鼠李糖脂修复重金属和多环芳烃(PAHs)复合污染土壤研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的不断发展,人们逐渐认识到土壤环境中很少存在着单一污染物,无机物和有机物的复合污染对人类的健康和生态的安全造成了一定的威胁,已经引起人们的关注。重金属和多环芳烃(PAHs)作为常见的无机污染物和有机污染物的典型代表,是当前土壤修复研究的热门物质。土壤淋洗作为常见的应用广泛的土壤修复技术,通过选择有效的淋洗剂,可以有效修复复合污染的土壤。
     本文以生物表面活性剂鼠李糖脂作为淋洗剂去除土壤环境中的重金属和PAHs。鼠李糖脂可以通过降低表面张力和促进污染物的移动从而增溶污染物,它对环境无毒害,可完全生物降解不产生二次污染。由于重金属PAHs种类繁多,选取土壤环境中浓度最高的三种重金属(Pb、Zn、Cu)和美国环保局推荐的16种优先污染物PAHs做为研究对象。
     在批次实验中,研究了不同浓度(0.1%、0.5%、2%和4%)和不同pH值(6.5, 8.0. 10.0)的鼠李糖脂溶液对污染物的去除效率。结果表明,随着浓度的提高鼠李糖脂对污染物的去除效率逐渐增加。在鼠李糖脂溶液浓度为4%时,∑PAHs的去除率达到66.8%, Pb、Zn、Cu的去除率分别为66.7%、50.5%、48.5%;在鼠李糖脂溶液浓度为0.5%时,∑PAHs的去除率仅为20.5%,Pb、Zn、Cu的去除率分别为23.2%、12.5%、10%。pH值不断变化,污染物的去除效率液也在不断改变。在pH值为10时, Pb和Cu达到最大去除率为79.5%和35.5%,PAHs也达到最大去除率60.3%;Zn在pH值为8时达到最大去除率20.5%。同时,批次实验还将鼠李糖脂与羟丙基环糊精HPCD、十二烷基硫酸钠(SDS)+乙二胺四乙酸(EDTA)对比去除污染物。结果表明, HPCD对重金属和PAHs的去除能力不如鼠李糖脂, SDS+EDTA对重金属的去除效率高于鼠李糖脂,但是对PAHs的去除能力较鼠李糖脂弱。
     依据批次实验的结论,在土柱实验中,以2%的鼠李糖脂(pH=8)淋洗污染土壤。经过三轮淋洗, Pb、Zn、Cu的去除率分别达到85.6%、74%和63.7%,第一轮与第二轮之间Pb、Zn、Cu淋洗去除率增幅分别为25.4%、36.6%、18%;第二轮与第三轮之间Pb、Zn、Cu淋洗去除率增幅分别为16.7%、22%、20.1%,表明随着淋洗次数增加,每阶段能去除的污染物逐渐减少。经过三轮淋洗, PAHs的去除率非常高,如萘的去除率高达98%,对于难去除的6环PAHs的去除率也达到70%。随着苯环数的增加,第一轮的解吸率逐渐降低,第二轮和第三轮的淋洗对4环、5环和6环的PAHs作用更为显著。随着环数增加,辛醇-水分配系数(Kow)逐渐增加,化合物疏水性增强,去除难度增加,即PAHs淋溶率与其lgKow之间存在相关性。
     虽然原理上土柱法与批次实验法都是利用鼠李糖脂去除PAHs和重金属,但是二者在运行过程中会有很大的差别,故研究了上述两种运行模式。总体而言,鼠李糖脂可有效去除自然界土壤中的复合污染物,对实际污染土壤的修复具有重要的参考价值。
Contamination of soil environment by toxic metals and organic compounds is widely recognized as one of the major concern because of the potential health hazard they may pose for humans. The presence of these contaminants can destroy the balance in the natural habitat. Therefore, there is a need for remediation to mitigate these effects on humans and the environment at large. This paper presented laboratory batch and column experiments to evaluate the ability of tipical biosurfactant rhamnolipid to simultaneously remove heavy metals and low-polarity organic compounds US EPA’s 16 priority-pollutant PAHs (polycyclic aromatic hydrocarbon) from contaminated soil.
