阿维菌素纳米载药体系的制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农药是保证农业生产不可或缺的物质,农药亦是饱受诟病背负破坏环境、危害食品安全恶名的物质。合理的选择、正确的使用农药,是保证农作物丰产丰收、食品安全的关键源头。随着大量剧毒、高残化学农药逐渐被摒弃,开发和使用低毒、低残或无残留生物农药,成为缓解农药污染和保证人民健康的重要手段。阿维菌素作为当今世界使用量最大的生物农药之一,其常规乳油制剂、粉剂等,在防治蔬菜、经济作物害虫方面已有广泛的应用,然而其新剂型的开发缺乏突破,纳米技术的出现给这一问题的解决提供了很好的思路。无定形纳米SiO2、低分子量CTS作为新颖的杀虫、杀真菌、细菌、和防治植物病毒性病害的材料,在农业生产中已经得到一定应用。基于纳米SiO2、CTS在本领域及其他领域的研究成果,结合纳米载体材料在其他领域的研究成果,本论文开拓性的开展了将纳米SiO2进行表面改性并作为阿维菌素的载体以及水溶性CTS作为阿维菌素载体的研究。
     结果表明:⑴以硅酸钠为原料,通过溶胶-凝胶的方法得到纳米SiO2微粒,微粒外观呈白色粉末状;表面活性剂用量对微粒比表面积和平均孔径有一定影响;SEM及XRD分析结果,所制得的SiO2微粒为无定形非晶态,球形,平均粒径在50nm左右,聚集成团状;用不同种类的硅烷偶联剂对其进行改性后,SEM下显示,改性后的纳米SiO2分散性得到改善;IR分析表明,改性后的纳米SiO2出现有机吸收峰;在液体石蜡中呈现非常好的分散性能,在有机溶剂中对阿维菌素的吸附能力显著增强。
     ⑵用纳米SiO2及改性后的纳米SiO2作为负载生物农药阿维菌素的载体,制备了纳米SiO2-阿维菌素载药体系;TEM下显示,载药体系粒径仍然为50nm左右;IR分析表明改性纳米SiO2与阿维菌素之间没有发生化学作用,只有物理吸附或弱的相互作用,对阿维菌素的化学性质不产生影响;随时间的延长,纳米SiO2、改性纳米SiO2吸附阿维菌素的量都呈增加趋势,但达到平衡时间不同;维菌素原药在30%乙醇介质中的溶出曲线较直、陡,没有明显的阿维菌素缓慢释放区间;纳米SiO2-阿维菌素纳米体系在30%乙醇介质中阿维菌素的溶出,前段时间释放浓度高,速度快,之后是缓慢释放,可持续几天的时间。
     ⑶通过H2O2降解的方法,找到最佳的降解条件:1%H2O2、温度为60℃、水解时间1h,此时产物得率为47.8%;所得到的水溶性CTS与商品CTS进行IR结构对照分析,结果发现经这种方法降解后,CTS的原来结构不发生变化;所得到的水溶性CTS经紫外光谱法确定脱乙酰度为96.07%;所得到的水溶性CTS经粘度法测定其粘均分子量为5.20×104D。
     ⑷利用自制的水溶性CTS,采用乳化-交联的方法,制备了水溶性CTS纳米载药体系;粒度分析仪考察不同相对分子质量的CTS形成的纳米粒的粒径,发现高分子量的CTS形成的纳米粒粒径大于低分子量CTS形成的纳米粒粒径;考察了不同质量比的水溶性CTS与TPP情况下,CTS载药纳米粒粒径、载药量、固体回收率的不同,结果发现,当二者质量比在6:1~7.5:1之间时,CTS纳米载药体系的超过80%的粒子粒径在100nm以下,载药量和固体回收率均超过30%,这时候体系在光照下的分解速率减缓、分散性、离心稳定性都为优级、对水温、不同水质水的适应能力强。本项目的研究工作证实,纳米SiO2/阿维菌素载药体系、CTS/阿维菌素纳米载药体系具有缓/控释、抗紫外线光照的能力,预示着这两种载药体系可以成为新型阿维菌素纳米制剂制备的友好环保材料。
Pesticide is essential for farming, but it is criticized to be harmful to environment and food. Therefore the rational choice and proper use of pesticide are the most important issue in agriculture. Nowadays, because of the restrictive use of many chemical pesticides, biopesticides commence to play an important part in modern agriculture. The exploitation and application of biopesticides have been the ultimate means to lessen environmental pollution and ensure health of people. One of the most yield pesticides is Avermectics in the world, emulsifiable concentrates and dusts of Avermectics have been used for vegetables, economic crops, etc. but there is no better form of it. The Tappearance of
     nanotechnology provided a good idea for this question. Amorphous nanosilica and the low molecular weight CTS are novel nanobiopesticides to be used controlling insects, bacteria, algae, viruses for plants and stockbreeding. Based on above mentioned research findings in agriculture and other fields, and the other findings of nanomaterials, we firstly conducted a study on the amorphous modified-nanosilica and low molecular weight CTS as carriers for Avermectics.
