微乳液法合成核壳结构纳米聚苯胺和QSPR预测表面活性剂的浊点的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微乳液是由油,水,表面活性剂和助表面活性剂组成的各向同性,热力学稳定的透明或半透明胶体分散体系。在这种微环境中进行聚合,可得到纳米级的高分子量、窄粒径分布、大比表面积,链形态规则的聚合,拥有许多不同于普通乳液聚合产物的优异性能。因此,利用微乳液作为反应介质对于合成开发具有特定性能的新材料提供了一条重要的新途径。文中研究了SDS(十二烷基磺酸钠)/苯乙烯/正戊醇/水体系的拟四元相图,从而寻找微乳区域,并且划分油包水(W/O),双连续(B.C)和水包油(O/W)结构,并讨论了温度和单体浓度对相图结构的影响,为聚合体系的选择提供了理论基础。
     聚苯胺因为合成路径简单,出色的环境稳定性和广泛应用而成为导电高分子材料研究领域的热点之一。本文对于导电聚苯胺的三方面问题进行研究。
     首先,采用核壳结构以克服限制聚苯胺应用的刚性结构缺陷。即在水包油(O/W)微乳液体系中制备苯乙烯和聚(苯乙烯-苯乙烯磺酸钠),然后在低温下使苯胺单体于共聚物纳米微球表面原位聚合制备核壳结构的纳米微球。对比发现,苯胺单体更易在聚(苯乙烯-苯乙烯磺酸钠)胶粒的表面聚合。
     其次通过掺杂以提高聚苯胺电导率。用不同酸和不同pH值体系进行掺杂,将正电荷引入聚苯胺分子链上的氮原子,以降低载流子在导电聚苯胺分子链上流动的难度,从而达到提高电导率的目的。
     再次,研究聚苯乙烯和聚苯胺的最佳核壳比,以得到符合要求的复合导电聚合物。包覆过程中,随着苯胺单体量的增加,电导率逐渐接近纯聚苯胺体系,但增加到一定量会破坏核壳的结构稳定性。因此,结构稳定性和高电导率需要同时兼顾,实验结果表明,核壳最佳比例m(St):m(An)=2.5。
     利用透射电镜(TEM),扫描电镜(SEM),傅立叶红外光谱仪(FTIR)等检测仪器对所得产物进行分析,进一步研究表面活性剂的用量对聚苯乙烯微球粒径分布、分散度的影响以及不同的聚苯胺包覆方法对最终产物性质的影响,从而得出制备聚苯胺/聚苯乙烯核壳结构纳米胶粒的最优条件。
     聚苯胺在防腐涂料中的应用日益显著,论文将聚苯乙烯,聚苯胺,聚苯胺和聚苯乙烯共混,聚苯胺/聚苯乙烯核壳复合微乳胶粒分别涂敷于钢板,用恒电位仪分别测定其腐蚀过程中的开路电位变化曲线,比较了各自的防腐性能,结果表明聚苯胺/聚苯乙烯核壳复合胶乳的防腐性能最佳。
     另外,定量结构-活性/性质相关(Quantitative Structure-Activity/PropertyRelationships,QSAR/QSPR)研究已成为现代化学和生物学领域研究的一个重要方面。QSAR方法主要研究化合物的结构与生物活性、分子的理化性质之间的定量函数关系,本文利用QSPR方法模拟了表面活性剂浊点和结构关系,并很好的预测了未知的表面活性剂的浊点。
     文中选择了12个描述符,包括:分子面积A,分子体积V,分子总量Mr,生成热H_f,辛醇/水分配系数AlogP,分子总能量Etotal,分子密度d,分子最高占据轨道能量E_(HOMO),分子最低未占据轨道能量E_(LUMO),总的偶极距Dtotal,x、y、z方向上的分子偶极矩Dipole-x、Dipole-y、Dipole-z;这些描述符均可以在QSPR方法中得到。有了这些描述符,就可以通过软件QSPR计算每个表面活性剂分子的微观结构参数。
Microemulsion is a isotropic,transparent and thermodynamically stable system consisting of oil,water,surfactant and appropriate cosurfactant.The polymer synthesized in mircoemulsion system has high molecular weight,small particle size distribution,high specific surface area,regular chains and special properties.Of course,these properties are not owned by polymers prepared in ordinary emulsion system.So microemulsion system is a efficient method for preparation of new material.In this paper,the phase diagrams of the pseudo-ternary-component about SDS/Styrene-/n-pentanol/water system is studied.The microemulsion region is found and divided into W/O,bi-continuous and O/W which is helpful to select the polymerization system.
