat was carried out to investigate the host tissue inflammatory response and biodegradability of the microspheres. Implantations of Cs1Ms and Cs2Ms induced a littlie more severe inflammation when compared with the implantation of PVA film. However, the difference on in vivo biocompatibility between Cs1Ms and Cs2Ms could not be confirmed by the implantation model used in our experiments. Both Cs1Ms and Cs2Ms had suffered bioerosion when they were subcutaneously implanted. The hard and compact matrixes of Cs1Ms were degraded very slowly, and only some trifling degradation had been found until 4 weeks of implantation. In contrast, Cs2Ms is soft and more hydrophilic, and can be quickly degraded in a form of diffluence by the physiological circumstance. All these results suggested that Cs2Ms had better potentials used as core parts of the novel designed film dosage in the future developments.
     Based on the above considerations, we incline to design the novel periodontal localized drug delivery system with carboxymethyl-chitosan in despite that there were some limits on the development of the two film dosages based on in vivo or in vitro findings.
引文
Adekogbe I, Ghanem A. Fabrication and characterization of DTBP-crosslinked chitosan scaffolds for skin tissue engineering. Biomaterials 2005, 26 (35):7241-7250
    Agarwal RK, Robinson DH, Maze GI. Reinhardt RA. Development and characterization of tetracycline-poly(lactide/glycolide) films for treatment of periodontitis. J. Control. Release1993, 23:137-146
    Anderson JM, Langone JJ. Issues and perspectives on the biocompatibility and immunotoxicity evaluation of implanted controlled release systems. J Control Rel 1999, 57:107-113
    Anonymous. Periodontal diseases: epidemiology and diagnosis. J Am Dent Assoc 1998, 129(Suppl):9-14
    Anthonsen MW, Smidsr?d O. Hydrogen ion titration of chitosans with varying degrees of N–acetylation by monitoring indiced 1H NMR chemical shifts. Carbohydr Polym 1995, 26:303-305
    Aoi K, Takasu A. Okada M. DNA-based polymer hybrids. Polymer 2000, 41:2847-2853
    Atichokudomchai N, Varavinit S. Characterization and utilization of acid-modified cross-linked Tapioca starch in pharmaceutical tablets. Carbohydrate Polymers 2003; 53:263-270
    Atkins PW, Physical Chemistry, Oxford University Press, Oxford, 1994, 5th Edition, pp. 300–304
    Bale MD, Wohlfahrt LA, Mosher DF, et al. Identification of vitronectin as a major plasma protein adsorbed on polymer surfaces of different copolymer composition. Blood 1989, 74:26982706
    Basinska T. Adsorption studies of human serum albumin, humanγ-globulin,and human fibrinogen on the surface of P(S/PGL) microsphere. Journal of Biomaterial Science, polymer Edition 2001, 12:1359-1371.
    Benhamw N, Lafontaine PJ, Nioole M. Iriduction of system resistance to fusariumcrown and rot in tomato plants by seed treatment with chitosan. Phytopattnlogy1994, 84(12):1432-1444
    Ben-Naim A, Hydrophobic Interactions. New York: Plenum Press; 1980.
    Beumer BJ, van Blitterswijk CA, Ponec M. Degradative behavior of polymeric matrices in (sub)dermal and muscle tissue of the rat: a quantitative study. Biomaterials 1994, 15:551-9
    Boisson-Vidal C, Jozefonvicz J, Brash JL. Interactions of proteins in human plasma with modified polystyrene resins. J Biomed Mater Res 1991, 25:67-84
    Bouissou C, Potter U, Altroff H, et al. Controlled release of the fibronectin central cell binding domain from polymeric microspheres, Journal of Controlled Release 2004, 95(3):557-566
    Brash JL, Scott CF, ten Hove P, et al. Mechanism of transient adsorption of fibrinogen from plasma to solid surfaces: role of the contact and fibrinolytic systems. Blood 1988, 71:932-939
    Brauker JH, Carr-Brendel VE, Martinson LA, et al. Neovascularization of synthetic membranes directed by membrane microarchitecture, J Biomed Mater Res 1995, 29:1517-1524
    Brugnerotto J, Lizardi J, Goycoolea FM, et al. An infrared investigation in relation with chitin and chitosan characterization. Polymer 2001, 42:3569-3580
    Buchter A, Meyer U, Birgit KL, et al. Sustained release of doxycycline for the treatment of peri-implantitis: randomized controlled trial. Br J Oral Maxillofac Surg 2004, 42:439-444
    Carolina SM, Emmanuel F, Edith S, et al. Complement activation and protein adsorption by carbon nanotubes, Molecular Immunology 2006, 43:193-201
    Cevher E, Orhan Z, Mülaz?mo?lu L, et al. Characterization of biodegradable chitosan microspheres containing vancomycin and treatment of experimental osteomyelitis caused by methicillin-resistant Staphylococcus aureus with prepared microspheres. Inter J Pharm 2006, 317:127-135
    Chadha R, Jain DVS, Aggarwal A, et al. Binding constants of inclusion complexes of nitroimidazoles withβ-cyclodextrins in the absence and presence of PVP. Thermochim Acta 2007, 459:111-115
    Chen L, Tian Z, Du Y. Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomaterials 2004, 25:3725-3732
    Chen Q, Liu SQ, Du YM, et al. Carboxymethyl-chitosan protects rabbit chondrocytes from interleukin-1β-induced apoptosis. Eur J Pharmacol 2006, 541:1-8
    Chen SC, Wu YC, Mi FL, et al. A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery, Journal of Controlled Release 2004, 96(2):285-300
    Chen XG, Liu CS, Liu CG, et al. Preparation and biocompatibility of chitosan microcarriers asbiomaterial. Biochem Eng J 2006, 27(3):269-274
    Chen XG, Park HJ. Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions. Carbohydrate Polymers 2003, 53(4):355-359
    Chen XG, Wang Z, Liu WS, Park HJ. The effect of carboxymethyl-chitosan on proliferation and collagen secretion of normal and keloid skin fibroblasts. Biomaterials 2002, 23:4609-4614
    Chung TW, Lu YF, Wang SS, et al. Growth of human endothelial cells on photochemically grafted Gly-Arg-Gly-Asp(GRGP) chitosans. Biomaterial 2002, 23:4803-4809
    Chung YC, Wang HL, Chen YM, Li SL. Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens. Bioresource Technology 2003, 88(3):179-184
    Collins AEM, Deasy PB, Maccarthy DJ, Shanley DB. Evaluation of a controlled-release compact containing tetracycline hydrochloride bonded to tooth for the treatment of periondontal disease. Int J Pharm 1989, 51:103-114
    Colman RW, Schmaier AH. Contact system: a vascular biology modulator with anticoagulant, profibrinolytic, antiadhesive, and proinflammatory attributes. Blood 1997, 90:3819-3843
    Conforti A, Bertani S, Lussignoli S, Grigolin L, et al. Anti-inflammatory activity of polyphosphazene based naproxen slow release system. J Pharm Pharmacol.1996, 48:468-473.
