SiO_2光子晶体的自组装制备及其光子带隙性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体是一种具有光子带隙的周期性电介质结构,落在光子带隙中的光将不能传播。光子晶体由于具有独特的调节光子传播状态的功能,成为实现光通讯和光子计算机的基础,是信息功能材料研究的前沿领域。
     目前,光子晶体的制备是发展光子晶体的关键,而可见光和近红外波段光子晶体的制备更是难点。将亚微米级单分散颗粒实现三维有序聚集组装成胶体晶体是制备可见光和近红外波段光子晶体的有效方法。
     本论文采用单分散SiO_2胶体球作为胶体光子晶体的组成基元,通过丁二酸酯化改性提高SiO_2胶体球的表面电荷密度和球间静电排斥作用,运用垂直沉积法在水溶液中自组装得到可见光和近红外波段的SiO_2光子晶体,并探讨了具有双尺寸分布SiO_2胶体球的成核和生长机理及其组装。通过X射线衍射分析仪(XRD)、傅立叶红外光谱仪(FT-IR)、扫描电子显微镜(SEM)、X射线光电子能谱仪(XPS)、Zeta电位、紫外-可见-近红外(UV/Vis/NIR)透射光谱等分析测试手段对制备的材料、胶体晶体的结构与性能及它们之间的关联规律进行了表征和研究。
     利用经典St?ber法,在乙醇介质中,以氨作催化剂,正硅酸乙酯(TEOS)为硅源,通过TEOS的水解和缩聚反应制备单分散SiO_2球形颗粒。主要研究了TEOS及催化剂氨水的量对于SiO_2胶体球粒径大小和粒径偏差的影响。XRD分析表明所合成的SiO_2胶体球为无定形态。FT-IR结果表明SiO_2胶体球表面富含羟基,为接枝丁二酸进行化学改性奠定基础。SEM结果显示所合成的SiO_2胶体球粒径在292~473nm范围内、粒径相对标准偏差小于5.0%,随氨水量增加,SiO_2胶体球的粒径逐渐变大,且粒径偏差减小,同样增加TEOS的量也可以得到粒径大且粒径偏差小的SiO_2胶体球。
     为了提高SiO_2胶体球的表面电荷密度和球间静电排斥作用,将丁二酸通过酯化反应化学键合到SiO_2球表面上。FT-IR和XPS结果证明丁二酸一端的羧基与SiO_2胶体球表面的羟基发生了酯化反应。Zeta电位和标准氢氧化钠滴定测试结果显示,经丁二酸表面改性后,SiO_2胶体球在水溶液中的Zeta电位从?53.72mV提高到?67.46mV,表面电荷密度从0.19μC/cm2提高到0.94μC/cm2,提高了将近5倍。
     以粒径为292nm和473nm的SiO_2胶体球为结构基元,采用垂直沉积法在水溶液中组装可见光和近红外波段的SiO_2胶体光子晶体。利用SEM观察胶体晶体的形貌、结构特点和缺陷情况,利用UV/Vis/NIR透射光谱研究胶体晶体的不完全光子带隙效应。讨论了丁二酸改性、悬浊液浓度、胶体球粒径、组装温度、pH值、热处理温度、入射光角度对所得到的SiO_2胶体晶体形貌和光子带隙的影响。结果表明:对比未改性的SiO_2胶体球,丁二酸改性的SiO_2胶体球形成的胶体晶体有序性更好,相应的带隙深且窄;所得到的SiO_2胶体晶体为fcc周期结构,表面为(111)晶面,呈正六边形排列,在胶体晶体中存在裂纹、空位、位错等缺陷;胶体晶体的厚度直接依赖于悬浊液的浓度,随浓度增加,胶体晶体的层数相应增加,悬浊液质量分数为0.3%时可得到质量较好的SiO_2胶体晶体;胶体球粒径的大小在透射光谱中表现为带隙中心位置的不同,且符合布拉格定律,对于粒径为292nm和473nm的SiO_2胶体球,相应的光子带隙位置分别在604nm和1047nm处,而且随着入射光和胶体晶体表面法线方向的夹角变大,光子带隙发生蓝移,说明SiO_2胶体晶体的光子带隙为赝带隙;沉积温度和pH值对胶体晶体的影响较大,温度为40℃和pH值为7.0时,可得到最为紧密的六方排列形式;经过热处理后的SiO_2胶体晶体结构更为致密,缺陷减少,光子带隙发生蓝移,且变窄和加深。
     在制备单分散SiO_2胶体球的反应体系中引入NaCl电解质,发现了SiO_2胶体颗粒的双尺寸分布现象。合理的解释了双尺寸分布SiO_2胶体颗粒产生的原因,提出了双尺寸分布的SiO_2胶体颗粒的成核和生长机理。并利用所得到的双尺寸分布SiO_2胶体颗粒在乙醇溶液中自组装得到具有类似立方ZnS结构的SiO_2胶体晶体。
     本论文研究工作在以下几方面做出了创新性成果:1)提出了采用丁二酸改性SiO_2胶体球以增加其表面电荷密度的新方法;2)在水溶液中自组装制备出密排结构的SiO_2胶体晶体并对制备影响因素进行了详细分析;3)制备出具有双尺寸分布的SiO_2胶体球并加以组装。
Photonic crystals are materials with regular periodicity of dielectric structures, which can create a range of forbidden frequencies called photonic bandgap. Photons with energies lying in the bandgap cannot propagate through the medium. Photonic crystals have the ability to manipulate, confine, and control light, thus provide the opportunities to shape and mould the flow of light for photonic communication technology and photonic computer and become the frontier of functional materials.