     Conductive polyaniline as new material of functional polymer makes itself a focus because of its simple synthesis methods,excellent environmental stability and wide application.But it has poor processability because of its rigid structure.In this paper, three problems are discussed.
     First,Core-shell structure is applied to overcome the defects confining the application of polyaniline.We produce nanoparticles of poly(styrene-co-styrene sulfonate)(PS-PSS)in nitrogen atmosphere by microemulsion system,then the produced PS-PSS particles are used as templates to prepare PAIN-coated core-shelled PANI/PS-PSS nanoparticles under low temperature.It's much easier to coat on PS-PSS particles than PS particles for aniline monomer.
     Second,increase conductivity by doping with different doptant and different environment.Positive charge is induced on nitrogen atom belonging to molecular chain in order to deduce the resistivity by using different acid and environment.
     Third,the proper R,the value of the ratio of polystyrene to polyaniline,is studied in this paper.The conductivity of composite material closes to pure polyaniline with the increase of aniline monomer with the destruction of the core-shell structure.So the right R value should be studied for excellent structure and conductivity.The best R value is 2.5[m(St):m(An)].
     TEM,SEM and FTIR are used to analyze the composite material to research the impaction of the surfactant on distribution of nanoparticles and the different ways on polymer properties in order to find out the best condition for synthesis of PAn/(Ps-Pss) nanoparticles.
     The polyaniline is used aboard in anticorrosion painting field.In this paper,the steel board is coated with styrene,polyaniline,polymer blend and core-shell structured PAn/(Ps-Pss)in order to research the antisepsis process by protracting open circuit potential varying curve though the potentiostat.The outcome shows the imputrescibility of the compounded PAn/(Ps-Pss)microlatex is the best.
     The quantitative structure-property relationship(QSPR)is used to predict the cloud point of surfactants.Several structural,electronic,spatial and thermodynamic properties are selected as descriptors to build the relationship between cloud point and the microscopic structures.These descriptors include the octanol/water partition coefficient AlogP,the total energy,the Molecular density,the highest occupied orbital energy EHOMO,dipole-y and the dipole-z.Two methods,the multiple linear regression(MLR) and Partial least squares(PLS)analysis,were chosen to model the structure-properties relationships.The result showed that MLR analysis is better to predict the cloud point of nonionic surfactant than PLS analysis.
引文
[1] J. P. Hoar, J. H. Schulman. Effect of microemulsions on photochemical reactions Nature. 1943:152-102.
    [2] Schulman J. H, Stoeckenius W, Prince LM Mech. Aniis of formation and structure of microe -mulsions by electron microscopy. J phys Chem, 1959, 63:1677-1683.
    [3] J. H. Schulman, L. M. Prince, Microemulsion:Theory and Practice. New York, Academic Press, 1977:Chapter5.
    [4] M.L.Robbin. Micellization, Solubilization and Microemulsion. New York, Plunem Press, 1977:2-713.
    [5] Candau F, Leng, Y.S, Pouyet G et al. Inverse microemulsion polymerization of acrylamide. Journal of Colloid and Interface Sciecne, 1984, 101(1): 167-183.
    [6] Yee Sing Leong, Francoise Candau. Copolymerization of water-soluble monomers in nonionic bicontinuous microemulsions. J.Phys Chem., 1982, 86(13):2269-2271.
    [7] Boutonnet,J Kizling, P Stenius,G Maire. The Preparation of Monodisperse Colloidal Metal Particles From Microemulsions. Colloids Surf. 1982, 11:209-225
    [8] J.O.Stoffer.,T.Bone,Polymerization in water in oil microemulsion systems containing methyl methacrylate. J. Polym Sci.Polym.Chem., 1980,18(8):2641-2647.
    [9] S.S.Atik, K.J.Thomas. Synthesis and characterization of poly (n-hexyl methacrylate) in three-component microemulsions. Am Chem Soc 1981, 103:4279-4286.
    
    [10] L.M.Gan, C.H.Chew. Preparation of conducting polyaniline-coated barium sulfate nanoparticles in inverse microemulsions. J. Polym Sci.Polym.Chem., 1995,33:116-122.
    
    [11] F.Candau, S.Y.Leong, Inverse microemulsion polymerization. J.Colloid Inter.Sci., 1984, 101:167-173.
    
    [12] F.Candau, P. Buchert, I.Krieger. Rheological studies on inverse microlatices. J. Colloid Inter Sci, 1990,140(2):466-472.
    [13] V. Vaskova, Z .Hlouskova, J. Barton. Polymerization in inverse microemulsion. IV: 1 Locus of initiation by ammonium peroxodisulfate and 2, 2'-azoisobutyronitrile. Makrom.Chem., 1992, 193:627-635.
