胶州湾生态系统动态变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以我国典型海湾胶州湾为研究对象,系统分析了胶州湾生态系统气象水文要素、海水化学要素和生物要素的长期变化规律,主要结论如下:
     1、百年来胶州湾地区气温的变化呈现波动上升趋势。升温最显著的季节为冬季,夏季温度变化的幅度极小。年平均气温的变化与太平洋年代际震荡指数(PDO)的相关性显著。胶州湾海水温度的变化趋势与气温一致,尤其是冬季。胶州湾海水盐度从1981年以来呈现下降趋势,以夏季尤为显著,表层盐度年平均变率为-0.064/年,8月份盐度的变率为-0.131/年。这一现象与渤海及北黄海近岸盐度的升高趋势相反。
     2、近几十年来胶州湾各项营养盐浓度都呈现增加趋势,但不同种类营养盐浓度变化的时期并不相同。氨氮浓度从20世纪80年代起逐渐升高,到2001年达到顶峰,随后几年氨氮含量开始呈现下降趋势。亚硝酸盐和硝酸盐含量从20世纪90年代之后上升趋势比较明显,尤其是2000年之后,升高幅度极为显著。磷酸盐和硅酸盐浓度的变化主要体现在90年代后期。尽管与90年代相比,胶州湾营养盐结构失衡的状态有所缓解,但胶州湾营养盐控制的重点仍然是降低总溶解无机氮的增加幅度,同时需要高度关注化肥使用量增加所可能引起的硝酸盐及磷酸盐浓度显著升高的问题。
     3、近20年来胶州湾叶绿素a的空间分布格局没有发生大的变化,基本上保持湾东北部和西北部较高,逐渐向湾中部、南部、湾口及湾外递减的分布规律。叶绿素a的季节规律发生了很大的变化。冬季和夏季叶绿素a浓度升高,春季和秋季叶绿素a浓度下降。胶州湾叶绿素a浓度的长期变化呈现一种波动的变化规律,波动范围为1-4.76mg·m-3。胶州湾叶绿素与初级生产力的长期变化特征主要受营养盐浓度升高和养殖贝类滤食压力的综合影响。
     4、胶州湾浮游植物粒级组成的总体情况为表层以小型和微型浮游植物为主;底层以微型浮游植物占绝对优势。胶州湾浮游植物的粒级组成有明显的季节变化规律,表层水体中冬季和秋季以小型浮游植物为主,春季和夏季以微型浮游植物为主。底层浮游植物分级叶绿素组成比例没有明显的季节变化,以微型浮游植物占绝对优势。近20年来,胶州湾小型浮游植物所占比例呈现逐渐升高的现象,并没有出现浮游植物小型化的趋势。
     5、自1981年以来,胶州湾浮游植物总量呈现增加的趋势,尤其是2000年以后浮游植物数量增加显著,以冬季最为明显。浮游植物总量的空间分布格局没有发生大的变化。胶州湾的浮游植物优势种类发生变化,近50余年来一致居优势地位浮游植物种类的有中肋骨条藻、旋链角毛藻、星脐圆筛藻、柔弱角毛藻、尖刺拟菱形藻、浮动弯角藻等,而90年代之前占据优势地位的斯氏几内亚藻、印度翼根管藻、中华半管藻等种类在2000年之后不再占有优势种地位,近5年来新的优势种类包括洛氏角毛藻、密联角毛藻、波状石鼓藻、叉角藻与梭角藻等。胶州湾浮游植物群落结构的改变与冬春季水温升高、总溶解无机氮浓度的显著升高以及不同营养盐之间比例的变化有关。
     6、胶州湾浮游动物生物量呈现明显的上升趋势。2001-2008年的平均生物量达到0.361g/m3,为90年代的3.54倍。浮游动物的丰度在2000年之前表现为上升趋势,2001年之后呈现波动状态,与浮游动物种类组成的变化有关。浮游动物的季节变化规律明显,已由20世纪90年代夏季生物量和丰度最高的季节变化特征转变为2000年之后春季生物量和丰度最高,夏季次之的季节变化特征。春季胶州湾浮游动物的生物量和丰度升高幅度显著。胶州湾浮游动物主要类群的长期变化结果表明,水母类和被囊类浮游动物丰度增加,尤其是水母的种类和丰度,近20呈现明显的增加趋势。桡足类和毛颚类浮游动物变化趋势不明显,呈现波动状态。
The paper is focused on Jiaozhou Bay, one of our country typical gulfs. Based onthe long-term field observation and history data, the long-range changes of JiaozhouBay ecosystem were studied. The main result is as follows:
     The air temperature in the area of Jiaozhou Bay showed a trend of increasingwith fluctuation during the past100years. The increase in temperature was the mostsignificant in the winter and least in the summer. It was also found that there weresignificant correlation relationship between the variation of annual mean temperatureand PDO (Pacific Decadal Oscillation) index. The changing trend of the watertemperature was in consistent with the air temperature, especially in winter. Thesalinity showed a trend of decreasing since1981, especially in the summer. Thevariation rate of the surface salinity was-0.064/yr for the annual mean, and-0.131/yrin August. The changing trend of salinity was contrary to the adjacent sea area, suchas the Bohai Sea and some area of the Yellow Sea.