     Presently, the fabrication of photonic crystals, especially those in visible or near-infrared region, is the key to the development of photonic crystals. And the most effective way to fabricate photonic crystals with visible or near-infrared bandgap is the self-assembly approach, namely, assembly of the colloidal crystals by monodisperse and sub-micrometer colloidal spheres.
     In this thesis, SiO_2 colloidal spheres were prepared for using as building blocks of photonic crystals, and modified with succinic acid in order to enhance their surface charges and electrostatic repulsive forces, then they were self-assembled into photonic crystals in visible or near-infrared region from aqueous colloidal solution by the vertical deposition method, moreover, the preparation and assembly of SiO_2 colloidal spheres with bimodal size distribution were studied. The synthesized materials, structures and properties of the SiO_2 colloidal crystals and their relationship were analyzed by XRD, FT-IR, SEM, XPS, Zeta potential and UV/Vis/NIR transmission spectra.
     Firstly, SiO_2 colloidal spheres were synthesized by hydrolysis of tetraethyl orthosilicate (TEOS) in alcohol-water mixed medium using ammonia as catalyst. Effects of concentrations of ammonia and TEOS on the SiO_2 particle size and size deviation were mainly investigated. XRD and FT-IR results respectively show that the prepared SiO_2 colloidal spheres are non-crystalline and there are hydroxyl groups on the surface of SiO_2 colloidal spheres, which are favorable to surface modification with succinic acid. SEM images indicate that the obtained SiO_2 spheres are highly uniform with diameters ranging from 292nm to 473nm and with relative standard deviation less than 5.0%, and when the concentrations of either ammonia or TEOS is increased, the particle size increases and the relative standard deviation decreases.
     After the SiO_2 colloidal spheres were prepared by St?ber method, they were modified with succinic acid. FT-IR and XPS results indicate that one end of succinic acid is chemically bonded to the SiO_2 spheres through esterification and the other could ionize in water. Zeta potential of the modified SiO_2 spheres in water solution is improved from ?53.72mV to ?67.46mV, and surface charge density of the modified SiO_2 spheres is enhanced from 0.19μC/cm2 to 0.94μC/cm2.