    [14] P .Potisk, V.Vaskova, I.Capek. Polymerization of butyl acrylate in microemulsion: Locus of initiation. Angew. Makrom.Chem., 1996, 236:43-50.
    [15] M Antonietti, W Bremser, M Schmidt, Microgels: model polymers for the crosslinked state. Macromolecules, 1990, 23: 3796-3805.
    [16] M. Antoniete, W. Bermser, M. Schmidt. Microgels: model polymers for the crosslinked state. Macromolecules,1990,23(16):3796-3805.
    [17]C.Wu.,C.Y.Yan.Macromolecules,Studies of the Swelling and Drying Kinetics of Thin Gelatin Gel Films by in situ Interferometry.1994,27:298-308.
    [18]李干佐,郝京诚等,丙烯酰胺在胶束和微乳液中聚合动力学研究科学通报.1995,40(9):799-806.
    [19]徐相凌,张志成,吴欣,苯乙烯微乳液种子聚合,高等学校化学学报.1998,19(7)1166-1170.
    [20]Xu X.,Zhang Zh.,Ge X.,Emulsifier for microemulsion polymerization,Colloid Polym.Sci,1998,276:534-539.
    [21]Xu X.,Ge X.,Zhang Zh.Preparation of Silver Nanoparticles in Microemulsion by the r-radiation Method Radiat.Phys.Chem.1997,49:469-473.
    [22]Xu X,Zhang Zh,GeX.Copolymerization of styrene with acrylates in emulsion and microemulsion Polymer.1998,39(21):5245-5251.
    [23]Xu X.,Zhang Zh,GeX.Seeded mcroemulsion polymerization of butyl acrylate J.Polym.Sci.Polym.Chem.1998,36:257-263.
    [24]J.Hao.Studies on Chemical Reactions in Microemulsion Media Hydrolysis Kinetics Studies in Microemulsion System for CTAB/n-butanol/25%n-octane/Water.J Dispersion Sci Tech,2000,21(1):19-30.
    [25]J.Hao.Effect of the structures of microemulsions on chemical reactions.Colloid Polym Sci 2000,278:150-154.
    [26]Yuanchang Shi,Youshi Wu,Jingcheng Hao,G LI,Microemulsion copolymerization of styrene and acrylonitrile with n-butanol as the cosurfactant Journal of Polymer Science Part A:Polymer Chemistry 2005,43(1):203-216.
    [27]石元昌,郝京诚,陶诚等.微乳液中苯乙烯聚合反应的研究.化学学报,1998,56:880-887.
    [28]严锋,郑昌仁,韦亚兵.阳离子型微乳液聚合丙烯酰胺的表征.高等学校化学学报,2000,4:655-661.
    [29]哈润华,侯斯健,高单体浓度下反相微乳液聚合,高等学校化学学报,1993,14:1163-1169.
    [30]王东周,李光.导电高分子研究概合成技术及应用.2001,16(3):36-39.
    [31]王利祥,王佛松.导电聚合物-聚苯胺的研究进展:电子现象.应用化学,1990(7),6:1-8.
    [32]封伟,易文辉,朱长纯.高分子电致变色和电致发光材料应用技术的进展.液晶与显示,1997,12(3):206-212.
    [33]申亮.导电高分子在抗静电领域中的应用.中国皮革,2004,33(13):40-43.
    [34]宋月贤,韦玮,郑元锁等.用于电磁屏蔽与吸波技术的聚苯胺导电聚合物的研究进展.化工新型材料,2000,28(9):3-7.
    [35]苏慈生.导电聚合物在防腐蚀涂料中的应用,现代涂料与涂装.2001,1:1-4.
    [36]Pinto N.J.,Shah P.D.,McCormick B.J.et al.Dependence of the conducting state of polyaniline films on moisture.Solid State Comm,1996,97:931-934.
    [37]A.G.MacDiarmid,A.J.Epstein.Polyanilines-from solitons to polymer metal,from chemical curiosity to technology.Synth.Met,1994,65:103-109.
    [38]Yassar A.,Ronali J.,Gamier,F.Effects of Steric Factors on the Electrosynthesis and Properties of Conducting Poly(3-alkyithiophenes).Polym Commun 1987,28:103-107.
    [39]Wiersma,A.E.,Steeg,L.M.A.,Jongeling,T.J.M.Waterborne core-shell dispersions based on intrinsically conducting polymers for coating applications.Synth.Met,1995,71:2269-2275.
    [40]Jang,J.,J.H.Oh.Fabrication of a Highly Transparent Conductive Thin Film from Polypyrrole/Poly(methyl methacrylate)Core/Shell Nanospheres.Adv.Funct.Mater,2005,15:494-506.