    Cyril D, Vincent L, Christiane G, Pascal D. Characterization of crosslinked high amylose starch matrix implants: 2. In vivo release of ciprofloxacin. Journal of Controlled Release 2002, 82(1):95-103
    Dash AK, Cudworth II, Greggrey C. Therapeutic applications of implantable drug delivery systems. Journal of Pharmacological and Toxicological Methods 1998, 40(1):1-12
    Delben F, Lapasin R, Pricl S. Flow properties of N-(carboxymethyl) chitosan aqueous systems in the sol and gel domains, International Journal of Biological Macromolecules 1990, 12(1):9-13
    Di Colo G, Zambito Y, Burgalassi S, Nardini I, Saettone MF. Effect of chitosan and of N-carboxymethylchitosan on intraocular penetration of topically applied ofloxacin, International Journal of Pharmaceutics 2004, 273(1-2):37-44
    Dubin P, Strauss UP. Hydrophobic hypercoiling in copolymers of maleic acid and alkyl vinyl ethers. J Phys Chem 1967, 71:2757-2759
    Eichenbaum GM, Kiser PF, Shah D, et al. Investigation of the swelling response and drug loading of ionic microgels: the dependence on functional group composition. Macromolecules 1999, 32(26): 8996-9006
    El Ghaouth A, Arul J, Grenier J, et al. Effect of chitosan on cu-cumber plants suppression of Pythium aphanidermatum and in-duction of defense reactions. Phytopathology1994, 84(3): 13-320
    Emo C, Patrizia C, Andrea C, El Refaye K. Composite films based on waste gelatin: thermal–mechanical properties and biodegradation testing. Polymer degradation and stability 2001, 73(4):549-555
    Esposito P, Cortesi R, Cervellati F, Menegatti E, Nastruzzi C. Biodegradable microparticles for sustained delivery of tetracycline to the periodontal pocket: formulatory and drug release studies, J Microencapsulation 1997, 14:175-187
    Ferreiro GR, Bad?′as LC, Lopez-Nigro M, et al. DNA single strand breaks in peripheral blood lymphocytes induced by three nitroimidazole derivatives. Toxicol Lett 2002; 132:109-115
    Freeman E, Ellen RP, Thompson G, et al. Gingival crevicular fluid concentrations and side effects ofminocycline: A comparison of two dose regimens. J Periodontol 1992, 63(1):13-18
    Freier T, Koh HS, Kazazian K, Shoichet MS. Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials 2005, 26(29):5872-5878
    Fukasawa M, Abe H, Masaoka T, et al. The hemostatic effect of deacetylated chitin membrane on peritoneal injury in rabbit model. Surg Today 1992, 22(4):333-338
    Gambuti A, Rinaldi A, Pessina R, Moio L. Evaluation of aglianico grape skin and seed polyphenol astringency by SDS–PAGE electrophoresis of salivary proteins after the binding reaction. Food Chem 2006, 97:614-620
    Giusti P, Lazzeri L, Barbani N, et al. Hydrogels of poly(vinyl alcohol) and collagen as new bioartificial materials. J Mater Sci Mater Med 1993, 4;538-542
    Greenstein G, Polson A. The role of local drug delivery in the management of periodontal diseases: A comp rehensive review. J Periodontol 1998, 69(5):507-520
    Gupta KC, Jabrail FH. Preparation and characterization of sodium hexameta phosphate cross-linked chitosan microspheres for controlled and sustained delivery of centchroman.International Journal of Biological Macromolecules 2006, 38(3-5):272-283
    Haffajee AD, Socransky SS. Microbial etiological agents of destructive periodontal disease, Periodontology 1994, 2000:78-111
    Hallab NJ, Bundy KJ, O’Connor K, et al. Cell adhesion to biomaterials: correlations between surface charge, surface roughness, adsorbed protein and cell morphology. J Long-term Defects Med Impl 1995, 5:209-31
    Hetrick EM, Prichard HL, Klitzman B, Schoenfisch MH. Reduced foreign body response at nitric oxide-releasing subcutaneous implants. Biomaterials 2007, 28:4571-4580
    Higashi K, Matsushita M, Morisaki K, et al. Local drug delivery systems for the treatment of periodontal disease. J Pharmacobio Dyn 1991, 14:72-81
    Hirano S, Hayashi M, Nagao N, et al. Chitinase activity of some seeds during their germination process and its induction by treating with chitosan and derivatives. In: Chitin and Chitosan: sources, Chemistry, Biochemistry, Physical, Properties, and Ap-plications. Edited by Gudmund SB, London UK. 1998, pp743-747
    Hirose Y, Sakamoto Y, Tajima H, et al. Dissociation behavior of poly(2-methyleneglutaric acid) by potentiometric titration and intrinsic viscosity. criterion of two-step dissocaition. J Phys Chem 1996, 100:4612-4617
    Hoogendam CW, de Keizer A, Cohen Stuart MA, et al. Persistence length of carboxymethyl cellulose as evaluated from size exclusion chromatography and potentiometric titrations, Macromolecules 1998, 31:6297-6309
    Hoven VP, Tangpasuthadol V, Angkitpaiboon Y, Vallapa N, Kiatkamjornwong S. Surface-charged chitosan: Preparation and protein adsorption. Carbohydr Polym 2007, 68(1):44-53
    Hu J, McDougald LR. The efficacy of some drugs with known antiprotozoal activity against Histomonas meleagridis in chickens. Veterin Parasitol 2004, 121:233-238
    Hu WJ, Eaton JW, Ugarova TP, Tang L. Molecular basis of biomaterial-mediated foreign body reactions. Blood 2001, 98:1231-1238
    Ijim H, Ohchi T, Ono T, Kawakami K. Hydroxyapatite for use as an animal cell culture substratum obtained by an alternate soaking process. Biochem Eng J 2004, 20:155-161
    ISO 10993, Part 4,“Selection of tests for interaction with blood.”International StandardOrganization (1992).