     Finally, opal photonic crystals with visible and near-infrared photonic bandgap were assembled by vertical deposition method from aqueous colloidal solution using SiO_2 colloidal spheres with diameters of 292nm and 473nm as building blocks. The morphology, structure and defects were investigated by SEM images, and the incomplete bandgap properties were confirmed by UV/Vis/NIR transmission spectra. Effects of modification, colloid concentration, particle size, temperature, pH value, sintering treatment and incident angle on the morphology and photonic bandgap properties of the obtained SiO_2 colloidal crystals were discussed. The results show that: the succinic acid modified SiO_2 spheres can assemble into more ordered structure and the corresponding photonic bandgap is deeper and narrower compared to the unmodified SiO_2 spheres; the obtained SiO_2 colloidal crystals are fcc structure with each sphere neighbouring six others in a layer and (111) planes parallel to the substrate, and have cracks, dot defects and line defects; the number of colloidal crystals layers is related to the colloid concentration, with colloid concentration increasing, the number of the layers correspondingly increases, and under the concentration of 0.3wt%, SiO_2 colloidal crystals with relatively high quality can be obtained; SiO_2 colloidal crystals consist of spheres with diameters of 292nm and 473nm have the bandgap at 604nm and 1047nm respectively, which are near to the calculated values by Braag law, and with the incident angle increasing, a blue shift of the photonic bandgap happens, which indicates that the bandgap is incomplete; temperature and pH value have great influence on the assembly of SiO_2 colloidal crystals, and under 40℃and the pH value of 7.0, the most close-packed structure can be obtained; after sintering treatment, there are less defects in the colloidal crystals and the structures are more closed, correspondingly, photonic bandgap has a blue shift and becomes more deeper and narrower.
     Additionly, in this thesis, SiO_2 colloidal spheres with bimodal size distribution were prepared by the hydrolysis of TEOS in alcohol-water mixed medium with the ammonia as catalyst when NaCl electrolyte was introduced into the system. A model of nucleation and growth mechanism of SiO_2 colloidal spheres with bimodal size distribution was proposed. And then SiO_2 colloidal crystal which has the zinc blende structure was self-assembled by vertical deposition method in alcoholic solution using SiO_2 colloidal spheres with bimodal size distribution.
     The innovative points of this thesis are as follows: 1) a new method to enhance surface charge on SiO_2 spheres via modification with succinic acid was presented; 2) the detailed influences on assembly of SiO_2 colloidal crystals from aqueous solution were investigated; 3) the preparation and assembly of SiO_2 colloidal spheres with bimodal size distribution were studied.
引文
[1] W. St?ber, A. Fink. Controlled growth of monodisperse silica spheres in the micron size range [J]. J. Colloid. Interface. Sci., 1968, 26: 62-69.
    [2] D. B. Mei, P. Dong, D. Z. Zhang, et al. Structure and transmission spectra for colloidal crystal with silica spheres [J]. Chin. Phys. Lett., 1998, 15 (1): 21-23.
    [3] D. B. Mei, P. Dong, D. Z. Zhang, et al. Visible and near-infrared silica colloidal crystals and photonic gaps [J]. Phys. Rev. B., 1998, 58: 35-38.
    [4]董鹏.单分散二氧化硅颗粒的研究进展[J].自然科学进展,2003,10(3):201-207.
    [5] G. Kolbe. Das Komlexchemische Verhalten der Kieselsaure [M]. Dissertation Jena, 1956.
    [6] S. L. Chen, P. Dong, G. H. Yang, et al. Kinetics of formation of monodisperse colloidal silica particles through the hydrolysis and condensation of tetraethylorthosilicate [J]. Ind. Eng. Chem. Res., 1996, 35: 4487-4493.
    [7] S. L. Chen, P. Dong, G. H. Yang, et al. The size dependence of growth rate of monodisperse silica particles from tetraalkoxysilane [J]. J. Colloid. Interface. Sci., 1997, 189: 268-272.
    [8] S. L. Chen, P. Dong, G. H. Yang, et al. Characteristic aspects of formation of new particles during the growth of monosize silica seeds [J]. J. Colloid. Interface. Sci., 1996, 180: 237-241.
    [9]王玲玲,方小龙,唐芳琼,等.单分散二氧化硅超细颗粒的制备[J].过程工程学报,2001,1(2):167-172.
    [10]陈小泉,古国榜.W/O微乳液体系酸催化水解正硅酸乙酯合成单分散超微二氧化硅[J].现代化工,2002,22(3):26-30.
    [11]黄忠兵,唐芳琼.二氧化硅/聚苯乙烯单分散性核/壳复合球的制备[J].高分子学报,2004,6:835-838.
    [12] W. Wang, B. H. Gu, L. Y. Liang, et al. Fabrication of near-infrared photonic crystals using highly monodisperse submicrometer SiO_2 spheres [J]. J. Phys. Chem. B., 2003, 107: 12113-12117.
    [13] Z. W. Li, Y. F. Zhu. Surface-modification of SiO_2 nanoparticles with oleic acid [J]. Appl. Surf. Sci., 2003, 211 (2): 315-320.