     The contaminated soil was obtained from the outlet of Jingzhu highway contained 86% sand, 8% fines, 0.42% organic matter and high concentrations of total PAHs (1573mg/kg), lead (395.2 mg/kg), zinc (282.6 mg/kg) and copper (98.5mg/kg).
     Batch leaching tests were conducted at different concentrations and pH to determine the mechanisms controlling heavy metals and PAHs release and optimize the conditions of removing pollutants. The combination of SDS (sodium dodecyl sulfate) and EDTA(ethylenediamine tetra acetic acid), HPCD (hydroxypropyl-β-cyclodextrin ) were investigated to compare with rhamnolipid. The results showed that different concentrations were significantly influenced removal efficiencies. The maxium tatal PAHs remval efficiency (66.8%) was obtained with 4% rhamnolipid; in addition, the maxium removal efficiency on lead (66.7%), zinc (50.5%) and copper (48.5%) was also obtained with 4% rhamnolipid. The maxium zinc remival (20.5%) was obtained with 2%rhamnolipid at pH 8.0; highest lead (79.5%) and copper (35.5%) and total PAHs ( 60.3%) removal was obtained with 2% rhamnolipid at pH 10.0. It was observed that HPCD was less effective than rhamnolipid; the combination SDS (sodium dodecyl sulfate) with EDTA was found to be more effective than rhamnolipid in removing of heavy metals.
     According to batch leaching tests, column experiments carried out with 2% rhamnolipid at pH 8.0. The results showed that after a series of three washings of the soil using biosurfactant; the highest removal of lead, zinc and copper was 85.6%, 74% and 63.7%, respectively. As for PAHs, from 70% to 98% of PAHs were removed in three-stage solvent washing. The desorption effiency of high rings of PAHs was higher than the lower rings. Desorption ratio in the first stage was increased and the desorption ratio in the second; third stages were decreased with the increasing of the rings of PAHs. PAHs desorption ratio associated with octanol-water partition coefficient (Kow).
     The results of the experiments showed that rhamnolipid could greatly enhance the simultaneous desorption and elution of the model organic compound (PAHs) and the model heavy metal (lead, zinc and copper) from the soil examined.
引文
[1] 周启星,于颖,宋玉芳,等.污染土壤修复原理与方法.北京:科学出版社社,2004:121-122,235-238
    [2] 陈怀满.土壤-植物系统中的重金属污染.北京:科学出版社,1996:22-23
    [3] 陈怀满.环境土壤学.北京:科学出版社,2005:101-102
    [4] 叶常明,王春霞,金龙珠.21 世纪的环境化学.北京:科学出版社,2004:225-226
    [5] Tessier A, Campbell P, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 1979, 51(7): 844-851
    [6] 戴树桂.环境化学进展.北京:化学工业出版社,2005:351-352
    [7] Noordman W H, Buining J W, Wietzes, et al. Facilitated transport of a PAH mixture by a rhamnolipid biosurfactant in porous silica matrices. Journal of Contamination Hydrology, 2000, 144(1): 119-140
    [8] 武晓锋,唐杰,藤间幸久.土壤、地下水中有机污染物的就地处理.环境污染治理技术与设备,2000,4(1):46-51
    [9] Semer R, Reddy K. Evaluation of soil washing process to remove mixed contami nants from a sandy loam. Journal of Hazardous Materials, 1996, 45(1): 45-47