    Ivani EJ. US Patent, 4365050, 1982.
    Jameela SR, Jayakrishnan A. Glutaraldehyde cross-linked chitosan microspheres as a long acting biodegradable drug delivery vehicle: studies on the in vitro release of mitoxantrone and in vivo degradation of microspheres in rat muscle. Biomaterials 1995, 16:769-775
    Jeffcoat MK, Palcanis KG, Weatherford TW, et al. Use of a biodegradable chlorhexidine chip in the treatment of adult periodontitis: Clinical and radiographic findings. J Periodontol 2000, 71(2):256-262
    Jones DS, Woolfson AD, Brown AF, O’Neill MJ. Mucoadhesive, syringeable drug delivery systems for controlled application of metronidazole to the periodontal pocket: In vitro release kinetics, syringeability, mechanical and mucoadhesive properties. J Control Release 1997, 49:71-79
    Jones DS, Woolfson AD, Djokic J, Coulter WA. Development and mechanical characterization of bioadhesive semi-solid, polymeric systems containing tetracycline for the treatment of periodontal diseases. Pharm. Res 1996. 13:1734-1738
    Jones KL, O’Melia CR. Protein and humic acid adsorption onto hydrophilic membrane surfaces: effects of pH and ionic strength, J Membr Sci 2000, 165:31-46
    Jr Cvanaugh PF, Meredith MP, Buchanan W, et al. Coordinate p roduction of PGE2 and IL21βin the gingival crevicu2lar fluid of adults with periodontitis: its relationship to alveolar bone loss and disrup tion by twice daily treatment with ketorolac tromethamine oral rinse. J Periodont Res 1998, 33(2):82
    Karla Lehele, Stefan Lohn, Gunter Reinerth, Cytological evaluation of the tissue-implant reaction associated with subcutaneous implantation of polymers coated with titaniumcarboxonitrde in vivo. Biomaterials2004, 25:5457-5466
    Katchalsky A. Polyelectrolytes. Pure Appl Chem 1971, 26:327-373
    Keinonen T, Riihola P, Lepp?nen VP, et al. Phase conjugation in color additive doped PVA films, Optical Materials 1997, 7(3):95-101
    Kelly HM, Deasy PB, Ziaka E, Claffey N. Formulation and preliminary in vivo dog studies of a novel drug delivery system for the treatment of periodontitis. Int J Pharm 2004, 274:167-183
    Kennedy R, Costain DJ, McAlister V, Lee TDG. Prevention of experimental postoperative peritoneal adhesions by N,O-carboxymethyl chitosan. Surgery 1996, 120(5):866-870
    Kim HK, Chung HJ, Park TG. Biodegradable polymeric microspheres with“open/closed”pores for sustained release of human growth hormone, Journal of Controlled Release 2006, 112(2)167-174
    Kim K, Kim C, Byun Y. Biostability and biocompatibility of a surface-grafted phospholipids monolayer on a solid substrate. Biomaterials 2004, 25:33-41
    Kittur FS, Harish Prashanth KV, Udaya Sankar S, Tharanathan RN. Charaterization of chitin, chitosan and their carboxymethyl derivatives by differential scanning calorimetry. Carbohydr Polym 2002, 49:185-193
    Kkubota N, Eguchi Y. Facile preparation of water-soluble N-acetylated chitosan and milecular weight dependence of its water-solubility. Polymer Journal 1997, 29(2):123-127
    Kofuji K, Murata Y, Kawashima S. Sustained insulin release with biodegradation of chitosan gel beads prepared by copper ions. Int J Pharm 2005, 303:95-103
    Kuo PC, Sahu D, Yu HH. Properties and biodegradability of chitosan/nylon 11 blending films. Polym Degrad Stabili 2006, 91:3097-3102
    Kushibiki T, Tomoshige R, Iwanaga K, et al. Controlled release of plasmid DNA from hydrogels prepared from gelatin cationized by different amine compounds. Journal of Controlled Release 2006, 112(2):249-256
    Lagarce F, Garcion E, Faisant N, Thomas O, Kanaujia P, Menei P, Benoit JP, Development and characterization of interleukin-18-loaded biodegradable microspheres, International Journal of Pharmaceutics 2006, 314(2):179-188
    Lamp KC, Freeman CD, Klutman NE, et al. Pharmacokinetics and pharmacodynamics of the nitroimidazole antimicrobials. Clin Pharmacokinet 1999, 36(5):353-373
    Larsen T. In vitro release of doxycycline from bioabsorbable materials and acrylic strips. J Periodontol 1990, 61:30-34
    Lavertu M, Xia Z, Serreqi AN, Berrada M, et al. A validated 1H NMR method for the determination of the degree of deacetylation of chitosan. Journal of Pharmaceutical and Biomedical Analysis 2003, 32(6):1149-1158
    Leeuwenburgh SCG, Wolke JGC, Siebers MC, Schoonman J, Jansen JA. In vitro and in vivoreactivity of porous, electrosprayed calcium phosphate coatings. Biomaterials 2006, 27(18):3368-3378
    Lehlea K, Lohna S, Reinertha G, Schubertb T, Preunera JG, Birnbaum DE. Cytological evaluation of the tissue–implant reaction associated with subcutaneous implantation of polymers coated with titaniumcarboxonitride in vivo. Biomaterials 2004, 25:5457-5466
    Leyte JC, Mandel M. Potentiometric behavior of polymethacrylic acid. J Polym Sci (a) 1964, 2:1879-1891
    Li F, Li WG, Yao D. Preparation of oxidized glucose-crosslinked N-alkylated chitosan membrane and in vitro studies of pH-sensitive drug delivery behaviour. Biomaterials 2002, 23:343
    Li J, Li X, Ni X, Wang X, Li H, Leong KW. Self-assembled supramolecular hydrogels formed by biodegradable PEO–PHB–PEO triblock copolymers andα-cyclodextrin for controlled drug delivery. Biomaterials 2006, 27(22):4132-4140
    Li Z, Zhuang XP, Liu XF, et al. Study on antibacterial O-carboxymethylated chitosan/cellulose blend film from LiCl/N, N-dimethylacetamide solution. Polymer. 2002, 43(4):1541-1547
    Liang P, Zhao Y, Shen Q, et al. The effect of carboxymethyl chitosan on the precipitation of calcium carbonate. Journal of Crystal Growth 2004, 261(4):571-576
    Lin JM, Peng FY, Lin SC. Effects of subgingival antimicrobial irrigation in chronic periodontitis--clinical observation. National Medical Journal of China 1990, 9(2):75-82
    Liu CX, Chen GH, Jin ZT, Sun MK, Gao CJ. Modification of the formula for calculation of substitution degree of N,O-carboxymethylchitosan. Journal of Beijing University of Chemical Technology 2004, 31:14-17
    Liu H, Du Y, Wang X, et al. Chitosan kills bacterial through cell membrane damage. International Journal of Food Microbiology 2004, 95:147-155.