    [14]钱晓静,刘孝恒,陆路德,等.辛醇改性纳米二氧化硅表面的研究[J].无机化学学报,2004,20(3):335-339.
    [15] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics [J]. Phys. Rev. Lett., 1987, 58: 2059-2062.
    [16] S. John. Strong localization of photons in certain disordered dielectric superlattices [J]. Phys. Rev. Lett., 1987, 58: 2486-2489.
    [17] J. D. Joannopoulos, P. R. Villeneuve, S. Fan. Photonic crystals: Putting a new twist on light [J]. Nature, 1997, 386 (6621): 143-149.
    [18] E. Yablonovitch. Photonic band-gap structures [J]. Journal of optical society of American B, 1993, 10: 283-285.
    [19] A. R. Parker, V. L. Welch, D. Driver, et al. Structural color opal analogue discovered in weevil [J], Nature, 2003, 426: 786-789.
    [20] L. P. Biro, Z. Balint, K. Kertesz, et al. Role of photonic-crystal-type structures in the thermal regulation of a lycaenid butterfly sister species pair [J]. Phys. Rev. E., 2003, 67: 1-5.
    [21] H. Ghiradella. Light and color on the wing [J]. Appl. Opt., 1991, 30: 3492-3495.
    [22] O. Toader, S. John. Proposed square spiral microfabrication architecture for large three-dimensional photonic crystals [J]. Science, 2001, 292: 1133-1135.
    [23] S. John, J. Wang. Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms [J]. Phys. Rev. Lett., 1990, 64: 2418-2421.
    [24] K. M. Ho, X. Chang, C. M. Soukoulis. Existence of a photonic gap in periodic dielectric structures [J]. Phys. Rev. Lett., 1990, 65: 3152-3155.
    [25]郭红霞,范吉军,赵晓鹏.光子晶体及其制备方法研究进展[J].功能材料,2003,34(1):5-8.
    [26] A. Moroz, C. Sommers. Photonic band gaps of three-dimensional face-centred cubic lattices [J]. J. Phys. Condens. Matter, 1999, 11: 997-1008.
    [27] J. D. Joannopoulos, R. D. Meade, J. N. Winn. Photonic crystals: molding the flow of light [M]. Princeton university press, New Jersey, 1995.
    [28] E. Yablonovitch, T. J. Gmitter, K. M. Leung. Photonic band structures: the face-centered-cubic case employing nonspherical atoms [J]. Phys. Rev. Lett., 1991, 67: 2295-2298.
    [29] E. Yablonovitch. Photonic band gap crystals [J]. J. Phys. Condens. Matter., 1993, 5: 2443-2460.
    [30] K. M. Ho, C. T. Chan, C. M. Soukoulis, et al. Photonic band gaps in three dimensions: new layer-by-layer periodic structures [J]. Solid State Communications, 1994, 89:413-416.
    [31] S. Y. Lin, J. G. Fleming, D. L. Hetherington, et al. A three-dimensional photonic crystal operating at infrared wavelengths [J]. Nature, 1998, 394: 251-253.
    [32] S. Noda, K. Tomoda, N. Yamamoto, et al. Full three-dimensional photonic band gap crystals at near-infrared wavelengths [J]. Science, 2000, 289: 604-606.
    [33] V. Berger, O. Gauthierlafaye, E. Costard, et al. Fabrication of a 2D photonic band gap by a holographic method [J]. Electronics Letters, 1997, 33: 425-426.
    [34] V. Berger, O. Gauthierlafaye, E. Costard, et al. Photonic band gaps and holography [J]. J. Appl. Phys., 1997, 82: 60-64.
    [35] V. P. Ton, L. V. Natarajan, R. L. Sutherland, et al. Holographic formation of electro-optic polymer-liquid crystal photonic crystals [J]. Adv. Mater., 2002, 14: 187-191.
    [36] M. J. Escuti, J. Qi, G. P. Crawford, et al. Tunable face-centered-cubic photonic crystals formed in holographic polymer dispersed liquid crystals [J]. Opt. Lett., 2003, 28: 522-524.
    [37] M. Duneau, F. Delyon, M. Audier. Holographic method for a direct growth of three-dimensional photonic crystals by chemical vapor deposition [J]. J. Appl. Phys., 2004, 96: 2428-2436.