    [10] Sleep B E, Mcclure P D. Removal of volatile and semivolatile organic contamination from soil by air and stream flushing. Journal of Contaminant Hydrology, 2001, 50(1): 21-40
    [11] 周东美,王慎强,陈怀满.土壤有机污染物重金属复合污染的交互作用.土壤与环境,2000,9(2):143-145
    [12] 王连生.有机污染化学.北京:科学出版社,1990:150-151
    [13] Naidur M, Kookanar S, Sumner M, et al. Cadmium sorption and transport in variable charge soils a review. Journal of Environment Quality, 1997, 26(5): 602-617
    [14] Cai Y, Jaffe B, Jones R. Ethymercury in the soils and sediments of the Floride evrglades. Environmental Science and Technology, 1997, 31(1): 302-305
    [15] Schroth B K, Sposito G. Effect of landfill leachate organic acids on trace metal adsorption by kaolinite. Environmental Science and Tehnology, 1998, 32(10): 1402 -1408
    [16] Deng B, Stone A T. Surface-catalyzed Chromium( Ⅵ ) reduction reactivity comparions of different organic reductants and different oxide surfaces.Environmental Science and Tehnology, 1996, 30(8): 2484-2494
    [17] A C Norrstrom, G Jacks. Concentration and fractionation of heavy metals in road side soils receiving deicing salts. The Science of the Total Environment, 1998, 218(2): 161-174
    [18] 周启星.复合污染生态学.北京:中国环境科学出版社,1995:4-5
    [19] Christophe Viglianti, Khalil Hanna, Christine Brauer, et al. Removal of polycyclic aromatic hydrocarbons from aged-contaminated soil using cyclodextrins: experimental study. Environmental Pollution, 2006, 140(3): 427-435
    [20] Khank S, Hung C Y. Effect of acetate on lead activity to microbial biomass in a red soil. Journal of Environment Science and Health, 1999, 11(1): 40-47
    [21] HiroYukih. Decomposition of organic matter with previous cadmium adsorption in soils. Soil Science and Plant Nutrition, 1994, 42(4): 745-752
    [22] 方晓航,仇荣亮.有机螯合剂在镍污染土壤植物修复中的研究进展.环境污染治理技术与设备,2002, 3 (10):1-5
    [23] Y Asfce, M Nurbas, Y Saga Acekel. Sorption of Cd(II) onto kaolin as a soil component and desorption of Cd(II) from kaolin using rhamnolipid biosurfactant.Journal of Hazardous Materials, 2007, 139 (1): 50-56
    [24] Sun B, Zhao F J, Lombi E, et al. Leaching of heavy metal from contaminated soil using EDTA. Environment Pollution, 2001, 113(2): 111-120
    [25] 可欣,李培军,巩宗强等.重金属污染土壤修复技术中有关淋洗剂的研究进展.生态学杂志,2004,23(5):145-149
    [26] 姜霞,高学晟,应佩峰等.表面活性剂的增溶作用及在土壤中的行为.应用生态学报,2003,14(11):2072-2076
    [27] 张天胜.生物表面活性剂及其应用.北京:化学工业出版社,2005:13-14
    [28] Howard J L, Sova J E. Sequential extraction analysis of lead in Michigan roadside soils: mobilization in the vadose zone by deicing salts. Journal of Soil Contamination, 1993, 2(8): 361-378
    [29] 中国科学院南京土壤研究所.土壤理化分析.上海:上海科学技术出版社.1980:55-56
    [30] 李永涛,吴启.土壤污染治理方法研究.农业环境保护,1997,16(1):118-122
    [31] Ick T Y, Mriganka M G, et al. Kinetic aspects of surfactant solubilization of soil-bound polycyclic aromatic hydrocarbons. Environmental Science and Technology, 1996, 30(5): 1589 -1595
    [32] Yang Y, Ratte D, Smets B F, et al. Mobilization of soil organic matter bycomplexing agents and implications for polycyclic aromatic hydrocarbon desorption. Chemosphere, 2001, 43(8): 1013-1021