     Nanosilica is synthesized by sol-gel method, and its properties had been analyzed by the means of BET, SEM, TEM, XRD, IR, etc. the products take on white powder, the BET and BJH adsorption average pore diameter under the the different quantity of surfactant are different, the size of nanoparticles are about 50nm, roundness, amorphism, collective, After modified by silicone coupling agent nanosilica dispersed better than before.
     We preparated nanosilica-Avermectics system with nanosilica and modified nanosilica, the size of nanosilica-Avermectics system is about 50nm., Chemical reaction did not happen between Avermectics and nanosilica by IR except for thin interactions, Nanosilica absorbed the amount of Avermectics increased with the time until balance; Release profile of free avermectins was straight and abrupt in 30% ethanol, there was not obvious control realease line. Nanosilica-Avermectics system and modified nanosilica-Avermectics system released Avermectics quickly first, then slowly and continued for several days.
     The low molecular weight CTS was obtained by H2O2 decomposed method, 1%H2O2, 60℃,1h are the finest conditions. The structure of low molecular weight CTS is the same as the high molecular weight CTS as confirmed by IR. Deacetylation result of the low molecular weight CTS was 96.07% and the viscosity-average molecular weight of water-solubility CTS was 5.20×104D.
     The low molecular weight CTS nanoparticles system is prepared by emulsification-connection method. The size of nanoparticles which were synthesized by the high molecular weight CTS was larger than those which were synthesized by the low molecular weight CTS. Several conditions were reviewed, the results showed that the size of more than 80% particles were less than 100nm in this system, drug loadings and recovery rates were all more than 30%. The system could resist UV ray and had well dispersion, stability and suitable to different water.
     These results showed that nanosilica--Avermectics system and CTS nanomecidine carrier system were controlled realeased and UV ray resisted; Both of them could be used as environmental friendly materials for preparation of novel Avermectics forms.
引文
1.蔡亮珍,杨挺.纳米二氧化硅在高分子领域的应用[J].现代塑料加工应用,2002,14(6):20~23
    2.陈建峰,刘凡,文利雄.一种阿维菌素长效缓释可湿性粉剂及其制备方法.中华人民共和国.CN1977601A[P].2007年6月13日.中华人民共和国国家知识产权局.
    3.陈艳,沈鹤柏,徐瑞云,等.壳聚糖/5-氟尿嘧啶纳米粒的制备及其性能[J].应用化学,2008,25(5):564~568
    4.程丽鸿,赵静.吡虫啉/羧甲基壳聚糖凝胶球的制备及释放性能[J].精细化工,2005,22(9):653~657
    5.郭宇,吴红梅,周立岱,等.化学沉淀法制备纳米二氧化硅[J].辽宁化工,2005,34(2):56~57
    6.代昭.烷基壳聚糖纳米微球的制备及其药物负载性能研究[博士论文].天津大学,2003
    7.代昭,孙多先,黄文强.烷基壳聚糖纳米微球的制备及其紫杉醇负载研究[J],高分子通报,2006年6月:65~68
    8.丁艺,林金辉,旦辉.球形纳米SiO2制备[J],非金属矿,2005,28(3):18~20
    9.杜上鉴,路彦,岳淑媛.紫外光谱法测定甲壳素的脱乙酰化值[J],应用化学,1994,11(2):108~109
    10.段文凯,吕美巧,郑春翠,等.壳聚糖的结构及抑菌作用[J].现代食品科技,2006,22(4):259~261
    11.范金石.甲壳低聚糖类表面活性剂的制备及其性能研究[博士论文].青岛海洋大学,2002
    12.费轶博,李凤前,胡晋红,等.用离子交联-匀化工艺制备乙肝疫苗壳聚糖纳米粒[J].药学服务与研究,2008,8(2):119~122
    13.冯小强,杨声,苏中兴,等.低聚壳聚糖降解制备、分离、纯化、鉴别的研究进展[J].高分子通报,2006,(10):82~89
    14.符远祥,孙艳辉,葛杏心.单分散纳米二氧化硅的制备与表征[J],硅酸盐通报,2008,27(1):154~159
    15.甘礼华,刘明贤,庞颖聪,等.新型纳米多孔SiO2气凝胶微球材料的制备[J],无机化学学报,2006,22(9):1740~1744
    16.顾晓军,田素芬,高飞,等.阿维菌素对小菜蛾3龄幼虫的亚致死效应研究[J].中国农学通报,2008,24(2):343~347
    17.郭武棣主编.液体制剂[M],北京:化学工业出版社,2004年1月第三版
    18.郭英凯,赵燕禹,赵国华,等.纳米二氧化硅的制备[J],盐业与化工. 2007,36(4):29~31
    19.郭宇,吴红梅,周立岱,等.化学沉淀法制备纳米二氧化硅[J],辽宁化工. 2005,34(2):56~57
    20.郭宇,吴红梅,尹桂丽.溶胶-凝胶法制备纳米二氧化硅[J],天津化工. 2005,19(1):34~35
    21.韩林,于芳.阿维菌素在果树害虫防治中的应用[J].河北果树,2006,(4):35
    22.韩志任,杜有辰,李刚,等.阿维菌素脲醛树脂微胶囊的制备及其缓释性能[J].农药学学报,2007,9(4):405~410
    23.郝盼盼,邓树海.阿昔洛韦壳聚糖纳米粒的制备及检验[J].中国医药导报2008,5(1):28~29
    24.何斌,王相田,刘伟.纳米SiO2水溶胶的制备技术研究及应用[J] .上海化工,2000,(9):14~17
    25.何强芳,李国明,巫海珍,等. 5-氟尿嘧啶微球的制备及其释药性能[J].应用化学,2004,21(2):192~196
    26.何天稀,毛学峰,马骞,等.二氧化硅超细粉末的制备[J],西北师范大学学报(自然科学版),2002,38(3):53~54
    27.侯秋菊,崔跃勇,马明霞.浅谈生物农药的发展[J].现代农业科技,2005,(20)57~58
    28.胡文玉,吴姣莲.壳聚糖的性质和用途及其在农业上的应用前景[J],植物生理学通讯,1994,30(4):294~296.