    [38] M. Deubel, M. Wegener, A. Kaso. Direct laser writing and characterization of“slanted pore”photonic crystals [J]. Appl. Phys. Lett., 2004, 85: 1895-1897.
    [39] X. M. Duan, H. B. Sun, K. Kaneko, et al. Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication [J]. Thin Solid Films, 2004, 453 (54): 518-521.
    [40] B. H. Cumpston, S. P. Ananthavel, S. Barlow, et al. Two-photon polymerization initions for three-dimensional optical data storage and microfabrication [J]. Nature, 1999, 398: 51-54.
    [41] M. Campbell, P. N. Sharp, M. T. Harrison, et al. Fabrication of photonic crystals for the visible spectrum by holographic lithography [J]. Nature, 2000, 404: 53-56.
    [42] R. A. Borisov, G. N. Dorojkina. Fabrication of three-dimensional periodic microstructures by means of two-photon polymerization [J]. Appl. Phys. B., 1998, 67: 765-767.
    [43] W. Lee, S. A. Pruzinsky, P. V. Braun, et al. Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals [J]. Adv. Mater., 2002, 14:271-274.
    [44] G. M. Whitesides, J. P. Mathias, C. T. Seto. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures [J]. Science, 1991, 254: 1312-1315.
    [45] C. B. Murray, C. R. Kagan, M. G. Bawendi. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices [J]. Science, 1995, 270: 1355-1358.
    [46] H. Miguez, F. Meseguer, C. Lopez, et al. Evidence of fcc crystallization of SiO2 nanospheres [J]. Langmuir, 1997, 13: 6009- 6011.
    [47] C. Lopez, L. Vazquez, F. Mesequer, et al. Photonic crystal made by close packing SiO2 submicron spheres [J]. Superlattices and Microstructures, 1997, 22: 399-404.
    [48] P. G. Ni, P. Dong, B. Y. Cheng, et al. Sythetic SiO2 opals [J]. Adv. Mater., 2001, 13: 437-441.
    [49] E. G. Judith, J. Wijnhoven, V. L. Willem. Preparation of photonic crystals made of air spheres in titania [J]. Science, 1998, 281: 802-804.
    [50] V. M. Shelekhina, O. A. Prokhorov, P. A. Vityaz, et al. Towards 3D photonic crystals [J]. Synthetic Metals, 2001, 124: 137-139.
    [51] D. Kang, N. A. Clark. Fast growth of silica colloidal crystals [J]. Journal of the Korean Physical Society, 2002, 41: 817-819.
    [52] B. Gates, Y. N. Xia. Fabrication and characterization of chirped 3D photonic crystals [J]. Adv. Mater., 2000, 12: 1329-1332.
    [53] P. Jiang, J. F. Bertone, K. S. Hwang. Single-crystal colloidal multilayers of controlled thickness [J]. Chem Mater, 1999, 11: 2132-2140.
    [54] Z. Z. Gu, A. Fujishima, O. Sato. Fabrication of high-quality opal films with controllable thickness [J]. Chem Mater, 2002, 14: 760-765.
    [55] M. Holgado, A. Blanco, M. Ibisate, et al. Electrophoretic deposition to control artificial opal growth [J]. Langmuir, 1999, 15: 4701-4704.
    [56] R. C. Hayward, D. A. Saville, I. A. Aksay. Electrophoretic assembly of colloidal crystals with optically tunable micropatterns [J]. Nature, 2000, 15: 4701-4703.
    [57] X. L. Xu, S. A. Majetich, S. A. Asher. Mesoscopic monodisperse ferromagnetic colloids enable magnetically controlled photonic crystal [J]. J. Am. Chem. Soc., 2002, 124: 13864-13868.
    [58] O. D. Velev, A. M. Lenhoff. Colloidal crystal as templates for porous materials [J]. Curr. Opin. Colloid. In., 2000, 5: 56-63.
    [59]汪静,袁春伟,唐芳琼.高质量胶体晶体的快速制备及表征[J].物理学报,2004,53(9):3054-3058.
    [60]丛海林,曹维孝.胶体晶体中的两种排列方式及堆积模式[J].高等学校化学学报,2003,24(8):1489-1491.