    [33] 孙铁珩,周启星,李培军.污染生态学.北京:科学出版社,2001:59-61
    [34] Ma L Q, Rao G N. Chemical fractionation of cadmium, copper, nickel and zinc in contaminated soils. Journal of Environment Quality, 1997, 26(4): 259-264
    [35] Northcott G L, Kevin C J. Partitioning, extractability and formation of nonextractable PAH residues in soil 1.compound differences in aging and sequestration. Environmental Science and Tehnology, 2001, 35(6): 1103-1110
    [36] 何耀武,区自清,孙铁珩.多环芳烃类化合物在土壤上的吸附.应用生态学报,1995,6(4):423-427
    [37] Nelson T E. Polycyclic aromatic hydrocarbons in the terrestrial environment: a review. Journal of Environment Quality, 1983, 12(4): 427-441
    [38] 宋玉芳,许华夏,任丽萍. 两种植物条件下土壤中矿物油和多环芳烃的生物修复研究.应用生态学报, 2001,12(1):108-112
    [39] Wilcke W, Wolfgang Z, Jozef K. PAH-pools in soils along a PAH-deposition gradient. Environment Pollution, 1996, 92(3): 307-313
    [40] 占新华,周立祥.多环芳烃(PAHs)在土壤-植物系统中的环境行为.生态环境, 2003, 12(4): 487-492
    [41] 宋玉芳,区自清,孙铁珩.土壤、植物样品中多环芳烃(PAHs)分析方法研究. 应用生志学报,l995,6(1):92-96
    [42] Harrison R M, Laxen D P H, Wilson S J. Chemical associations of lead, cadmium, copper and zinc in street dusts and roadside soils. Environmental Science and Technology, 1981, 15(11): 1378-1383
    [43] 何勇,熊先哲.复合污染研究进展,环境科学,1994, 15 (6): 79-83
    [44] 沈国清,陆贻通,周培.土壤环境中重金属和多环芳烃复合研究进展.上海交通大学学报,2005,23(1):102-106
    [45] Hirner A V, Pestke F M, Busche U A, et al. Testing contaminant mobility in soils and waste materials. Journal of Geochemical Exploration, 1998, 64 (1): 127-132
    [46] Moreau C J, Klerks P L, Haas C N. Interaction between phenanthrene and zinc in their toxicity to the sheep shead minnow. Environment Contamination and Toxicology, 1999, 37(7): 251-257
    [47] Irha N, Slet J, Petersell V, et al. Effect of heavy metals and PAHs on soil as sessed via dehydrogen aseassay. Environment International, 2003, 28(7): 779-782
    [48] Stewart A R, Malley D F. Effect of metal mixture (Cu, Zn, Pb and Ni) oncadmium partitioning in littoral sediments and its accumulation by the fresh water macrophyte eriocaulon septangulare. Environment Toxicology and Chemistry, 1999, 18(3): 436-447
    [49] Gogolev A, Wilke B M. Combination effects of heavy metals and fluoranthene on soil bacteria. Biology Fertile Soils, 1997, 25(2): 274-278
    [50] Maliszewska Kordybach B, Smreczak B. Habitat function of agricultural soils as affected by heavy metals and polycyclic aromatic hydrocarbons contamination. Environment International, 2003, 28(10): 719-728
    [51] 龚平,李培军,孙铁珩. Cd,Zn,菲和多效唑复合污染土壤的微生物生态毒理效应.中国环境科学,1997,17(1):58-62
    [52] Shen H, Pritchard H, Sewell G. Microbial reduction of chromium during anaerobic degradation of benzoate. Environmental Science and Tehnology, 1996, 30(5): 1667-1674
    [53] 巩宗强,李培军,台培东等.污染土壤的淋洗法修复研究进展.环境污染治理技术与设备,2002, 3(7):45-50
    [54] Kuhlman M I, Greenfield T M. Simiplied washing for a variety of soils. Journal of Hazardous Materials, 1999, 66(1): 31-45