    Liu XF, Guan YL, Yang DZ, et al. Antibacterial action of chitosan and carboxmethylated chitosan. Journal of Applied Polymer Science 2004, 79:1324-1335
    Makarand VR, Anandwardhan AH, Sujata VB, et al. pH-sensitive freeze-dried chitosan-polyviyl pyrrolidone hydrogels as controlled release system for antibiotic delivery. Journal of Controlled Release 2000, 68:23-30
    Makowska J, Baginska K, Markowski M, et al. Assessment of two theoretical methods toestimate potentiometric titration curves of peptides: comparison with experiment, J. Phys. Chem. B 2006, 110:4451-4458
    Mansoor MA. Permeability and blood compatibility properties of chitosan-poly(ethylene oxide) blend membranes for haemodialysis. Biomaterials 1995, 16:593-599
    Marie S, Arne B, Martin M. Nonionic cellulose ethers as potential drug delivery dystems for deriodontal anesthesia. Journal of Colloid and Interface Science 2000, 229(2):365-374
    Meachim G, Pedley RB. The tissue response at implant sites. In: Williams DF (Ed) Fundamental Aspects of Biocompatibility. Vol. 1. Boca Raton; CRC Press: 1993. pp108-147
    Merkli A, Heller J, Tabatabay C, Gurny R. Semi-solid hydrophobic bioerodible poly(ortho ester) for potential application in glaucoma filtering surgery. J Control Release 1994, 29:105-112
    Mi FL, Shyu SS, Wu YB, et al. Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials 2001, 22:165-173
    Mi FL, Tan YC, Liang HF, Sung HW. In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials 2002, 23:181-191
    Mi FL, Wu YB, Shyu SS, et al. Asymmetric chitosan membranes prepared by dry/wet phase separation: a new type of wound dressing for controlled antibacterial release. Journal of membrane science 2003, 212:237-254
    Mima S, Yoshikawa S, Miya M. Japan Patent, 1975, 130870
    Minami S, Masuda M, Suzuki H, et al. Subcutaneous injected chitosan induces systemic activation in dogs. Carbohydrate Polymers 1997, 33(4):285-294
    Miyazaki S. Chitin and chitosan as vehicle for drug delivery, Zairyo Gijutsu1998; 16:276
    Moreau E, Drochon A, Chapon P, Domurado D, Vert M. Design of in vitro hemotoxicity tests for potential polymeric drug carriers. J Biomech 1998, 31(Suppl 1):171-171
    Moretto A, Tesolin L, Marsilio F, et al. Slow release of two antibiotics of veterinary interest from PVA hydrogels, Il Farmaco 2004, 59(1):1-5
    Morin C, Hitchcock AP, Cornelius RM, et al. Selective adsorption of protein on polymer surfaces studied by soft X-ray photoemission electron microscopy. J Electron Spectro Related Phenomena 2004, 137-140:785-794
    Morita R, Honda R, Takahashi Y. Development of oral controlled release preparations, a PVA swelling controlled release system (SCRS): I. Design of SCRS and its release controllingfactor, Journal of Controlled Release 2000, 63(3):297-304
    Mundargi RC, Srirangarajan S, Agnihotri SA, et al. Development and evaluation of novel biodegradable microspheres based on poly(D,L-lactide-co-glycolide) and poly(ε-caprolactone) for controlled delivery of doxycycline in the treatment of human periodontal pocket: In vitro and in vivo studies. J Control Release 2007, 119:59-68
    Muraki E, Yaku F, Kojima H. Preparation and crystallization of D-glucosamine oligosaccharides with DP6-8. Carbohydr Res 1993, 239:227-237
    Muzzarelli RA, Muzzarelli C, Tarsi R, et al. Fungistatic activity of modified chitosans against Saprolegnia parasitica. Biomacromolecules 2001, 2(1):165-169
    Muzzarelli RAA, Tanfani F, Emanuelli M, Mariotti S. N-(carboxymethylidene) chitosans and N-(carboxymethyl)chitosans: Novel chelating polyampholytes obtained from chitosan glyoxylate. Carbohydrate Research 1982, 107(2):199-214.