    [61] H. Y. Ko, H. W. Lee, J. Moon. Fabrication of colloidal self-assembled monolayer (SAM) using monodisperse silica and its use as lithographic mask [J]. Thin Solid Films, 2004, 447: 638-644.
    [62] Y. A. Vlasov, X. Z. Bo, J. C. Sturm, et al. On-chip natural assembly of silicon photonic bandgap crystals [J]. Nature, 2001, 414: 289-293.
    [63]张琦,孟庆波,张道中,等.大直径聚苯乙烯小球自组织方法制备高质量opal晶体[J].物理学报,2004,53(1):58-61.
    [64] B. Griesebock, M. Egen, R. Zentel. Large photonic films by crystallization on fluid substrate [J]. Chem. Mater., 2002, 14: 4023-4025.
    [65] F. G. Santanria, C. Lopez, F. Meseguer, et al. Opal-like photonic crystal with diamond lattice [J]. Appl. Phys. Lett., 2001, 79: 2309-2311.
    [66] F. G. Santanria, H. T. Miyazaki, A. Urquia, et al. Nanorobotic manipulation of microspheres for on-chip diamond architectures [J]. Adv. Mater., 2002, 14: 1144-1147.
    [67] K. Busch, S. John. Photonic band gap formation in certain self-organizing systems [J]. Phys. Rev. E., 1998, 58: 3896-3908.
    [68] R. Biswas, M. M. Sigalas, G. Subramania, et al. Photonic band gaps in colloidal systems [J]. Phys. Rev. B., 1998, 57: 3701-3704.
    [69] B. Li, J. Zhou, L. T. Li, et al. Ferroelectric inverse opals with electrically tunable photonic band gap [J]. Appl. Phys. Lett., 2003, 83: 4704-4706.
    [70]胡行方,快素兰,于云,等.大面积3D有序介孔二氧化钛薄膜光子晶体制备与性能研究[J].无机材料学报,2005,20(6):1463-1466.
    [71] Q. B. Meng, Z. Z. Gu, O. Sato, et al. Fabrication of highly ordered porous structures [J]. Appl. Phys. Lett., 2000, 77: 4313-4315.
    [72] Z. Z. Gu, S. Kubo, W. P. Qian, et al. Varying the optical stop band of a three-dimensional photonic crystal by refractive index control [J]. Langmuir, 2001, 17: 6751-6753.
    [73] V. G. Golubev, V. Y. Davydov, N. F. Kartenko, et al. Phase transition-governed opal-VO2 photonic crystal [J]. Appl. Phys. Lett., 2001, 79: 2127-2129.
    [74] R. Torrecillas, A. Blanco, M. E. Brito, et al. Microstructural study of CdS/opalcomposites [J]. Act. Mater., 2000, 48: 4653-4657.
    [75] A. Blanco, E. Chomski, S. Grabtchak, et al. CdS photoluminescence inhibition by a photonic structure [J]. Appl. Phys. Lett., 1998, 73: 1781-1783.
    [76] P. V. Braun, P. Wiltzius. Electrochemically grown photonic crystal [J]. Nature, 1999, 402: 603-604.
    [77] P. V. Byaun, P. Wiltzius. Electrochemical fabrication of 3D microperiodic porous material [J]. Adv. Mater., 2001, 13: 482-485.
    [78] T. Sumida, Y. Wada, T. Kitamura, et al. Macroporous ZnO films electrochemically prepared by templating of opal films [J]. Chem. Lett., 2001, 16: 38-39.
    [79] P. Jiang, J. Cizeron, J. F. Bertone, et al. Preparation of macro-porous metal films from colloidal crystals [J]. J. Am. Chem. Soc., 1999, 121: 7957-7958.
    [80] A. Blanco, E. Chomski, S. Grabtchak, et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional band gap near 1.5 micrometers [J]. Nature, 2000, 405: 437-440.
    [81] A. A. Zakhidov, R. H. Baughman, Z. Iqbal, et al. Carbon structures with three-dimensional periodicity at optical wavelengths [J]. Science, 1998, 282: 897-890.
    [82] M. Scharrer, X. Wu, H. Cao, et al. Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition [J]. Appl. Phys. Lett., 2005, 86: 151113-151115.