    [55] Semer R, Reddy K R. Evaluation of soil washing process to remove mixed contaminants from a sandy 1oam. Journal of Hazardous Materials, 1996, 45(1): 45- 57
    [56] 党志,于虹,黄伟林等.土壤/沉积物吸附有机污染物机理研究的进展.化学通报,2001,64(2):81-85
    [57] Reed B E, Carriere P C, Moore R. Flushing of a Pb(II) contaminated soil using HCl, EDTA, and CaCl2. Journal of Environment Engineering, 1996, 122(1): 48-50
    [58] Mulligan C N, Yong R N, Gibbs B F. Surfactant-enhanced remediation of contaminated soil: a review. Engineering Geology, 2001, 60(4): 371-380
    [59] 孙小峰,吴龙华,骆永明.有机修复剂在重金属污染土壤修复中的应用.应用生态学报,2006,17(6):1123-1128
    [60] Khodadoust A P, Bachi R, Suidan M T, et a1. Remova1 of PAHs from highly contaminated soils found at prior manufacture gas operations. Journal of H azardous Materials, 2000, 80(1): 159-174
    [61] Suling Wang, Catherine Mulligan. Rhamnolipid foam enhanced remediation of cadmium and nickel contaminated soil. Water, Air and Soil Pollution, 2004, 157(5): 315-330
    [62] 张永,廖柏寒,曾敏,等.表面活性剂在污染土壤修复中的应用.湖南农业大学学报.2007,33(3):348-352
    [63] 麦有斌,尹华,叶锦韶等.生物表面活性剂及其在环境修复中的研究进展.环境污染治理技术与设备,2006 ,7(12):5-9
    [64] 汤晓.铜绿假单胞菌高产鼠李糖脂及降解原油性能的研究:[浙江大学硕士学位论文].杭州:浙江大学,2006,10-11
    [65] Mulligan C N, Yong R N, Gibbs B F. Heavy metal removal from sediments by biosurfactants.Journal of Hazardous Materials, 2001, 85(3): 111-125
    [66] Tan H, Champion J T, Artiola J F, et a1. Complexation of Cadmium by a rhamnolipid biosurfactant. Environmental Science and Technology, 1994, 28(3): 2366-2371
    [67] Ochoa Loza F J, Artiola J F, Maier R M. Stability constants for the complexation of various metals with a rhamnolipid biosurfactant. Journal of Environment Quality, 2001, 30(2): 479-485
    [68] 周加样,刘铮.铬污染土壤修复技术研究进展.环境污染治理技术与设备,2000,4(1):51-55
    [69] 朱荫泥,周启星.土壤污染与我国农业环境保护的现状、理论和展望.土壤通报,1999,30 (3):132-135
    [70] Steinle P, Stucki G, Bachofen R, et al. Alkaline soil extraction and subsequent mineralization of 2,6-dichlorophenol in a fixed-bed bioreactor. Bioremediation Journal, 1999, 3(15): 223-232
    [71] Khodadoust A P, Bachi R, Suidan M T, et al. Removal of PAHs from highly contaminated soils found at prior manufacture gas operations. Journal of Hazardous Materials, 2000, 80(1): 159-174
    [72] Koran K M, Suidan M T, Khodadoust A P, et al. Effectiveness of anaerobic granular active carbon fluidized-bed bioreactor to treat soil wash fluids: a proposed strategy for remediating PCP/PAH contaminated soils. Water Research, 2001, 35(10): 2363-2370
    [73] 曾清如,廖柏寒,杨仁斌,等.EDTA 溶液萃取污染土壤中的重金属及其回收技术.中国环境科学,2003,23(6):597-600
    [74] A P Khodadoust, K R Reddy, K Maturi. Effect of different extraction agents on metal and organic contaminant removal from a field soil. Journal of Hazardous Materials, 2005, 117(1): 15-24
    [75] 陈静,王学军,胡俊栋等.表面活性剂对人工污染土壤装填土柱中 PAHs 迁移渗透的影响.环境科学,2005,26(2) :190-194
    [76] Malawska B, Wilkomirsli. An analysis of soil and plant (tarxacum officinale) contamination with heavy metals and polycyclic aromatic hydrocarbon (PAHs) in the area of the railway junction Ilawa Glowna, Poland. Water, Air and Soil Pollution, 2001, 127(2): 339-349