    29.胡林,徐汉虹,梁明龙.鱼藤酮水基纳米悬浮剂的特性及对松材线虫的杀虫作用[J].农药学学报,2005, 7 (2) : 171~175
    30.扈洪波,朱蓓蕾,李俊锁.阿维菌素类药物的研究进展[J].畜牧兽医学报,2000,31(6),520~529.
    31.黄进,汪世龙,孙晓宇,等.壳聚糖及其衍生物基因载体的研究进展[J].高分子通报,2006(1):65~69
    32.黄晓东,胡林,王玉健,等.α-三联噻吩水基纳米悬浮剂的制备及测定[J].华东交通大学学报,2006,23(2):158~160
    33.黄征.现代生物农药的研究与应用[J].中国植保导刊,2005,25(10):17~19
    34.黄之杰,费逸伟,尚振锋,等.溶胶-凝胶法制备纳米SiO2及表面亲油改性研究[J].表面技术,2006,35(1):63~65
    35.吉小利,王君,李爱元,等.纳米二氧化硅粉体的表面改性研究[J].安徽理工大学学报(自然科学版)(增刊),2004,24:83~87
    36.蒋才武,陈超球,梁利芳.阿维菌素的生物合成、理化性质及其应用[J].西师院学报(自然科学版),1999,16(1):98~101
    37.蒋挺大编著.壳聚糖[M],北京:化学工业出版社, 2006年12月第二版.
    38.蒋新宇,周春山,张俊山.应用三聚磷酸钠为交联剂制备载药物纳米粒的研究[J],中国现代医学杂志,2003,13(22):69~71
    39.金轶伟,柴一秋,厉晓腊,等.生物农药的应用现状及其前景[J].河北农业科学,2008,12(6):37~39,48
    40.康睿宇,徐国想,曹静雅.纳米SiO2的制备、改性和应用[J].化工时刊,2006(10):60~64
    41.孔璐,张阳德. 5-FU纳米微粒的制备及其释药特性研究[J].解放军医学杂志,2007,32(1):32~34
    42.赖凡,雷朝亮,钟吕珍.蝇蛆几丁糖对植物病源真菌的抑制作用[J].华中农业大学学报,1998,17(2):123~125
    43.李邦良,高仕瑛,乔新惠,等.甲壳低聚糖的制备和分析[J].中国生化药物杂志,1999,20(6):292~294
    44.李东旭,耿燕丽.壳聚糖的改性及及作为生物材料的应用研究[J],材料科学与工程学报,2006,24(2):301~305
    45.李广领,陈锡岭,王菊凤.当前我国生物农药发展中存在的问题[J].河南科技学院学报(自然科学版),2008,36(2):50~52
    46.李锐,李生才.生物农药及其发展对策[J].山西农业科学,2008,36(7):74~76
    47.李学丰,张晓光,董金凤.一种阿维菌素微乳剂及其制备方法.中华人民共和国.CN101112195A[P].2008年1月30日.中华人民共和国国家知识产权局
    48.李志君,辛梅华,李明春,等. O,O–双十二酰化壳聚糖自组装纳米药用泡囊[J].化工进展,2006,25(6):704~707
    49.李珠柱,文利雄,刘凡,等.新型阿维菌素纳米控释剂的制备及性能研究[J].农药学学报,2005,7(3):275~281
    50.李子轶.偶联剂与无机纳米粒子之间的相互作用[J].哈尔滨理工大学学报,2007,12(5):61~63
    51.李浙江,王金信,连玉朱.壳聚糖在农药领域中的应用和前景[J].农药科学与管理,2005,26(6):28~32
    52.梁桂媛,方华丰,刘志伟. 5-氟尿嘧啶壳聚糖微球的制备[J].广东药学院学报,2000,16(1):7~10
    53.梁军,司红彬,匡秀华,等.阿维菌素类药物的研究进展[J].上海畜牧兽医通讯,2005,(1):9~11
    54.梁旭东,李雪光,付瑶,等.井冈霉素载药二氧化硅空心微球的原位制备及缓释性能评价[J].过程工程学报,2008,8(3):595~598
    55.廖春燕.壳聚糖诱导植物抗病反应及机制研究[博士论文].浙江大学,2002
    56.林春梅,崔海信,刘琪,等.纳米二氧化硅表面改性及其对阿维菌素吸附和缓释性能[J].生态环境学报,2009,18(1):197~200