    [83] J. S. King, D. Heineman, E. Graugnard, et al. Atomic layer deposition in porous structures: 3D photonic crystals [J]. Applied Surface Science, 2005, 244: 511-516.
    [84] J. S. King, E. Graugnard, C. J. Summers, et al. TiO2 inverse opals fabricated using low-temperature atomic layer deposition [J]. Adv. Mater., 2005, 17: 1010-1013.
    [85] Z. Z. Gu, S. Kubo, O. Sato, et al. Infiltration of colloidal crystal with nanoparticles using capillary forces: a simple technique for the fabrication of films with an ordered porous structures [J]. Appl. Phys. A., 2002, 74: 127-129.
    [86] G. Gundian, C. N. R. Rao. Macroporous oxide material with three-dimensionally interconnected pores [J]. Solid. State. Sci., 2000, 2: 877-882.
    [87] Z. B. Lei, J. M. Li, Y. G. Zhang, et al. Fabrication and characterization of highly-ordered periodic macroporous barium titanate by the sol-gel method [J]. J. Mater. Chem., 2000, 20: 2629-2631.
    [88]曹洁明,常欣,郑明波,等.三维SiO2欧泊模板溶剂热法制备硫化锌光子晶体[J].物理化学学报,2005,21(5):560-564.
    [89] A. Rugge, J. S. Park, R. G. Gorden, et al. Tantalum nitride inverse opal as photonicstructures for visible wavelengths [J]. J. Phys. Chem. B., 2005, 109: 3764-3771.
    [90] M. U. Pralle, N. Moelders I. Puscasu, et al. Photonic crystal enhanced narrow-band infrared emitters [J]. Appl. Phys. Lett., 2002, 81: 4685-4687.
    [91] http://china.nikkeibp.co.jp/china/news/elec/200309/elec200309220132.
    [92] A. Mekis. High transmission through sharp bends in photonic crystal waveguides [J]. Phys. Rev. Lett., 1996, 77: 3787-3798.
    [93] J. S. Foresi, P. R. Villeneuve, J. Ferrera, et al. Photonic band gap microcavities in optical waveguides [J]. Nature, 1997, 390: 143-145.
    [94] J. C. Knight, T. A. Birks, P. S. Pussell, et al. All-silica single-mode optical fiber with photonic crystal cladding [J]. Opt. Lett., 1996, 21: 1547-1549.
    [95] K. Suzuki. Optical properties of a low-less polarization-maintaining photonic crystal fiber [J]. Opt. Express., 2001, 9: 676-681.
    [96] R. F. Cregan, B. J. Mangan, J. C. Knight, et al. Single-mode photonic band gap guidance of light in air [J]. Science, 1999, 285: 1537-1539.
    [97] O. Painter, R. K. Lee, A. Scherer, et al. Two-dimensional photonic band-gap defect mode laser [J]. Science, 1999, 284: 1819-1821.
    [98] W. D. Zhou, J. Sabarinathan, B. Kochman, et al. Electrically injected single-defect photon bandgap surface emitting laser at room temperature [J]. Electron. Lett., 2000, 36: 1541-1542.
    [99] R. Scott, S. M. Yang, D. E. Ozin, et al. Engineered sensitivity of tin dioxide chemical sensors [J]. Adv. Funct. Mater., 2003, 13: 225-231.
    [100] J. H. Holtz, S. A. Asher. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials [J]. Nature, 1997, 389: 829-832.
    [101] Y. J. Lee, P. N. Braun. Tunable inverse opal hydrogel pH sensors [J]. Adv. Mater., 2003, 15: 563-566.
    [102] T. Cassagneau, F. Caruso. Inverse opals for optical affinity biosensing [J]. Adv. Mater., 2002, 14: 1629-1633.
    [103] D. A. Mazurenko, A. V. Akimo, A. B. Pevtsov, et al. Ultrafast switching in Si-opals [J]. Phys. E.,2003, 17: 410-413.
    [104] D. A. Mazurenko, R. Kerst, J. I. Dikhuis, et al. Ultralfast optical switching in three-dimensional photonic crystal [J]. Phys. Rev. Lett., 2003, 91: 213903-213907.
    [105] C. R. Simovski, S. L. He. Antennas based on modified metallic photonic bandgap structures consisting of capacitively loaded wires [J]. Microw. Opt. Techn. Lett., 2001,31: 214-227.