    [77] Sun S,Inskeep W P, Boyd S A. Sorption of nonionic organic compounds in soil-water systems containing a micelle-formign surfactnat. Environmental Science and Techno1ogy, 1995, 29(4): 903-913
    [78] 金海燕.表面活性剂对菲、花、苯并[a]芘在土坡中迁移的影响研究:[中国科学院沈阳应用生态研究所硕士学位论文].沈阳:中科院,1998, 4-6
    [79] Torrens J L, D C Herman, R M Miller. Biosurfactant (rhamnolipid) sorption and the impact on rhamnolipid facilitated removal of cadmium from various soils. Environmental Science and Technology, 1998, 32(6): 776-781
    [80] Sui Wang. Biosurfactant enhanced remediation of heavy metals contaminated soil:[for the degree of master at Concordia University].Montreal: Concordia University, 2003, 7-8
    [81] Pellel K D, AbrioL M, Weber W J. Surfactant-enhanced solubilization of residual dodecane in soil columns I experimental investigation. Environmental Science and Technology, 1993, 27(12): 2332-2340
    [82] Behnaz Dahr Azma. Extraction of copper from mining residues by rhamnolipids: [for the degree of master at Ccncordia University]. Montreal: Ccncordia University , 2002, 32-33, 78-80
    [83] Mulligan C N, Gibbs B F. Factors Influencing the Economics of Biosurfactants. Surfactant Science Series, 1993, 48(5): 329-371
    [84] Clementina Oghenekevwe Okoro. Biosurfactant enhanced remediation of a mixed soil: [For the degree of master at Concordia University]. Quebec: Concordia University, 2006, 66-68
    [85] Mulligan C N, Eftekhari F. Remediation with surfactant foam of PCP contaminated soil. Engineering Geology, 2003, 70(3): 269-279
    [86] Hong K J, Tokunaga S, Kajiuchi T. Evaluation of remediation process with plant-derived biosurfactant for recovery of heavy metals from contaminated soils. Chemosphere, 2002, 49(4): 379-387
    [87] Banat I M. Biosurfactants production and possible uses in enhanced oil recovery and oil pollution remediation: A review. Bioresource Technology, 1995, 51(1): 1-12
    [88] Dahrazma B. Removal of Heavy Metals from Sediments by Rhamnolipid: [forthe degree of doctor at Concordia University]. Montreal: Concordia University, 2005, 67-68
    [89] Weihua Zhang, Daniel C, W T sang. Removal of Pb and MDF from contaminated soils by EDTA and SDS enhanced washing. Chemosphere, 2007, 66(11): 2025-2034
    [90] David C Herman, Janick F Artiola, Raina M Miller. Removal of Cadmium, Lead, and Zinc from soil by a rhamnolipid biosurfactant. Environmental Science and Technology, 1995, 29(9): 2280-2285
    [91] 邵云,高士祥,伏彩中,等.环糊精和表面活性剂对土壤中 2-硝基联苯的解吸行为的影响.生态环境,2006,15(1):32-36
    [92] M K Chung, K C Cheung. Pollutants in Hong Kong soils: Polycyclic aromatic hydrocarbons. Chemosphere, 2007, 67(3): 464-473
    [93] Gibson M J, Farmer J G. Chemical partitioning of trace metal contaminants in urban street dirt. The Science of the Total Environment, 1984, 33(1): 49-57
    [94] Xiaojiang Wang, Mark Brusseau. Solubilization of some low-polarity organic compounds by hydroxypropyl-β-cyclodextrin. Environmental Science and Technology, 1993, 27(13): 2821-2825