    Muzzarelli RAA, Weckx M, Filippini O, Sigon F. Removal of trace metal ions from industrial waters, nuclear effluents and drinking water, with the aid of cross-linked N-carboxymethyl chitosan, Carbohydrate Polymers 1989, 11:293-306
    Muzzarelli RAA, Xia W, Tomasetti M, et al. Depolymerization of chitosan and substituted chitosans with the aid of a wheat germ lipase preparation. Enzyme Microbial Technol 1995, 17:541-545
    Muzzarelli RAA. Carboxymethylated chitins and chitosans, Carbohydrate Polymers 1988, 8(1):1-21
    Muzzarelli RAA. Chitosan London. Oxford Pergamon Press, 1977, 257
    Nagasawa M, Murase T, Kondo K, Potentiometric titration of stereoregular polyelectrolytes. J Phys Chem 1965, 69:4005-4012
    Nahalka J, Nahalkova J, Gemeiner P, Blanarik P. Elicitation of plumbagin by chitin and its release into the medium in Drosophyllum Lusitanicum Link suspension cultures. Biotechnology Letters 1998, 20:841-845
    Nakamura K, Matsumoto K. Properties of protein adsorption onto pore surface during microfiltration: Effects of solution environment and membrane hydrophobicity. Journal of Membrane Science 2006, 280:363-374
    Narayanan AS, Bartold PM. Biochemistry of periodontal connective tissues and theirregeneration: A current perspective. Connective Tissue Res 1996, 34 (3):191- 201
    Newman MG, Komman KS, Doherty FM. A 62month multi-center evaluation of adjunctive tetracycline fiber therapy used in conjunction with scaling and root p lanting in maintenance patients: Clinical results. J Periodontol 1994, 65(7):685-691
    Nishimura SL, Ikeuchi Y, Tokura S. The adsorption of bovine blood protein onto the surface of o-(carboxymethyl) chitin. Carbohydrate Research 1980, 134:305-312
    Norihiko M, Tomone K, Naoto K, et al. Preparation, properties, and cell attachment/growth behavior of PVA/chitosan-blended hydrogel. Materials science and Engineering 1998, 26:275-280
    Noyan O, Yilmaz S, Kuru B, et al. A clinical and microbiogical evaluation of systemic and local metronidazole delivery in adult periodontitis patients. J Clin Periodontol 1997, 24(3):158-165
    Oliver RC, Brown LJ, Loe H. Periodontal diseases in the United States population. J Periodontol 1998, 69(2):269-78
    Pantaleone D, Yalpani M, Scollar M. Unusual susceptibility of chitosan to enzymic hydrolysis. Carbohydr Res 1992, 237:325-332
    Park JW, Choi KH. Acid-base equilibria and related properties of chitosan. Bulletin of Korean Chemical Society 1983, 4:48-72
    Peng ZG, Hidajat K, Uddin MS, Adsorption of bovine serum albumin on nanosized magnetic particles. Journal of Colloid and Interface Science. 2004, 271:277-283
    Peppas NA, Mongia NK, Ultrapure poly(vinyl alcohol) hydrogels with mucoadhesive drug delivery characteristics. European Journal of Pharmaceutics and Biopharmaceutics 1997, 43(1):51-58
    Perugini P, Genta I, Conti B, Modena T, Pavanetto F. Periodontal delivery of ipriflavone: new chitosan/PLGA film delivery system for a lipophilic drug, Inter J Pharm 2003, 252:1-9
    Pillay V, Sibanda W, Danckwerts MP. Sequential design of a novel PVA-based crosslinked ethylenic homopolymer for extended drug delivery, International Journal of Pharmaceutics 2005, 301(1-2):89-101
    Polson AM, Garrentt S, StollerNH, et al. Muti-center comparative evaluation of subgingival delivered sanguinarine and doxycycline in treatment of periodontitis. J Periodontol 1997,68(2):119-126
    Price R, Patchan M. Controlled release from cylindrical microstructures. J Microencapsulation 1991, 8:301-306
    Queiroz JA, Tomaz CT, Cabral JMS, Hydrophobic interaction chromatography of proteins. Journal of Biotechnol 2001, 87:143-159
    Ramamurthy NS, Xu JW, Bird J, et al. Inhibition of alveolar bone loss by matrix metallop roteinase inhibitors in experimental periodontal disease. J Periodont Res 2002, 37(1):1-7
    Ramesh HP, Viswanatha S, Tharanathan RN. Safety evaluation of formulations containing carboxymethyl derivatives of starch and chitosan in albino rats. Carbohydrate Polymers 2004, 58(4):435-441
    Ratner BD. Reducing capsular thickness and enhancing angiogenesis around implant drug release systems. J Control Rel 2002, 78:211-218
    Rege PR, Garmise RJ, Block LH. Spray-dried chitinosans: Part II: in vitro drug release from tablets made from spray-dried chitinosans. Intrer J Pharm 2003, 252:53-59
    Rege PR, Shukla DJ, Block LH. Chitinosans as tableting excipients for modified release delivery systems. Inte J Pharm 1999, 181:49-60
    Renaud M, Belgacem MN, Rinaudo M. Rheological behaviour of polysaccharide aqueous solutions. Polymer 2005, 46(26):12348-12358
    Reybier K, Zairi S, Jaffrezic-Renault N, et al. Polyethyleneimine as a pH-sensitive film for potentiometric transducers. Materials Science and Engineering: C 2001, 14(1-2):47-53
    Rinaudo M, Dung PL, Gey C, Milas M. Subsitituent distribution on O, N-carboxymethylchitosans by 1H and 13C NMR. International Journal of Biological Macromolecules 1992, 14:122-128
    Rinaudo M. Chitin and chitosan: Properties and applications. Prog Polym Sci 2006, 31(7):603-632
    Ruel-Garie′py E, Shive M, Bichara A, et al. A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. European Journal of Pharmaceutics and Biopharmaceutics 2004, 57(1):53-63
    Saracoglu F, Gol K, Sahin I, Türkkani B, Atalay C, Oztopcu C. Treatment of bacterial vaginosis with oral or vaginal ornidazole, secnidazole and metronidazole. International Journal ofGynecology and Obstetrics 1998, 62(1):59-61
    Sauvrtre E, Glupczynsky Y, Labbr M, et al. The Effect of Clindamycin Gel Insert in Periodontal Pockets, as Observed on Smears and Cultures. Infection 1993, 21:247-257
    Saxena A, Shahi VK, Kumar A. Thermodynamic study of functionally modified chitosan and its blends in aqueous media at 298.15 K. J Molecular Liquids 2007, 135:21-26
    Schwach-Abdellaoui K, Vivien-Castioni N, Gurny R. Local delivery of antimicrobial agents for the treatment of periodontal diseases. Eur J Pharm Biopharm 2000, 50:83-99.