     2. Results indicated that the concentrations of all of the five kind of nutrientsshowed a trend of increasing during the last several decades. The concentration ofammonium increased gradually from1980s, reaching a peak in2001and decreasedsince then. The increasing trend of the concentration of nitrite and nitrate wassignificant from1990s, especially after2000. The concentration of phosphate andsilicate was increased mainly after1998. Although the imbalance state of the nutrientwas alleviated comparing to the1990s, it is still necessary to control the increase ofDIN. It is also important to pay attention to the dramatic increase of nitrate andphosphate concentration due to the excessive use of the fertilizer.
     3. Results indicated that there was no significant change on the spatialdistribution pattern of chlorophyll a concentration during the last20years. Theconcentration of Chl a showed a decreasing trend from the north-eastern andnorth-western part to the center area, the southern part, the mouth and the outer areaof the bay. The change on the seasonal characteristics of Chl a concentration wasevident. The Chl a concentration increased in the winter and summer, but decreased inthe spring and autumn. In the long term frame, the Chl a concentration was fluctuated,ranging from1to4.76mg m-3. The long term changes of the Chl a concentration andprimary productivity were affected by the increase of nutrient concentration and thefiltering pressure of maricultured shellfish in Jiaozhou Bay.
     4. Results indicated that the micro-and nano-phytoplankton was the maincomposition of the phytoplankton in the surface water in Jiaozhou Bay. Thenano-phytoplankton was dominant in the bottom layer, and the percentage was higherthan90%. The seasonal change of the size composition in the surface water wassignificant, with the micro-phytoplankton dominating in the winter and autumn andthe nano-phytoplankton dominating in the spring and summer. No apparent seasonalchange was observed on the size composition in the bottom layer, and thenano-phytoplankton was the dominant component at all seasons. During the past20years, the percentage of micro-plankton increased gradually, which was thought to beaffected by the long term change of nutrient concentration and structure.
     5.The total abundance of phytoplankton was increasing in the Jiaozhou Bay since1981, and the increase was evident since2000, especially in the winter. No clearchanges presented in the distributional pattern of total abandance of phytoplankton.As for dominant phytoplankton species, they changed in recent years, e.g. thedominant specis included all along Skeletonema costatum, Chaetoceros Curvisetus,Coscinodiscus asteromphalus, Chaetoceros debilis, Pseudonitzschia pungens,Eucampia zoodiacus et al. in the recent fifty years, while some pytoplankton specieswhich was ever dominated before1990’s, including Guinardia striata, Rhizosoleniaalata f. Indica, Hemiaulus sinensis et al., was not dominant any more since2000.Furtermore, the new dominant species (e.g. Chaetoceros lorenzianus, Chaetoceros densus, Lithodesmium undulatus, Ceratium furca, Ceratium fusus et al.) wereappeared in the recent five years. The variation of community structure ofphytoplankton in Jiaozhou Bay was related to the increase of temperature, the clearlyincreasing concentration of total inorganic nitrogen and changes of proportion ofnutrient composition in the winter and spring.
     6.The biomass of zooplankton was pronouncedly increasing in recent years in theJiaozhou Bay. The average biomass was up to0.361g/m3from2001to2008, equaledto3.54times biomass of them in1990’s. The abundance of zooplankton wasincreasing before2000, then it was fluctuant after2000, which was related tovariation of zooplankton species compostion. The seasonal variation pattern ofbiomass and abundance of zooplankton indicated that they were highest in summer in1990’s while they were highest in spring, secondly in summer since2000. Results ofstudies about the long changes of key functional groups of zooplankton showed thatthe abundance of medusae and salps was increasing, especially the medusae in therecent20years. The variation of abundance of copepods and chaetognaths presentedfluctuant on this condition.
引文
二、结果与讨论
    人口的增加会带来一系列的资源与环境问题。自1949年以来,青岛市的人
    口数量呈现稳步增长的势头。据统计,到2007年青岛市人口数量已接近760万,
    与1949年相比,几乎翻了一番(图2-1)。与此同时,经济发展迅速,城市化建
    设的进程加快。2007年工业总产值达到0.74万亿元(图2-2),城市建设面积达
    到250平方公里(图2-3),分别为1949年的3439倍和9倍,为1980年的110
    倍和3.5倍。根据余静对青岛市近海海域水环境污染状况与经济增长的关系的研
    究结果,青岛市的污水排放总量与人均GDP之间呈现倒U型的关系,在
    2003-2004年出现倒U型拐点。孙磊(2008)认为经济发展在2004年之前是造
    成胶州湾海岸带环境污染的正压力因素,而2004年之后是减缓胶州湾环境污染
    的负压力因素。8000000700000060000005000000人)4000000人(口300000020000001000000
    [1] Agawin N S R, Duarte C M, Agust′S,2000. Nutrient and temperature control ofthe contribution of picoplankton to phytoplankton biomass and production.Limnology and Oceanography,45:591-600.