    57.林琳.浅谈生物农药的发展及特点[J].农技服务,2007,24(10):43,57
    58.林晓蓉,白雪芬,杜昱光.寡聚糖素诱导植物抗病性反应研究进展[J].生物工程进展,1998,18(5):26~31
    59.刘立萍,李苹,吴泽志,等. 5-Fu壳聚糖/丝素复合磁微球的制备及体外性质研究[J].中国药学杂志,2003,38(10):774~777
    60.刘清术,刘前刚,陈海荣,等.生物农药的研究动态、趋势及前景展望[J].农药研究与应用,2007,11(1):17~22,25
    61.刘晓云,赵辉鹏,李兰,等.二氧化硅纳米粒子表面修饰及其表征[J].分析测试学报,2006,25(6):5~9
    62.刘云才,顾期斌.水溶性聚合物改性二氧化硅的研究及应用[J].武汉理工大学学报,2008,30(7):32~35,56
    63.卢凤琦,曹宗顺,王春香,等.低分子量壳聚糖的研制[J].中国生化药物杂志,1997,18(4):178~180
    64.骆峰,阮建明,万千.纳米二氧化硅粉体的微乳液制备及表征[J].粉末冶金材料科学与工程,2004,9(2):93~98
    65.罗华丽,鲁在君.壳聚糖作为药物缓释载体的研究进展[J].高分子通报,2006,(7):25~30
    66.吕凤娇,陈晓耕,许小平.阿霉素纳米粒的制备与模拟体外释放行为[J].计算机与应用化学,2008,25(2):148~150
    67.马永铸,魏春姝.阿维菌素同系物和衍生物[J].上海农业学报, 2000, 16(增刊):64~68
    68.宁延生,马慧斌,王惠玲,等.沉淀法白炭黑与纳米级二氧化硅[J],无机盐工业,2002,34(1):18~20
    69.蒲丽,康占海,蒋家珍,等.SiO2作为杀菌剂防治黄瓜灰霉病的研究[J],植物病理学报,2005,35(36):186~188
    70.钱翼清,范牛奔。烷基化纳米SiO2/MMA核壳无皂乳液聚合、产物表征及其应用[J].高分子材料科学与工程,2002,18(4):69~73
    71.邱德文.新型生物农药绿色环保产业[J].中国创业投资与高科技,2005,28~30
    72.邱德文.我国生物农药现状分析与发展趋势[J].植物保护,2007,33(5):27~32
    73.尚青、冯树波,郑和堂.阿维菌素水悬纳米胶囊剂的研制[J].农药,2006,45(12):831~833
    74.尚青,郑和堂.阿维菌素水悬纳米胶囊剂及其制备方法.中华人民共和国.CN1437848A[P].2003年8月27日.中华人民共和国国家知识产权局
    75.沈新璋,金名惠,孟厦兰.纳米二氧化硅的制备及表征[J].涂料工业,2002,(9):15~17
    76.任艳玲,郭益冰,赵亚红,等.过氧化氢在中性条件下氧化降解壳聚糖的研究[J].南通大学学报(医学版),2007,27(4):254~256
    77.孙道兴.硅溶胶制备纳米二氧化硅的工艺研究[J].青岛科技大学学报(自然科学版),2008,29(4):291~301
    78.孙建析,朱勇,朱丽秋,等.生物农药阿维菌素的NEL和ADI研究[J].农药,2007,46(5):319~322
    79.孙建析,顾刘金,杨校华,等.阿维菌素混配农药毒性研究[J].农药,2004,43(增刊):31~33
    80.宋满坡,段晓琴.壳聚糖对黄瓜常见病原菌的抑制效应[J].江苏农业科学,2007,(1):69~70,143
    81.谭衡,刘春来,刘照清,等.中国生物农药的开发应用现状及前景[J].湖南农业科学,2006(3):77~78,79
    82.汤爱国,张阳德. O-羧甲基乳糖酰化壳聚糖-聚乳酸阿霉素纳米粒的制备及其物理化学性质的测定[J].中国现代医学杂志,2006,16(12):1786~1788
    83.汤爱国,张阳德. O-羧甲基乳糖酰化壳聚糖-聚乳酸阿霉素纳米粒在大鼠体内的靶向性研究[J].中国现代医学杂志,2006,16(13):1941~1943
    84.童忠良编著.纳米化工产品生产技术[M],北京:化学工业出版社, 2006年8月第1版,239~241