    Seabra AB, de Oliveira M G. Poly(vinyl alcohol) and poly(vinyl pyrrolidone) blended films for local nitric oxide release. Biomaterials 2004, 25(17):3773-3782
    Seal BL, Otero TC, Panitch A. Polymeric biomaterials for tissue and organ regeneration. Mater Sci Eng 2001, 34:147-230
    Shigemasa Y, Matsuura H, Sashiwa H, Saimoto H. Evaluation of different absorbance ratios from infrared spectroscopy for analyzing the degree of deacetylation in chitin. International Journal of Biological Macromolecules 1996, 18:237-242
    Shu XZ, Zhu KJ, Song W, et al. Novel pH-sensitive citrate cross-linked chitosan film for drug controlled release. International Journal of Pharmaceutics 2001, 21:19-28
    Shuji N, Andrady AL. Permeability of vitamin B-12 in chitosan membranes, Effect of crosslinking and blending with poly(vinyl alcohol) on permeability. J Appl Polym Sci 1992, 44:17-28
    Sindélia SF, Romi LM, Eduardo JA, et al. Endotoxin removal from solutions of F(ab)2 fragments of equine antibodies against snake venom using macroporous chitosan membrane. Journal of Membrane Science 2004, 234:67-73
    Singh DK, Ray AR. Controlled release of glucose through modified chitosan membranes. Journal of Membrane Science 1999, 155(1):107-112
    Sorlier P, Denuziere A, Viton C, Domard A. Relation between the degree of acetylation and the electrostatic properties of chitin and chitosa. Biomacromolecules 2001, 2:765-772
    Sun L, Du Y, Fan L, Chen X, Yang J. Preparation, characterization and antimicrobial activity of quaternized carboxymethyl chitosan and application as pulp-cap, Polymer 2006, 47(6):1796-1804
    Sunararajan VM, Howard WTM. Porous chitosan scaffolds for tissue engineering. Biomaterials1999, 20:1133-1142
    Tang L, Eaton JW. Inflammatory response to biomaterials. American Journal of Clinical Pathology 1995, 103:466-471
    Tang L, Ugarova T, Plow E, Eaton J. Molecular determinants of acute inflammatory responses to biomaterials. J Clin Invest 1996, 97:1329-1344.
    Tang R, Du Y, Fan L. Dialdehyde starch-crosslinked chitosan films and their antimicrobial effects. Polymer Science Part B: Polymer Physics 2003, 41(9):993-997
    Tang ZG, Hunt JA. The effect of PLGA doping of polycaprolactone films on the control of osteoblast adhesion and proliferation in vitro. Biomaterials 2006, 27(25):4409-4418
    Tarsi R, Corbin B, Pruzzo C, et al. Ettect of low molecular weight chitosans on the adhesive properties of oral streptococci. Oral Microbiol Immunol 1998, 13(4):217-224
    Terbojevich M, Carraro C, Cosani A. Preparation of tosylchitins as precursors for facile chemical modifications of chitin. Makromol Chem 1989, l90(1):2847-2849
    Terbojevich M, Cosani A, Focher B, Marsano E. High-performance gel-permeation chromatographyof chitosan samples. Carbohydr Res 1993, 250:301-314
    Thacharodi D, Panduranga RK. Collagen-chitosan composite membranes of propranolol hydrochloride, International journal of pharmaceutics 1995, 120:115-118
    Thacharodi D, Panduranga RK. Collagen-chitosan membranes controlled transdermal delivery of nifedipine and propranolol hydrochloride. International Journal of Pharmaceutics 1996, 134:239-241
    Thanou M, Verhoef JC, Junginger HE. Oral drug absorption enhancement by chitosan and its derivatives. Advanced Drug Delivery Reviews 2001, 52:117-126
    Tishmack PA, Bashford D, Harms E, Van Etten RL. Use of 1H NMR spectroscopy and computer simulations to analyze histidine pK changes in a protein tyrosine phosphatase: experimental and theoertical determination of electrostatic properties in a small protein, Biochemistry 1997, 36:11984-11994
    Tomihata K, Ikada Y. In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials 1997, 18:567-575
    Tonetti M, Cugini MA, Goodson JM. Zero-order delivery with periodontal placement of tetracycline-loaded ethylene vinyl acetate fibers. J Periodontol Res 1990, 25:243-249
    Tonetti MS, Pini-Prato G, Cortellini P, Principles and clinical applications of periodontal controlled drug delivery with tetracycline fibers. Int J Periodontol Res Dent 1994, 14:421-435.
    Valerie D, Khan MA, June RM. Effect of chitosan on epithelial permeability and structure. Interional Journal of Pharmaceutics 1999, 182:21-32
    van der Lubben IM, Verhoef JC, Borchard G, Junginger HE. Chitosan and its derivatives in mucosal drug and vaccine delivery. European Journal of Pharmaceutical Sciences 2001, 14(3):201-207
    Vandekerckhove B, QuirynenM, Van Steenberghe D. The use of tetracycline-containing controlled2release fibers in the treatment of refractory periodontitis. J Periodontol 1997, 68(4):353-361
    Varshosaz J, Dehghan Z. Characterization and utilization of acid-modified cross-linked Tapioca starch in pharmaceutical tablets. European Journal of Pharmaceutics and biopharmaceutics 2002, 54:135-141
    Vroman L, Adams AL. Adsorption of proteins out of plasma and solutions in narrow spaces. J. Colloid Interface Sci 1986, 111:391-402
    Wang LY, Gu YH, Zhou QZ, et al. Preparation and characterization of uniform-sized chitosan microspheres containing insulin by membrane emulsification and a two-step solidification process. Colloids Surf B: Biointerfaces 2006, 50:126-135
    Wang QZ, Chen XG, Liu N, et al. Protonation constants of chitosan with different molecular weight and degree of deacetylation,Carbohydrate Polymers 2006, 65( 2):194-201.