    [2] Alonso-Rodriguez, R., Pae′z-Osuna, F., Corte′s-Altamirano, R.,2000. Trophicconditions and stoichiometric nutrient balance in subtropical waters influenced bymunicipal sewage effluents in Mazatlan Bay (SE Gulf of California). MarinePollution Bulletin40,331–339.
    [3] Baek S H, Shimode S, Han M S, Kikuchi T,2008, Growth of dinoflagellate,Ceratium furca and Ceratium fusus in Sagami Bay, Japan: The role of nutrients,Harmfual Algae,7:729-739.
    [4] Banse K,1982. Cell volumes, maximum growth rates of unicellular algae andciliates, the role of ciliates in the marine pelagial. Limnology and Oceanography,27:1059-1071.
    [5] Bathmann U, Bundy M H, Clarke M E et al.,2001, Future marine zooplanktonresearch-a perspective, Marine Ecology Progress Series,222:297-308.
    [6] Beaugrand G, Brander K M, Lindley J A et al.,2003, Plankton effect on codrecruitment in the North Sea, Nature,426(6967):661-664.
    [7] Beaugrand G, Reid P C, Eba ez F et al.,2002, Reorganization of north Atlanticmarine copepod biodiversity and climate, Science,296:1692-1994.
    [8] Burkholder, J. M., and Glasgow, H. B., Jr.(1997). Pfiesteria piscicida and otherPfiesteria-like dino8agellates: Behavior, impacts, and environmental controls.Limnol. Oceanogr.42,1052–1075.
    [9] Bury S J, Boyd P W, Preston T, Savidge G, Owens N J P,2001. Size-fractionatedprimary production and nitrogen uptake during a North Atlantic phytoplanktonbloom: implications for carbon export estimates. Deep-Sea Res. Part I48:689–720.
    [10] Caddy JF (1993) Toward a comparative evaluation of human impacts on fisheryecosystems of enclosed and semienclosed seas. Rev Fish Sci1:57–95.
    [11] Caddy JF (2000) Marine catchment basin versus impacts of fisheries onsemi-encloses seas. ICES J Mar Sci57:628–640.
    [12] Cadee G C,Hegeman J,1974. Primary production of phytoplankton in theDutch wadden sea. Netherlands. J Sea Res,8(2):240-259.
    [13] Chase, M. et al.,2001. Gulfwatch: Monitoring spatial and temporal trends oftrace metal and organic contaminants in the Gulf of Maine (1991–1997) with theblue mussel Mytilus edulis L. Mar. Pollut. Bull.42(6),491–505.
    [14] Chisholm S W,1992. Phytoplankton size. In: Falkowski, P.G.,Woodhead, A.D.(Eds.), Primary Productivity and Biogeochemical Cycles in the Sea. Plenum,New York, pp.213-237.
    [15] Clair, T.A. et al.,2002. Changes in freshwater acidification trends in Canada’sAtlantic provinces:1983–1997. Water, Air Soil Pollut.135,335–354.
    [16] Coen LD, Luckenbach MW, Breitburg DL (1999) The role of oyster reefs asessential fish habitat: A review of current knowledge and some new perspectives.Am Fish Soc Symp22:438–454.
    [17] Corte′s-Altamirano, R., Lav′n, M.F., Sierra-Beltra′n, A., Corte′s-Lara, M.C.,2006. An hypothesis about transport of invader microalgae from western tropicalPacific to the Gulf of California by marine currents. Ciencias del Mar UAS18,19–26.
    [18] D’Elia CF, Boynton WR, Sanders JG (2003) A watershed perspective onnutrient enrichment, science and policy in the Patuxent River, Maryland:1960–2000. Estuaries26:171–185.
    [19] Danielsson A, Papush L, Rahm L,2008. Alterations in nutrientlimitations─scenarios of a changing Baltic Sea. Journal of Marine Systems,73:263-283.
    [20] Dickman, M., Zhang, F.,1999. Mid-ocean exchange of container vessel ballastwater2: Effects of vessel type in the transport of diatoms and dinoflagellatesfrom Manzanillo, Mexico, to Hong Kong, China. Marine Ecology Progress Series176,253–262.
    [21] Donald K M, Joint I, Rees A P, Woodward E M S, Savidge G,2001. Uptake ofcarbon, nitrogen and phosphorus by phytoplankton along the203W meridian inthe NE Atlantic between57.53N and373N. Deep-Sea Res. Part II48,873–897.