    85.汪宝卿,李召虎,杜凤沛,等.肥料和农药缓释/控释技术研究[J].应用化工,2005,34(9):519~524
    86.王国光,水淼,岳林海.X射线衍射分析非晶二氧化硅结构及其物化性质的研究[J].无机化学学报,2002,18(10):991~996
    87.王娟,张长瑞,冯坚,等.纳米多孔SiO2薄膜的制备与红外光谱研究[J].光谱学与光谱分析,2005,25(7):1045~1048
    88.王丽丽,贾光伟,许湧深.反相微乳液法制备纳米SiO2研究[J],无机化学学报,2005,21(10):1505~1509
    89.王立强,崔福德,高平.壳聚糖及其衍生物在药学研究领域的新进展[J].中国新药杂志,2004,13(3):211~214
    90.王龙虎,吴国良,程翼宇.壳聚糖及其衍生物在中药制药工业中的应用[J].中国中药杂志,2004,29(4):289~292
    91.汪晓飞.藏野驴阿维菌素中毒的抢救[J].青海畜牧兽医杂志, 2000, 4(2):22
    92.王小红,马建标,何炳林.甲壳素、壳聚糖及其衍生物的衍生物的应用[J].功能高分子学报,1999,12(2):197~202
    93.王孝龙,纪全,夏延致,等.溶胶-凝胶法制备纳米SiO2及其表面接枝改性研究[J].纳米加工工艺,2007,4(2):34~36
    94.王莹,刘小平.壳聚糖用于药物载体的制备及表征研究[J].中国药物与临床,2006,6(5):381~384
    95.王玉荣.国内阿维菌素的生产与消费[J].化工科技市场,2005,(6):20~23
    96.王子忱,王莉玮,赵敬哲,等.沉淀法合成高比表面积超细SiO2[J].无机材料学报,1997,12(3):391~396
    97.温淑红,彭海东.浅谈生物农药的发展与应用[J].科技信息,2007,(23):334
    98.伍林,易德莲,曹淑超,等.六甲基二硅胺烷改性纳米二氧化硅[J].武汉科技大学学报,2005,28(1):32~34
    99.毋伟,贾梦秋,陈建峰,等.硅烷偶联剂对溶胶凝胶法纳米二氧化硅复合材料制备及应用的影响[J].复合材料学报,2004,21(2):70~75
    100.吴文君,高希武.生物农药及其应用[M].北京:化学工业出版社,2004(9):1~10,285
    101.吴传万,杜小凤,王伟中,等.阿维菌素光分解及其光稳定剂的筛选[J]. 2006,45(12):828~830,833
    102.吴霞,张一宾.防治畜类寄生线虫的又一阿维菌素类化合物———道拉菌素[J].农药, 2003, 42(5):45-47.
    103.谢海安,戴宏程.超微细二氧化硅的改性研究及应用[J].湖北化工,2001,5:23~25
    104.谢彩婷,辛梅华,李明春. N,N–双十二烷基壳聚糖自组装纳米药用泡囊[J].化工进展,2005,24(4):411~413
    105.解小玲,郭睿劼,贾虎生,等. KH-550改性纳米二氧化硅的研究[J].太原理工大学学报,2008,39(1):26~28
    106.徐汉虹,梁明龙,胡林.阿维菌素类药物的研究进展[J].华中农业大学学报,2005,26(1):1~6
    107.徐丽君,王英满,徐建陶.阿维菌素的研究与应用前景探析[J].现代农业科技,2008,21:166~168
    108.徐巍,邓树海,李艳辉.大蒜素聚氰基丙烯酸正丁酯纳米粒的制备工艺研究[J].中国新药杂志,2006,15(6):448~451
    109.徐咏梅,杜予民.低分子量壳聚糖纳米粒子缓释蛋白质药物性能的研究[J].武汉大学学报(理学版),2003,49(4):470~474
    110.徐玉柱.生物农药的应用现状及产业发展的建议[J].植物保护科学,2008,24(8):402~404
    111.阎建辉,黄可龙,王跃龙,等.环保型烯酰吗啉纳米农药的制备及其性能[J].科学通报,2004,49(23):2416~2421
    112.阎建辉,黄可龙,王跃龙,等.环保型溴虫腈纳米农药制剂的应用[J].化工学报,2006,57(1):91~96
    113.游锡火.阿维菌素类药物的药理作用及毒理作用[J].吉林农业, 2000,(5):35.