    [106] S. Noda, A. Chutinan, M. Imada, et al. Trapping and emission of photons by a single defect in photonic bandgap structure [J]. Nature, 2000, 407: 608-610.
    [107] D. Scymgeour, N. Malkova, S. Kim, et al. Electro-optic control of the superprism effect in photonic crystals [J]. Appl. Phys. Lett., 2003, 82: 3176-3178.
    [108]杨南如.无机非金属材料测试[M].武汉:武汉工业大学出版社,1993:1-16.
    [109]吴瑾光.近代傅里叶变换红外光谱技术及应用[M].北京:科学技术文献出版社,1994:54-100.
    [110]杜学礼,潘子昂.扫描电子显微镜分析技术[M].北京:化学工业出版社,1986,1-22.
    [111]刘海兴.毛细管电泳在药物分析及物化常数测定中应用[D].保定:河北大学,2001.
    [112]黄新民.材料分析测试方法[M].北京:国防工业出版社,2006:198-206.
    [113] T. Matsoukas, E. Gulari. Dynamics of growth of silica particles from ammonia-catalyzed hydrolysis of tetraethyl orthosilicate [J]. J. Colloid. Interface. Sci., 1988, 124 (1): 252-261.
    [114] G. H. Bogush, C. F. Zukoski. Uniform silica particle precipitation: an aggregative growth model [J]. J. Colloid. Interface. Sci., 1991, 142: 19-34.
    [115]赵丽,余家国,程蓓,等.单分散二氧化硅球形颗粒的制备与形成机理[J].化学学报,2003,61(4):562-565.
    [116] A. S. Sinitskii, Y. D. Tretyakov, A. V. Knolko. Silica photonic crystals: synthesis and optical properties [J]. Solid State Ionics, 2004, 172: 477-479.
    [117] W. Wang, B. H. Gu, L. Y. Liang, et al. Fabrication of two- and three-dimensional silica nanocolloidal particle arrays [J]. J. Phys. Chem. B., 2003, 107: 3400-3404.
    [118] K. Yoshinaga, C. Chiyoda, H. Ishiki, et al. Colloidal crystallization of monodisperse and polymer-modified colloidal silica in organic solvents [J]. Colloid Surface A, 2002, 204: 285-293.
    [119] J. M. Roberts, P. Linse, J. G. Osteryoung. Voltammetric studies of counterion diffusion in the monodisperse sulfonated polystyrene latex [J]. Langmuir, 1998, 14: 204-213.
    [120]张铸勇,祁国珍,庄甫.精细有机合成单元反应[M].上海:华东化工学院出版社,1990:409-428.
    [121]邢祺毅,徐瑞秋,周政,等.基础有机化学[M].北京:高等教育出版社,1993.
    [122]李葵英.界面与胶体的物理化学[M].哈尔滨:哈尔滨工业大学出版社,1998,155-183.
    [123]宋世谟,王正烈,李文彬.物理化学[M].北京:高等教育出版社,2001,394-425.
    [124]快素兰.光子晶体的胶体模板法制备及性能研究[D].上海:上海硅酸盐研究所,2002.
    [125] C. D. Dushkin, Y. Yoshimura, K. Nagayama. Nucleation and growth of two dimensional colloidal crystals [J]. Chem. Phys. Lett., 1993, 204: 455-460.
    [126] L. V. Woodcock. Entropy difference between the face centred cubic packed and hexagonal closed packed crystal structure [J]. Nature, 1997, 385: 141-143.
    [127]李明海,徐岭,张宇,等.二氧化硅人工蛋白石晶体的制备及其结构性质的研究[J].物理学报,2003,52(5):1302-1305.
    [128]黄忠兵,高继宁,汪静,等.改性聚苯乙烯微球的制备及其胶体晶体的组装[J].物理化学学报,2004,20(6):651-655.
    [129] G. H. Bogush, M. A. Tracy, I. V. Zukoski. Preparation of monodisperse silica particles: control of size and mass fraction [J]. J. Non-cryst. Solids., 1987, 104: 95-106.
    [130] V. A. Blaaderren, V. J. Geest, A. Vrij. Monodisperse colloidal silica spheres from tetraalkoxysilanes: particle formation and growth mechanism [J]. J. Colloid. Interface. Sci., 1992, 154: 481-501.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700