    [22] Edwards M G, Beaugrand P C, Reid A A et al., Ocean climate anomalies and theecology of the North Sea, Mar. Eco. Prog. Ser.,2002,239:1-10.
    [23] Edwards M, Reid P C, Planque B.2001. Long term and regional variability ofphytoplankton biomass in the northeast Atlantic (1960-1995), ICES J. Mar. Sci.,2001,58:39-49.
    [24] Egge J K,1998. Are diatoms poor competitors at low phosphate concentrations?J. Mar. Sys.16:191–198.
    [25] Egge J K, Aksnes D L,1992. Silicate as regulating nutrient in phytoplanktoncompetition. Mar. Ecol. Prog. Ser.83:281–289.
    [26] Furnas M L,1983. Nitrogen dynamics in the lower Narragansett Bay, RhodeIsland. I—uptake by size-fractionated phytoplankton populations. Journal ofPlankton Research,5:657–676.
    [27] Glasgow, H. G., Burkholder, J. M., Schmechel, D. E., Tester, P. A., and Rublee, P.A.(1995). Insidious effects of a toxic estuarine dinoflagellate on fish survival andhuman health. J. Toxicol. Environ. Health46,501-522.
    [28] Goldman J C,1988. Spatial and temporal discontinuities of biological processesin pelagic surface waters. In: Rothschild, B.J.(Ed.), Toward a Theory onBiological–Physical Interactions in the World Ocean. Kluwer AcademicPublishers, Dordrecht, pp.273–296.
    [29] Gordon, D.C., Griffiths, L.D., Hurley, G.V., Muecke, A.L., Muschenheim, D.K.,Wells, P.G.(Eds.),2000. Understanding the environmental effects of offshorehydrocarbon development. Can.Tech. Rep. Fish. Aquat. Sci.2311,82p., plusappendices.
    [30] Hagy JD, Boynton WR, Wood CW, Wood KV (2004) Hypoxia in ChesapeakeBay,1950–2001: long-term changes in relation to nutrient loading and river flow.Estuaries27:634–658.
    [31] Harding Jr L W, Perry E S,1997. Long-term increase of phytoplankton biomassin Chesapeake Bay,1950-1994. Mar Ecol Prog Ser,157:39-52.
    [32] Hargraves, P.E., Viquez, R.,1981. The dinoflagellate red tide in the Gulf ofNicoya, Costa Rica. Revista de Biologia Tropical29,31–38.
    [33] Horton T, Eichbaum W (1991) Turning the tide: saving the Chesapeake Bay.Chesapeake Bay Foundation, Island Press, New York.
    [34] Huang C H, Lin H J, Huang T C et al.,2008. Responses of phytoplankton andperiphyton to system-scale removal of oyster-culture racks from a eutrophictropical lagoon. Mar Ecol Prog Ser,358:1-12.
    [35] Ivona M, Zivana N, Grozdan K,2005. Long-term changes of basic biologicaland chemical parameters at two stations in the middle Adriatic. Journal of SeaResearch,54:3-14.
    [36] Jeffrey S W, Humphrey G F,1975. New spectrophotometric equations fordetermining chlorophylls a, b, c1and c2in high plants, algae and naturalphytoplankton. Biochem Physiol Pflanzen,167:191-194.
    [37] Jiao Nianzhi, Gao Yahui,1995. Ecological studies on nanoplanktonic diatoms inJiaozhou Bay, China.胶州湾生态学研究,董金海、焦念志主编,科学出版社,96-102。
    [38] Jickells T D,1998. Nutrient biogeochemistry of the coastal zone. Science,281:217-222.
    [39] Johannessen T, Dahl E (1996) Declines in oxygen concentration along theNorwegian Skagerrak coast,1927–1993: a signal of ecosystem changes due toeutrophication? Limnol Oceanogr41:766–778..
    [40] Jones, S.H. et al.,2001. Monitoring for toxic contaminants in Mytilus edulisfrom New Hampshire and the Gulf of Maine. J. Shellfish Res.20(3),1203–1214.
    [41] Jones, S.H., Wells, P.G.(Eds),2002. Gulf of Maine Environmental QualityMonitoring Workshop, April3–May1,2001. Summary Report. Gulf of MaineCouncil on the Marine Environment, Durham NH and Dartmouth, NS, Nov.2002,37p.
    [42] Jupp BP, Spence DHN (1977) Limitations on macrophytes in a eutrophic lake,Loch Leven. I. Effects of phytoplankton. J Ecol65:175–186.
    [43] Kemp WM, Boynton WR, Stevenson JC, Twilley RR, Means JC (1983) Thedecline of submerged vascular plants in upper Chesapeake Bay: summary ofresults concerning possible causes. Mar Technol Soc J17:78–89.
    [44] Ki rboe T,1993. Turbulence, phytoplankton cell size and the structure ofpelagic food webs. Advances in Marine Biology,29:1-72.