    Wang T, Wang YQ, Su YL, Jiang ZY, Improved protein-adsorption-resistant property of PES/SPC blend membrane by adjustment of coagulation bath composition. Colloids and Surfaces B: Biointerfaces 2005, 46:233-239
    Wang Y, Challa P, Epstein DL, Yuan F. Controlled release of ethacrynic acid from poly(lactide-co-glycolide) films for glaucoma treatment. Biomaterials 2004, 25(18)4279-4285
    Wang, C. Tam KC, Jenkins RD. Dissolution behavior of HASE polymers in the presence of salt: potentiometric titration, isothermal titration calorimetry, and light scattering studies. J Phys Chem B 2002, 106:1195-1204
    Whittlesey KJ, Shea LD. Delivery systems for small molecule drugs, proteins, and DNA: the neuroscience/biomaterial interface, Experimental Neurology 2004, 190(1):1-16
    Williams DF. Definitions in Biomaterials, Progress in Biomedical Engineering 4, Elsevier, Amsterdam, 1987.
    Williams DF. Toxicology of ceramics. In: Williams DF (Ed) fundamental aspects of biocompatibility. Boca Raton: CRC Press; 1981. pp 87-94
    Yao K, Peng T, Goosen MPA, et al. pH-sensitivity of hydrogels based on complex forming chitosan: Polyether interpenetrating polymer network. Appl polym Sci 1993, 48:343-354
    Yao KD, Liu J, Cheng GX, et al. Swelling behavior of pectin/chitosan complex films. J. Applied Polymer Science 1996, 60:279-283
    Yeom CK, Lee KH. Pervaporation separation of water-acetic acid mixtures through poly(vinyl alcohol) membranes crosslinked with glutaraldehyde. J Membrane Science 1996, 109:257-265
    Yoshinari N, Tohya T, Kawase H, et al. Effect of repeated localminocycline administration on periodontal healing following guided tissue regeneration. J Periodontol 2001, 72(3):284-295.
    Yoshizawa T, Shin-ya Y, Hong KJ, Kajiuchi T. pH-and temperatyre-sensitive permeation through polyelectrolyte complex films composed of chitosan and polyalkyleneoxide-maleic acid copolymer. Journal of Membrance Science 2004, 241:347-354
    Yuan Y, Chesnutt BM, Utturkar G, et al. The effect of cross-linking of chitosan microspheres with genipin on protein release. Carbohydr Polym 2007, 68:561-567
    Zentner GM, Caridinal JR, Kim SW. Pregestin permeation through polymer membranes, ?: Diffusion studies on plasma soaked membranes. Journal of Pharmaceutics Science 1978, 67:1347-1349
    Zhang M., Li XH, Gong YD, et al. Properties and biocompatibility of chitosan films modified by blending with PEG. Biomaterials 2002, 23:2641-2648
    Zhao G, Liu Y, Fang C, et al. Water resistance, mechanical properties and biodegradability of methylated-cornstarch/poly(vinyl alcohol) blend film. Polymer Degradation and Stability 2006, 91(4):703-711
    Zhao L, Mitomo H, Zhai M, et al. Synthesis of antibacterial PVA/CM-chitosan blend hydrogelswith electron beam irradiation. Carbohydrate Polymers 2003, 53:439-446
    Zhao X, Kato K, Fukumoto Y, Nakamae K, Sysnthesis of bio adhesive hydrogels from chitin derivatives. International Journal of Adhesion and Adhesives 2001, 21:227-232
    Zhao Z, Wang Z, Wang SC. Formation, charged characteristic and BSA adsorption behavior of carboxymethyl chitosan/PES composite MF membrane, Journal of Membrane Science 2003, 217:151-158
    Zhao ZP, Wang Z, Wang SC. Formation, charged characteristic and BSA adsorption behavior of carboxymethyl chitosan/PES composite MF membrane. Journal of Membrane Science 2003, 217:151-158
    曹宗顺,卢风琦.药用壳聚糖生物将解膜的研制.中国医药工业杂1996, 27(1):14-16
    陈凌云,杜予民,刘义.羧甲基壳聚糖的结构与抗菌性能研究.武汉大学学报(自然科学版) 2000, 46(2):191-194
    陈双厚,刘瑞华,吴广均.羧基化氨基多糖对5种胃溃疡模型的影响.中药新药与临床药理2002, 13(3):158-160
    高风兰,等.壳低聚糖的制备与应用.中国生化药物杂志1999, (21):292-294
    葛为公,杨红梅,黄崇基,等.羧甲基壳聚糖的制备及抑菌作用的研究.华夏医学2005, 18(6):903-904
    耿素芳,曹采方,陈智滨,等.盐酸米诺四环素软膏对龈沟液中胶原酶的影响.中华口腔医学杂志2000, 35(5):336-339
    管云林.科学时报2001, 21:2
    胡丹,高铁民.甲壳胺人工皮肤在创伤治疗中的运用.江苏医药1999, 25(2):134-134
    黄文月,罗宣,卓红禧.甲壳胺药膜的控制释放研究.广州化学1996, 4:58-63
    黄增慰,黄道战.羧甲基壳聚糖防止硫酸钙水垢的性能研究.广西民族学院学报(自然科学版)2001, 7(2):104-106
    金鸿莱,胡纯贞,陈建国,等.多西环素缓释凝胶治疗牙周炎的临床研究.上海口腔医学2003, 12(4):250-252
    李方,刘文广,薛涛,等.烷基化壳聚糖的制备及载药膜的释放行为研究.化学工业与工程2002, 19(4):281-286
    李红英,李成章,魏国贤,等.高效液相色谱法对牙周袋内四环素药物浓度的测定.湖北医科大学学报1997, 18(3):285-288
    李明春,辛梅华,王琼,等.壳聚糖及其改性膜的药物释放动力学研究.生物医学工程杂志2001, 18(1): 154-155
    李平,王文权,周益民,等.洛美沙星壳聚糖口腔溃疡膜的制备及含量测定方法的建立.中国生化药物杂志2002, 21(4):203-204
    李青峰,徐靖宏,罗敏,等.不同通透性壳聚糖生物膜复合导管修复周围神经缺损的实验研究,上海医学2000, 23(7):390-392
    林友文,林青,郑景峰,等.壳聚糖、羧甲基壳聚糖的降脂及抗氧化作用.中国海洋药物2003, 22(3):16-19
    刘万顺,陈西广,张学成,等.羧甲基壳多糖毒理学研究.中国海洋药物1997, 16(3):17-19
    刘艳如,余萍.水溶性壳聚糖对小鼠免疫功能与移植性肿瘤的影响.福建师范大学学报(自然科学版) 1999, 15(4):66-70
    刘志斌,李峰,吴军正,等.几丁聚糖药膜促进小鼠皮肤伤口愈合的实验研究.实用口腔医学杂志1997, 13(2):134-135
    楼宝成.中国专利, 1987, 1032294.