    114.张东升等主编.中国种植业大观-农药卷[M],北京:中国农业科技出版社,2001.03
    115.张红菱,李媛媛,李晓波,等. RNA壳聚糖纳米载体的制备及其酶降解保护作用[J].武汉工业学院学报,2005,24(1):13~15
    116.张宁,熊裕华.溶胶-凝胶法制备纳米二氧化硅[J].南昌大学学报(理科版),2003,27(3):267~269
    117.张萍,崔海信,宋娜,等.纳米TiO2半导体溶胶材料防治植物病害的初步研究[J].农业工程学报,2006,22(12):13~16
    118.张嵩.英国生物农药的开发与应用[J].全球科技经济瞭望,2001,(2):63
    119.张彤,徐莲英,蔡贞贞.壳聚糖澄清剂对中药水提液中锌、锰、钙及重金属元素铅的影响[J].中成药,2001,23(4):243
    120.张卫.农药阿维菌素在环境中降解和代谢研究[博士论文].浙江大学,2004
    121.张馨玉,金华利,杨若耶,等.壳聚糖对口蹄疫DNA疫苗黏膜免疫的影响[J].中国农业大学学报,2005,10(5):21~25
    122.张兴,马志卿,李广泽.试谈生物农药的定义和范畴[J].农药科学与管理,2002,23(1):32~36
    123.张娅.壳聚糖及其衍生物在医药领域中的应用[J].云南中医中药杂志,2005,26(1):47~48
    124.张阳德编著,纳米生物材料学[M],北京:化学工业出版社, 2005年6月第1版
    125.张阳德编著,纳米生物技术学[M],北京:科学出版社, 2005年4月第1版
    126.张阳德编著,纳米药物学[M],北京:化学工业出版社, 2006年1月第1版
    127.赵军,刘其凤.壳聚糖及其衍生物的抑菌应用研究进展[J].中国药业,2006,15(13):66~67
    128.赵立明,全哲山,金海善,等.壳聚糖粘均分子质量的测定[J].延边大学医学学报,2005,28(1):36~37 67
    129.郑爱萍,刘海宏,李宏斌,等. 5-氟脲嘧啶壳聚糖微球的制备及体外释放特性[J].中国药科大学学报,2004,35(4):318~323
    130.周春江,李松林,恽友兰,等.农药缓释技术研究及应用[J].作物杂志,2005,(1):32~34
    131.周红军.纳米二氧化硅表面功能化及其表征[J].仲恺农业技术学院学报. 2007,20 (1): 36~41
    132.周学勇,陈守文,喻子牛.医药和农药纳米剂型研究和应用[J].化学与生物工程,2004,(1):4~6
    133.朱昌雄,杨怀文.我国生物农药产业发展的热点问题分析与建议[J].现代化工,2005,25(12):1~5
    134.朱昌雄,白新疆,张木.生物农药的发展现状及前景展望[J].上海环境科学,2002,21(11):654~658
    135.朱昌雄,蒋细良,姬军红,等.我国生物农药的研究进展及对未来发展建议.现代化工,2003,23(7):1~4
    136.朱加虹,郑莲英,陈建国.壳寡糖生物农药质量标准与评价方法探讨[J].浙江农业学报,2008,20(1):24~28
    137.左英,李莉.浅析我国生物农药现状及发展趋势[J].市场现代化,2007年11月(下旬刊):276
    138.朱兆瘴,李骥联,沈寅初.天然杀虫素Avermectins的结构改造产物一伊维菌素(Ivermectin)[J].农药译丛,1995,17(6):21~28
    139. Yezza A, Tyagi R D, Vale`ro J R, et al. Scale-up of biopesticide production processes using wastewater sludge as a raw material[J]. J Ind Microbiol Biotechnol ,2004,(31): 545~552
    140. Agnihotri S A, Aminabhavi T M. Controlled release of clozapine through chitosan microparticles prepared by a novel method. J Control Release, 2004, 96(2):245
    141. Agnihotri S A, Mallikarjuna N N, Aminabhavi T M. Recent advances on chitosan-based micro-and nanoparticles in drug delivery. J Control Release, 2004, 100(1):5
    142. Ayesha Rahman , Dipankar Seth , Sunit K, Mukhopadhyaya. Surface functionalized amorphous Nanosilia and microsilica with nanopores as promising tools in biomedicine. Nature wissenschaften, 2009, 96:31~38
    143. Benz G W, Roncalli R A, Cross S J. Use of ivermectin in cattle,sheep,goats and swine [M]. In Ivermectin and Abamectin.Ed.Campbell, W.C.pp. Spinger-Verlag, New York.1989:215~229
    144. Calvo P, Remunan-Lope C, Vila-Jato J L, et al. Novel hydrophilic chitsan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym sci, 1997,63: 125~132
    145. Calvo P, Remunan-Lope C, Vila-Jato J L, et al. Chitosan and chitosan/ethylene-polyethylene oxide block copolymer nanoparticles as novel carriers for protein and vaccines. Pharm Res, 1997,14: 1431~1436
    146. Campbell W C, Benz G W. Ivermectin: a review of efficacy and safety. Journal of Veterinary Pharmacology and Therapeutics, 1984, 7:1~16
    147. Carrel J E, Eisner T. Canthardin. Potent feeding deterrent to insects. Science, 1994,183:755~757
    148. DAI Zhao, SUN Duo-xian, GUO Yao. Preparation of cetyl-chitosan nanoparticles as carriers for paracetamol. Transactions of Tianjin University,2002,8(1):235~238
    149. DENG Shi-qiang , YE Lin , Friedrich Klaus. Fracture behaviours of epoxy nanocomposites with nano-silica at low and elevated temperatures. J Mater Sci , 2007,( 42):2766~2774