    [45] Kirby MX, Miller HM (2005) Response of a benthic suspension feeder(Crassostrea virginica Gmelin) to three centuries of anthropogenic eutrophicationin Chesapeake Bay. Estuar Coast Shelf Sci62:679–689.
    [46] Legendre L, Rassoulzadegan F,1996. Food-web mediated export of biogeniccarbon in oceans: environmental control. Marine Ecology Progress Series,145:179-193.
    [47] Legendre, L.,1990. The significant of microalgal blooms for fisheries and forthe export of particulate organic carbon in oceans. Journal of Plankton Research12,681–699.
    [48] Lewitus, A. J., Hesian, R. V., Kana, T. M., Burkholder, J. M.,Glasgow, H. B.,and May, E.(1995). Discovery of the ‘phantom’ dinoflagellate in the ChesapeakeBay. Estuaries18,373–378.
    [49] Li J, Glibert P M, Zhou M J et al.,2009, Relationship between nitrogen andphosphorus forms and ratios and the development of dinoflagellate blooms in theEast China Sea, Marine Ecology Progress Series,383:11-26.
    [50] Li X G, Song J M, Yuan H M.2006. Inorganic carbon of sediments in theYangtze River Estuary and Jiaozhou Bay. Biogeochemistry,77:177-197.
    [51] Lin C L, Ning X R, Su J L et al.,2005. Environmental changes and theresponses of the ecosystems of the Yellow Sea during1976–2000. Journal ofMarine Systems,55:223-234.
    [52] Lin C L, Su J L, Xu B R, Tang Q S,2001. Long-term variations of temperatureand salinity of the Bohai Sea and their influence on its ecosystem. Progress inOceanography,49:7-19.
    [53] Lin C, Ning X R, Su J L et al.,2005, Environmental changes and the responsesof the ecosystem of the Yellow Sea during1976-2000. Journal of Marine Systems,55:223-234.
    [54] Liu S M, Zhang J, Chen H T, Zhang G S,2005. Factors influencing nutrientdynamics in the eutrophic Jiaozhou Bay, North China. Progress in Oceanography,66:66-85.
    [55] Logan B E, Alldredge A L,1989, Potential for increased nutrient uptake byflocculating diatoms, Marine Biology,101:443-450.
    [56] Lohrenzl S E, Fahnenstiel G L et al.,1997. Variations in primary production ofnorthern Gulf of Mexico continental shelf waters linked to nutrient inputs fromthe Mississippi River. Marine Ecology Progress Series,155:45-54.
    [57] Malone T C,1971. The relative importance of nanoplankton and net plankton asprimary producers in the California Current system. Fisheries Bulletin,68:799-820.
    [58] Malone T C,1980. Size-fractionated primary productivity of marinephytoplankton. In: Falkowski, P.G.(Ed.), Primary productivity in the sea. PlenumPress, New York, pp.301-319.
    [59] Masó M, Garcés E,2007. Harmful microalgae blooms (HAB); problematic andconditions that induce them. Mar. Pollut. Bull.53:620-630.
    [60] Musick, J.A., Harbin, M.M., Berkeley, A., Burgess, G.H., Eklund, A.M., Findley,L.T., Gilmore, R.G., Golden, J.T., Ha, D.S., Huntsman, G.R., McGovern, J.C.,Parker, S.J., Poss, S.G., Sala, E., Schmidt, T.W., Sedberry, G.R., Weeks, H.,Wright, S.G.,2000.Marine, estuarine and diadromous fish stocks at risk ofextinction in North America (exclusive of Pacific salmonids). Fisheries25,6-30.
    [61] Nixon SW, Oviatt CA, Frithsen J, Sullivan B (1986) Nutrients and theproductivity of estuarine and coastal and marine ecosystems. J Limnol Soc SouthAfr12:43-71.
    [62] Nixon SW, Pilson MG (1983) Nitrogen in estuarine and coastal marineecosystems. In: Carpenter EJ, Capone DG(eds) Nitrogen in the marineenvironment. Academic Press, New York, p565-648.
    [63] Null J,2002. El Ni o has a weather-making partner: Pacific Decadal Oscillation.In: San Jose Mercury News (17January2002).
    [64] Orth RJ, Moore KA (1983) Chesapeake Bay: an unprecedented decline insubmerged aquatic vegetation. Science222:51–53.
    [65] Oviatt C, Keller A and Reed L,2002. Annual Primary Production inNarragansett Bay with no Bay-Wide Winter–Spring Phytoplankton Bloom.Estuarine, Coastal and Shelf Science,54:1013–1026.
    [66] Parker, R.H.,1964. Zoogeography and ecology of some macro-invertebratesparticularly mollusks, in the Gulf of California and the Continental slope offMexico. Videnskabelige Meddelelser fra Dansk Naturhistorik Forening126,1–178.