    [41]王连生,韩朔睽等.分子结构,性质与活性.化学工业出版社,1997.
    [42]Kaufman G.W.,Jurs P.C.QSAR and k-Nearest Neighbor Classification Analysis of Selective Cyclooxygenase-2 Inhibitors Using Topologically-Based Numerical Descriptors.J.Chem.Inf.Comput Sci.,2001,41(6):1553-1560.
    [43]Timothy C.QSAR and QSPR based solely on surface properties?,Journal of Molecular Graphics and Modelling.2004,22(6):519-525.
    [44]B.T.Luke.Comparison of different data set screening methods for use inQSAR/QSPR generation studies.Joumal of Molecular Structure(Theochem),2000,507:229-238.
    [45]Jane D.D.,Svava O.J.,QSPR models for various physical properties of carbohydrates based on molecular mechanics and quantum chemical calculations Carbohydrate Research,2004,339(2):269-280.
    [46]Villamagna F.,Whitehead M.A.et al,Molecular modelling of surfactants in monolayers and Langmuir trough experiments J.Mol.Street(Theochem),1995,343:77-86.
    [47]Tanford C.,The Hydrophobic Effect,2nd ed.,Wiley:New York,1980.204-208.
    [48]Jan Klein,Gabriel Zachmann.Point Cloud Collision Detection.Eurographics,2004,23:567-576.
    [49]崔正刚,殷福珊.微乳化技术及应用.中国轻工业出版社,1992.
    [50]郝京诚,郑立强,阳离子表面活性剂相图和微乳液结构的电导研究,山东大学学报,1996,31(2):196-206.
    [51] McAndrewT. P., Gilicinski.A.G, Gilicinski.A.G. Poly(aniline) in corrosion resistant coatings, Polymeric materials science and engineering, 1996, 74:204-206.
    [52] AhmadN, Macdiarmid A.G., Inhibition of corrosion of steels with the exploitation of conducting polymers. Synth. Met., 1996, 78:103-109.
    [53] Gu, T., Galera-Gomez P. A., Clouding of Triton X- 114: The effect of added electrolytes on the cloud point of Triton X- 114 in the presence of ionic surfactants. Colloid Surf. A, 1995, 104:307-313.
    [54] Huibers P.D.T., Shah D. O., Katritzky A. R. J. Predicting Surfactant Cloud Point from Molecular Structure. Colloid Interface Sci., 1997:193-206.
    [55] L. Qiao, A.J.Easteal. The interaction between triton X series surfactants and poly (ethylene glycol) in aqueous solutions Colloid Polym. Sci., 1998, 276(4):313-320.
    [56] Goel S. K., J. Critical Phenomena in the Clouding Behavior of Nonionic Surfactants Induced by Additives. Colloid interface Sci., 1999, 212(2):604-608.
    [57] Shiling Yuan, Zhengting Cai, Guiying Xu, Yuansheng Jiang. Quantitative Structure-Property Relatinship of Surfactant: the Critical Micelle Concentration of Anionic Surfactant. Journal of Disperse Science and Technology, 2002, 23(4):465-472.
    [58] Shiling Yuan, Zhengting Cai, Guiying Xu, Yuansheng Jiang. Quantitative Structure-Property Relatinship of Surfactant: Prediction of the Critical Micelle Concentration of Nonionic Surfactant. Colloid Polymer Science, 2002, 280(7):630-636.
    [59] E.G Borges, Y. Takahata. The 4-indolyl-2-guanidinothiazoles QSAR study of anti-. ulcer activity using quantum descriptors. J. Molec. Str (Theochem)., 2001, 539:245-251.
    [60] P.Stjernlof, M.D Ennis, L.O Hansson, R.L Hoffman, N.B Ghazal, S Sundell, M.W.Smith, K Svensson, A.Carlsson and H. Wikstrom. Structure-activity relationships in the 8-amino-6,7,8,9-tetrahydro-3H-benz[e]indole ring system. 1. Effects of substituents in the aromatic system on serotonin and dopamine receptor subtypes, J. Med. Chem. 1995, 38:2202-2208.
    [61] N. A. Kratochwil, W. Huber, F. Muller, M. Kansy, P. R. Gerber. Predicting plasma protein binding of drugs: a new approach. Biochem. Pharm. 2002, 64:1355-1363.
    [62] Rosen M. J., Surfactant and interfacial phenomena, 2nd ed. Wiley, New York, 1989.
    [63] S. L. Yuan, Zh. T. Cai, G. Y. Xu, W. Wang. Applications of Computer Simulation in the Study of Surfactant System. Acta Phys.-Chim. Sin., 2003,19:334-340.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700