    卢风琦,曹宗顺,庄昭霞,等.壳聚糖膜的降解与生物相容性研究.生物学工程杂志1998, 15(2):183-185
    卢风琦,曹宗顺.制备条件对脱乙酰甲壳素性能的影响.化学世1993, 34(3):133-136
    马建标,王红军,何炳林,等.壳聚糖膜的制备及其对人、大鼠皮肤成纤维细胞的相容性.天津工业大学学报2001, 20(1):1-5
    马绪荣,苏德模.药品微生物学检验手册.第一版.北京:科学出版社2000, pp201-202
    桑青,韩宝芹,刘万顺,等.羧甲基壳聚糖铋盐抗大鼠胃溃疡及杀灭幽门螺杆菌作用的研究.高技术通讯2004, 7(1):93-96
    师素云,薛启汉.壳聚糖对玉米的生长调节作用.天然产物研究与开1999, 11(2):32-36
    宋志国,侯洋,韩冬云,等.羧甲基壳聚糖对大鼠单一心房肌细胞超速激活延迟整流钾电流的作用.中国药理学与毒理学杂志2004, 18(3):199-202.
    孙敬方.动物实验方法学.北京:人民卫生出版社2001, pp374-375
    孙钦锋,庄昭霞,杨丕山,等.壳聚糖膜促进牙周新附着的实验研究.山东医科大学学报1998, 36(4):301-303
    唐明,肖晓蓉,章锦才,等.三种硝基咪唑类药物对牙周病原菌的抗菌活性比较.临床口腔医学杂志2002, 18(5):327-329
    唐涛,薛毅,信玉华,等.羧甲基壳聚糖对口腔重要厌氧菌的抑菌性能评价.中国微生态学杂志2003, 15(6):337-339
    王锋,庄昭霞,卢风琦.改良性壳聚糖膜的兔体内组织反应和降解.山东大学学报(医学版) 2002, 40(4):367-369
    王军,何文,李荣凌.氧氟沙星壳聚糖口腔溃疡膜研制.中国医院药学杂志2003, 23(6):333-334
    王丽娟,李金鸣,张沈丽,等.羧甲基甲壳胺对豚鼠单一心室肌细胞钙离子电流的作用.中国海洋药物1999, 18(4):8-10
    王中和,陆顺娟,胡海生.低分子壳聚糖对癌症放疗患者免疫功能的影响.首都医科大学学报1997, 18:79
    吴清基,徐笑非,陈仲林,等.壳聚糖敷料在创伤中的新应用.中国纺织大学学报1996,22(1):56-60
    夏文水,吴炎楠.羧甲基壳聚糖一种多用途的甲壳素衍生物.无锡轻工大学学报1995, 14(4):372-376
    许彦枝,刘健,李伟,等.双黄补缓释药条治疗慢性牙周炎的临床研究.现代口腔医学杂志, 2004, 18 ( 1) :46 - 48.
    杨国红.胶原酶与牙周病.国外医学:口腔医学分册2001, 28(4):229-231
    杨丕山,庄昭霞,孙钦锋,等.壳聚糖促进牙周骨再生的实验研究.山东医科大学学报1998, 36(3):204-206
    姚子昂,韩宝芹,刘万顺,等.不同分子量壳聚糖膜性质的研究.中国生物医学工程学报2002, 21(3):256-252
    张广耘,姚志道,刘涓,等.复方甲硝唑缓释药条治疗慢性牙周炎的临床研究.实用口腔医学杂志1997, 13(4):267-268
    张秋华,唐小琪.羧甲基壳聚糖处理印染废水试验.环境污染与防治1995, 17(5):7-9
    张沈丽,王丽娟,肖庆桓,等.羧甲基壳聚糖对豚鼠单一心室肌细胞延迟外向钾电流的作用.中国海洋药物2000, 19(1):11-13
    张声辉.壳聚糖衍生物果蔬保鲜剂的配制.申请号: 94101978.0
    张胜强,杨明华,姚晓敏,等.四环素控释药线的研究.中国药科大学学报1998, 29(1):36-38
    张毅,庄昭霞,卢风琦,等.牙周引导组织再生壳聚糖膜的生物相溶性研究.山东大学学报2002, 40(2):115-117
    郑化,杜予民,余家会,等.交联壳聚糖膜的制备及其性能的研究.高等学校化学学报2000, 21:809-812
    郑立,陈西广,刘万顺,等.羧甲基壳聚糖膜对皮肤成纤维细胞相容性研究.生物化学与生物物理进展2003, 30(2):314-320
    郑连英,朱江峰,孙昆山.壳聚糖的抗菌性能研究.材料科学与工程2000, 18(2):22-24
    周汝俊,陈涟如,黄敬耀,等.黄甲棒缓释剂的研究.中华口腔医学杂志1996, 31(3):159-162
    竺国芳,赵鲁杭.几丁寡糖和壳寡糖的研究进展.中国海洋药物2000, 1:43-46
    庄昭霞,林志勇,卢风琦,等.壳聚糖膜生物将解与组织反应的实验研究.口腔材料器械杂志1997, 6(4):178-180

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700