    [67] Pedro C, Emilio M, Valesca P et al.,2006. Phytoplankton size structure andprimary production in a highly dynamic coastal ecosystem (R′a de Vigo,NW-Spain): Seasonal and short-time scale variability. Estuarine, Coastal andShelf Science,67:251-266.
    [68] Phillips GL, Eminson D, Moss B (1978) A mechanism to account formacrophyte decline in progressively eutrophicated freshwaters. Aquat Bot4:103–126.
    [69] Purcell J. E.2005. Climate effects on formation of jellyfish and ctenophoreblooms: a review. J. Mar. Biol. Assoc. UK,85:461–476.
    [70] Purcell J.E., Uye S., Lo W.2007. Anthropogenic causes of jellyfish blooms andtheir direct consequences for humans: a review. Mar. Ecol. Prog. Ser.350,153–174.
    [71] Rabalais, N.N., Turner, R.E., Scavia, D.,2002. Beyond science into policy: Gulfof Mexico hypoxia and the Mississippi River. Bio-Science52,129–147.
    [72] Ragueneau O, Chauvaud L, Leynaert A et al.,2002. Direct evidence of abiologically active coastal silicate pump: Ecological implications. Limnol.Oceanogr.,47(6):1849–1854.
    [73] Richardson A. J., Bakun A., Hays G. C. H. and Gibbons M. J.2009. Thejellyfish joyride: causes, consequences and management responses to a moregelatinous future. Trends in Ecology and Evolution,24(6):312-322.
    [74] Riegman R, Kuipers B R, Noordeloos A A M, White H J,1993. Size differentialcontrol of phytoplankton and the structure of plankton communities. NetherlandsJournal of Sea Research,31:255-265.
    [75] Roberts E C, Davidson K, Gilpin L C,2003. Response of temperatemicroplankton communities to N:Si ratio perturbation. J. Plankton Res.25:1485–1495.
    [76] Rosenberg R (1990) Negative oxygen trends in Swedish coastal bottom waters.Mar Pollut Bull21:335–339.
    [77] Rothschild BJ, Ault JS, Goulletquer P, Heral M (1994) Decline of theChesapeake Bay oyster population: a century of habitat destruction andoverfishing. Mar Ecol Prog Ser111:29–39.
    [78] Rydberg L, rtebjerg G, Edler L,2006. Fifty years of primary productionmeasurements in the Baltic entrance region, trends and variability in relation toland-based input of nutrients. Journal of Sea Research,56:1-16.
    [79] Sierra-Beltra′n, A., Palafox-Uribe, M., Grajales-Montiel, J., Cruz-Villacorta, A.,Ochoa, J.L.,1997. Sea bird mortality at Cabo San Lucas: evidence that domoicacid is spreading. Toxicon35,447–454.
    [80] Sierra-Beltran, A.P., Cruz, A., Nun ez, E., Del Villar, L.M., Cerecero, J., Ochoa,J.L.,1998. An overview of the marine food poisoning in Mexico. Toxicon36,1493–1502.
    [81] Smayda T J,1990. Novel and nuisance phytoplankton blooms in the sea:evidence for a global epidemic. In: Graneli, E., Sundstro¨m, B., Edler, B.,Anderson, D.M.(Eds.), Toxic marine phytoplankton. Elsevier, New York, pp.29–40.
    [82] Smayda T J, Reynolds C S,2003, Strategies of marine dinoflagellate survivaland some rules of assembly, Journal of Sea Research,49:95-106.
    [83] Smith GF, Roach EB, Bruce DG (2003b) The location, composition, and originof oyster bars in mesohaline Chesapeake Bay. Estuar Coast Shelf Sci56:391–409.
    [84] Stolte W, McCollin T, Noordeloos A A M, Riegman R,1994. Effect of nitrogensource on the size distribution within marine phytoplankton populations. J. Exp.Mar. Biol. Ecol.184:83–97.
    [85] Sun S., Huo Y., Yang B.,2010, Zooplankton functional groups on thecontinental shelf of the yellow sea, Deep Sea Research II, in press.
    [86] Townsend D W, Thomas M,2002. Springtime nutrient and phytoplanktondynamics on Georges Bank. Mar. Ecol. Prog. Ser.228:57–74.
    [87] Tremblay J E, Legendre L, Klein B, Therriault J C,2000. Size-differentialuptake of nitrogen and carbon in a marginal sea (Gulf of St Laurence, Canada).Significiance of diel periodicity and urea uptake. Deep Sea Research II47:489–518.
    [88] Twilley RR, Kemp WM, Staver KW, Stevenson J, Boynton WR (1985) Nutrientenrichment of estuarine submersed vascular plant communities. I. Algal growthand effects on production of plants and associated communities. Mar Ecol ProgSer23:179–191.
    [89] Yu J, Tang D L, Wang S F et al.2007. Changes of Water Temperature andHarmful Algal Bloom in the Daya Bay in the Northern South China Sea. MarineScience Bulletin,9(2):25-33.