    150. Deng Z, Hu Z, Hopwood D A, et al. A giant genecluster for an antifumgal antibiotic and its potential relevance to rice biotechnology. Rice Genetics, 1996, 3:921~928
    151. Fisher M H, Mrozik H. In Ivermectin and Abamectin. Chemistry[M]. Springer-Verlag, New York,1989,1~23
    152. GU Yong. The unsafety of biopesticide and its solutions. Pesticide Science and Administration,2006,27(2):41~44
    153. JIANG H, ZhANG J M , WANG J P, et al. Genetic engineering of Periplaneta fuliginosa densovirus as an improved biopesticide[J]. Arch Virol , 2007, (152): 383~394
    154. Jameela S R, Jayakrishnan A. Glutaraldehyde cross-linked chitosan microspheres as a long acting biodegradable drug delivery vehicle: studies on the in vitro release of mitoxantrone and in vivo degradation of microspheres in rat muscle[J]. Biomaterials, 1995,16(10):769~775.
    155. CHEN Jing-jing, ZHU Chuan-fang, DENG Hong-tao, et al. Preparation and characterization of the waterborne polyurethane modified with nanosilica. Journal of Polymer Research, 2008
    156. LIU Jing, GAO Yan, WANG Fu-dong, et al. Preparation and characteristic of a new class of silica/polyimide nanocomposites. Journal of Materials Science, 2002, (37) : 3085~3088
    157. John T. Silane coupling agents for enhanced silica performance[J].Rubber World, 1998,9: 38~47
    158. Han J T, Cho K. Nanoparticle-induced enhancement in fracture toughness of highly loaded epoxy composites over a wide temperature range. J Mater Sci, 2006, (41) : 239~245
    159. Katja Jores, Annekathrin Haberland, Siegfried Wartewig, et al. Solid lipid nanoparticles(SLN) and oil-loaded SLN studied by spectrofluorometry and raman spectroscopy. Pharmaceutical Research, 2005, 22(11): 1887~1897
    160. Kenichiro N, Toshiaki S, Satoshi O. Synthesis of 4″-alkoxy avermectin derivatives using rhodium carbenoid-mediated O-H insertion reaction[J]. Tetrahedron Letters. 2004, 45(12):2507~2509
    161. Kevin A. Janes, Marie P. Fresneau, Ana Marazuela, Angels Fabra, María JoséAlonso. Chitosan nanoparticles as delivery systems for doxorubicin. Journal of Controlled Release, 2001,73(2-3): 255~267
    162. Kyung min do, Haldorai yuvaraj, Min hee woo, et al. Synthesis of polystyrene/SiO2 composite microparticles by dispersion polymerization in supercritical fluid. Colloid Polym Sci(2008)286:1343~1348
    163. CHEN Li, SHEN Hai-xia , LU Zhen, et al. Fabrication and characterization of TiO2–SiO2 composite nanoparticles and polyurethane/(TiO2–SiO2) nanocomposite films[J]. Colloid Polym Sci, 2007( 285):1515~1520
    164. Li Z Z, Wen L X, Shao L, et al. Fabrication of porous hollow silica nanoparticles and their 69applications in drug release control. J Controlled Release, 2004, 98: 245~251
    165. Martinac A, Filipovi-Gri J, Voinovich D,et al. Development and bioadhesive properties of chitosan-ethylcellulose microspheres for nasal delivery.Int J Pharm,2005,291:69
    166. Mitra S, Gaur U, Ghosh PC, et al. Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. J Control Release, 2001, 74:317
    167. Mckellar Q A, Benchaoui H A. Avermectins and milbermycins. Journal of Veterinary Pharmacology and Therapeutics, 1996, 19:331~351
    168. Meinke P T, Connor S P, Ostlind D A, et al.New, potent anthelmintic and acaricidal agents: 4″-de-oxy-4″-thio-substituted avermectin derivatives[J]. Bioorganic and Medicinal Chemistry Letters, 1993, 3(12):2675~2680.