    [90] Zhou M J, Shen Z L, Yu R C,2008, Response of a coastal phytoplanktoncommunity to increased nutrient input from the Changjiang (Yangtze) River,Continental Shelf Research,28:1483-1489.
    [91]毕言峰,2006,中国东部沿海的大气营养盐干、湿沉降及其对海洋初级生产力的影响,中国海洋大学,硕士学位论文。
    [92]陈怀清,钱树本,1992.青岛近海微型、超微型浮游藻类的研究.海洋学报,14(3):105-113
    [93]池继松,颜文,张干,郭玲利,刘国卿,刘向,邹世春,2005,大亚湾海域多环芳烃和有机氯农药的高分辨率沉积记录,热带海洋学报,24(6):44-52.
    [94]董俊德,张燕英,王友绍等.2006.南海三亚湾及邻近海域海洋蓝藻类群组成、分布及演替特征.热带海洋学报,25(3):40-46.
    [95]方国洪,王凯,郭丰义等,2002.近30年渤海水文和气象状况的长期变化及其相互关系.海洋与湖沼,33(5):515-523.
    [96]郭伟其,沙伟,沈红梅等,2005.东海沿岸海水表层温度的变化特征及变化趋势.海洋学报,27(5):1-8.
    [97]郭卫东,章小明,杨逸萍,胡明辉,1998.中国近岸海域潜在性富营养化程度的评价.台湾海峡,17(1):64-70.
    [98]郭玉洁,杨则禹,1992.初级生产力.胶州湾生态学和生物资源,刘瑞玉主编,pp.110.
    [99]郭玉洁,杨泽禹,1992,浮游生物,胶州湾的生态学和生物资源,刘瑞玉主编,1992.
    [100]洪泽爱,贾泓,中国沿海湿地开发利用、管理与保护,海洋通报,1998,15(1):78-83.
    [101]黄世玫,1983,胶州湾的浮游动物,山东海洋学院学报,13(2):44-59.
    [102]黄先香,施能等,2004.1948-2001年全球大尺度区域6-8月降水的长期变化.地球科学进展,19(5):824-830.
    [103]霍元子,2008,黄海浮游动物功能群的研究,中国科学院海洋研究所,中国科学院研究生院,博士学位论文。
    [104]蒋凤华,王修林,石晓勇等,2002.硅在胶州湾沉积物─海水界面上的交换速率和通量研究.青岛海洋大学学报,32(6):1012-1018.
    [105]李超伦,张芳,申欣等,2005.胶州湾叶绿素的浓度、分布特征及其周年变化.海洋与湖沼,36(6):499-506.
    [106]李冠国,黄世玫,1956,青岛近海浮游硅藻季节变化研究的初步报告,山东大学学报,2(4):119-143.
    [107]李克让,林贤超,1990.近四十年来我国气温的长期变化趋势.地理研究,9(4):26-37.
    [108]李新正,王洪法,张宝琳.2005.胶州湾大型底栖动物次级生产力初探.海洋与湖沼,36(6):527-533.
    [109]李学刚,宋金明,李宁等.2005.胶州湾沉积物中氮与磷的来源及其生物地球化学特征,海洋与湖沼,36(6):562-571.
    [110]李学刚,宋金明,袁华茂等.2005.胶州湾沉积物中高生源硅含量的发现—胶州湾浮游植物生长硅限制的证据,海洋与湖沼,36(6):572-579.
    [111]李云,李道季,唐静亮等,2007,长江口及毗邻海域浮游植物的分布与变化,环境科学,28(4):719-729.
    [112]刘东艳,2004,胶州湾浮游植物和沉积物中硅藻群落结构演替的研究,中国海洋大学博士学位论文。
    [113]刘晋秀,江崇波,范学炜,2002.黄河三角洲近40年来气候变化趋势及异常特征,19(2):31-35.
    [114]刘瑞玉,崔玉珩,徐凤山.1993.胶州湾对虾标志放流回捕率分析.海洋科学,1993,6:39-42.
    [115]刘瑞玉主编,1992,胶州湾生态学和生物资源,北京:科学出版社。
    [116]刘胜,黄晖,黄良民,练健生,龙爱民,李涛.2006.大亚湾核电站对海湾浮游植物群落的生态效应.海洋环境科学,25(2):9-13.
    [117]宁修仁,1997.海洋微型和微微型浮游生物.东海海洋,15(3):60-64.
    [118]潘胜军,沈志良,2009.胶州湾叶绿素a浓度及浮游植物的粒级组成.应用生态学报,20(10):2468-2474.
    [119]钱树本,王筱庆,陈国蔚,1983,胶州湾的浮游藻类,山东海洋学院学报,13(1):39-56.
    [120]丘耀文,颜文,王肇鼎,张干,2005,大亚湾海水、沉积物和生物体中重金属分布及其生态危害,热带海洋学报,24(5):69-76.