    169. Meinke P T, Oconnor S P, Fisher M H, et al. Synthesis of spiroketal-modified avermectin analogs: 23-nor-23-oxa-and 23-nor-23-thia-avermectins[J]. Tetrahedron Letters, 1994, 35(30):5343~5346
    170. Mrozik K H, Eskola A P, Linn B O. Discovery of novel avermectins with unprecedented insecticidal activity[J]. Experientia, 1989, 45(3):315~316
    171. Mrozik K H, Eskola A P, Reynolds G F, et al. Photoisomers of avermectins[J]. Journal of Organic Chemistry, 1988, 53:1820~1823
    172. Nicoll S B, Radin S, Santos E M, et a1. In vitro release kinetics of biologically active transforming growth factor-βfrom a novel porous glass carrier[J]. Biomaterials, 1997, l8(12):853~859
    173. Gundogdu O, Roso M, Stevens G C, et al. Nanoparticle structural organisation and scaffolding in organic media. Granular Matter , 2008, (10):123~132
    174. Ohya Y, Takei T, Kobayashi H, et al. Release behaviour of 5-fluorouracil from chitosan-gel microspheres immobilizing 5-fluorouracil derivative coatedwith polysaccharides and their cell specific recognition [J].J Microencapsul,1993,10(1):1~9
    175. Payne L D. HPLC-fluorescence method for the determination of eprinomectin maker residue in edible bovine tissue[J]. Journal of Agriculture and Food Chemistry, 1997, 45:3501~3505
    176. Sathiyamoorthy P, Shanmugasundaram S. Preparation of cyanobacterial peptide toxin as a biopesticide against cotton pests[J]. Appl Microbiol Biotechnol , 1996, (46): 511~513
    177. Milner R J. Prospects for biopesticides for aphid control[J]. Entomophaga, 42 (1/2), 1997, 227~239
    178. Ahmad S, Ahmad S, Agnihotry S A. Synthesis and characterization of in situ prepared poly (methyl methacrylate) nanocomposites. Bull Mater Sci, 2007, 30, (1): 31~35
    179. Shiomi,Tsunoda L,Kawai A,et a1.Synthesis of Protein—Silica Hybrid Hollow Particles through the Combination of Protein Catalysts and Sonochemical Treatment[J]. Chem. Commun, 2005, 5(42):5325~5327
    180. Shoop W L, Haines H W, Michael B F. Mutual resistance between avermectins and milbermycins: oral activity of ivermectin and moxidectin against ivermectin-resistance and susceptible nematodes. The Veterinary Record, 1993, 133:445~447
    181. Shoop W L, Egerton J R, Eary H W, et al. Eprinomecin:a novel avermectin for use as a topicalendectocide for cattle[J]. International Journal for Parasitology, 1996, 26(11):1237~1242
    182. Spange S. Silica surface modification by cationic polymerization and carbonium intermediates[J]. Progress in polymer Science,2000, 25:781~894
    183. Tanima B, Suamita M, Singh K,et al. Preparation,characterization and biodistribtion of ultrafine chitosan nanoparticles[J].Int J Pharm,2002,243(1-2):93.
    184. Teofil J, Andrzej K. Influence of silicon coupling agents on surface properties of precipitated silica[J]. Applied surface Science,2001,172:18~32
    185. Barik T K, Sahu B, Swain V. Nanosilica—from medicine to pest control. Parasitol Res, 2008, (103):253~258
    186. Uskokovic V, Matijevic E. Uniform particles of pureand silica-coated cholesterol. J.Colloid Interface Sci, 2007,315(2):500~511
    187. Vincent P G, August J K. The microbial formation of the 23-keto derivative from avermectin B2a in soil[J]. Pesticide Science, 1983, 14:153~157
    188. WU Xiao-yong, ZENG Qing-xiao, MO Shao-fang, et al. Antibacterial activities of chitosans with different degress of deacetylation and molecular masses. Journal of South China University of Technology(Natural Science Edition), 2006,34(3):58~62
    189. Zhu W, Bartos P J M, Porro A. Application of nanotechnology in construction. Materials and Structures/Matéríaux et Constructions, 2004, 37: 649~658
    190. Xu Y M, Du Y M. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles[J]. International Journal of Pharmaceutics, 2003,250(1):215~226
    191. CHEN Yong-Chun, ZHOU Shu-Xue, YANG Hai-Hua, et al. Interaction and Microstructure of Polyurethane/Silica Hybrid Films Prepared by Sol-Gel Process. Journal of Sol-Gel Science and Technology , 2006, (37): 39~47
    192. Pivinskii Yu E. Nanodisperse silica and some aspects of nanotechnologies in the field of silicate materials scicence. PartⅠ. Refractories and Industrial Ceramics, 2007,48(6): 408~417
    193. Pivinskii Yu E. Nanodisperse silica and some aspects of nanotechnologies in the field of silicate materials scicence. PartⅡ. Refractories and Industrial Ceramics, 2007,48(6):435~443

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700