    [121]任一平,徐斌铎,郭永禄,杨鸣,2006,胶州湾移植底播菲律宾蛤仔的生长和死亡特性,中国水产科学,13(4):642-649.
    [122]孙磊,2008,胶州湾海岸带生态系统健康评价与预测研究,中国海洋大学,博士学位论文。
    [123]孙松,刘桂梅,张永山,2002.90年代胶州湾浮游植物种类组成和数量分布特征.海洋与湖沼,浮游动物研究专辑,37-44.
    [124]孙松,张永山,吴玉霖等,2005.胶州湾初级生产力周年变化.海洋与湖沼,36(6):481-486.
    [125]孙松,张永山,吴玉霖等.2005.胶州湾初级生产力周年变化.海洋与湖沼,36(6):481-486.
    [126]孙松,周克,杨波等,2008,胶州湾浮游动物生态学研究I.种类组成,海洋与湖沼,39(1):1-8。
    [127]屠其璞,1984.近百年来我国气温变化的趋势和周期.南京气象学院学报,2:151-162.
    [128]万向京,刘中国,黄胜等,广东省围海和滩涂开发利用情况与建议,水产科技,2000(3):1-3。
    [129]王刚,2009,胶州湾入海点源、海水养殖污染物通量研究,中国海洋大学,硕士学位论文。
    [130]王刚,2009.胶州湾入海点源、海水养殖污染物通量研究.中国海洋大学,硕士学位论文。
    [131]王倩,2009,胶州湾毛颚类生态学研究,中国科学院海洋研究所,中国科学院研究生院,硕士学位论文。
    [132]王绍武,近三十年气温变化的趋势.东北夏季低温长期预报文集.气象出版社,1983.
    [133]王修林,李克强,石晓勇,2006.胶州湾主要化学污染物海洋环境容量.科学出版社. pp.1-22
    [134]吴继法,俞志明,宋秀贤,王悠,宋林生.2005.蒽醌和十二烷基苯磺酸钠胁迫对鲈鱼DNA损伤的RAPD分析.应用与环境生物学报,11(4):467-470.
    [135]吴永成,王丛敏等,1992,海水交换和混合扩散,胶州湾的生态学和生物资源,刘瑞玉主编,1992.
    [136]吴永森,辛海英,吴隆业,李文渭,2008,2006年胶州湾现有水域面积与岸线的卫星调查与历史演变分析,海岸工程,27(3):15-22.
    [137]吴玉霖,孙松,张永山,张芳,2004.胶州湾浮游植物数量长期动态变化的研究.海洋与湖沼,35(6):518-523
    [138]夏滨,吕瑞华,孙丕喜,2001.2000年秋季黄、东海典型海区叶绿素a的时空分布及粒径组成特征.黄渤海海洋,19(4):37-42
    [139]姚云,沈志良.2006.胶州湾营养盐及其结构特征.海洋与湖沼,37,增刊。
    [140]于海燕,李新正,李宝泉等.2005.胶州湾大型底栖甲壳动物数量动态变化.海洋与湖沼,36(4):289-295.
    [141]于志刚,米铁柱,谢保东等,2000,二十年来渤海生态环境参数的演化与相互关系,海洋环境科学,19(1):15-19.
    [142]余静,2005,青岛市近岸海域污染控制规划研究,中国海洋大学,博士学位论文。
    [143]余静,孙英兰,张燕,2007,陆域形成对胶州湾及前湾海洋环境的影响预测I对水动力环境的影响,海洋环境科学,26(5):470-474.
    [144]余克服,陈特固,练健生,王肇鼎,刘东生.2002.大亚湾扁脑珊瑚中重金属的年际变化及其海洋环境指示意义.第四纪研究,22(3):230-235.
    [145]张芳,孙松,杨波,2005,胶州湾水母类生态研究I.种类组成与群落特征,海洋与湖沼,36(6):507-517.
    [146]张芳,杨波,张光涛.2005.胶州湾水母类生态研究,II.优势种丰度的时空分布.海洋与湖沼,36(6):518-526.
    [147]张福绥,1992,中国海湾扇贝养殖业的发展,海洋科学,No.4,1-4。
    [148]张先恭,李小泉,1982.本世纪我国气温变化的某些特征.气象学报,44(2):198-208.
    [149]郑炳辉,秦延文,孟伟等,2007,1985-2003年渤海湾水质氮磷生源要素的历史演变趋势分析,环境科学,28(3):494-499.
    [150]周成旭,吴玉霖.2001.胶州湾初级生产力.海湾生态过程与持续发展,焦念志主编,北京:科学出版社,pp.101-104。
    [151]周兴,2006,菲律宾蛤仔对胶州湾生态环境影响的现场研究,中国科学院海洋研究所,硕士学位论文。
    [152]朱益民,杨修群,2003.太平洋年代际震荡与中国气候变率的关系.气象学报,61(6):641-654.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700