    [95] 蒋煜峰,展惠英,袁建梅,等.表面活性剂强化 EDTA 络合洗脱污灌土壤中重金属的试验研究. 农业环境科学学报, 2006,25(1):119-123
    [96] Souhail R Al-Abed, G Jegadeesan, J Purandare, et al. Leaching behavior of mineral processing waste: comparison of batch and column investigations. Journal of Hazardous Materials, 2008, 153(3): 1088-1092
    [97] Catherine N Mulligan, Raymond N Yong, Bernard F Gibbs, et al. Metal removal from contaminated soil and sediments by the biosurfactant surfactin. Environmental Science and Technology, 1999, 33(21): 3812-3820
    [98] Catherine N Mulligan. Environmental applications for biosurfactants. Environmental Pollution, 2005, 133(2): 183-198
    [99] Beal R, Betts W B. Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. Journal of Applied Microbiology, 2000, 89(3): 158-168
    [100] Vipulanandan C, Ren X. Enhanced solubility and biodegradation of naphthalene with biosurfactant. Journal of Environmental Engineering, 2000, 126(5): 629-634
    [101] Mark L Brusseau, Xiaojiang Wang, Qinhong Hu. Enhanced transport of low polarity organic compounds through soil by cyclodextrin. EnvironmentalScience and Technology, 1999, 33(6): 952-956
    [102] Urum K, Pekdemir T, Gopur M. Optimum conditions for washing of crude oil contaminated soil with biosurfactant solutions. Chemical Engineering, 2003, 81(5): 203-209
    [103] Poggi-Varaldo H M, Rinderknecht-Seijas N. A differential availability enhance- ment factor for the evaluation of pollutant availability in soil treatments. Acta Biotechnologica, 2003, 23 (2): 271-280
    [104] Kyung-Hee Shin, Kyoung-Woong Kim. A biosurfactant-enhanced soil flushing for the removal of phenanthrene and diesel in sand. Environmental Geochemistry and Health, 2004, 26(5): 5-11
    [105] MT Alcantara, J Gomez, M Pazos. Combined treatment of PAHs contaminated soils using these quence extraction with surfactant electrochemical degradation. Chemosphere, 2008, 70(8): 1438-1444
    [106] 高士祥,高松亭,韩朔睽,等.表面活性剂清洗法在污染土壤修复中的应用.环境科学, 2000, 3(1): 84-86
    [107] Frederic Plassard, Thierry Winiarski, Michelle Petit-Ramel. Retention and distribution of three heavy metals in a carbonated soil: comparison between batch and unsaturated column studies. Journal of Contaminant Hydrology, 2000, 42(2): 99-111
    [108] Champion J T, Gilkey J C, Lamparski H, et a1. Electron microscopy of rham- nolipid (Biosurfactant) morphology: Effects of pH, Cadmium and octadecane. Journal of Colloid and Interface Science, 1995, 170(5): 569-574
    [109] Asha A, Juwarkar, Anupa Nair, et al. Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere, 2007, 68 (10): 1996-2002
    [110] 陈静,胡俊栋,王学军.混合溶剂解吸土壤中多环芳烃的研究.中国环境监测,2004,20(6):16-20
    [111] Gamerdonger A P, Achin R S, Traxler R W. Approximating the impact of sorption on biodegradation kinetics in soil-water systems. Soil Science Society of America Journal, 1997, 61(3):1618-1622
    [112] 高 士 祥 , 王 连 生 , 黄 庆 国 . 环 糊 精 对 多 环 芳 烃 的 增 溶 作 用 . 环 境 化 学 , 1998,17(4): 365-369
    [113] Yong-Jin Kim, Masahiro Osako. Leaching characteristics of polycyclic aromatic hydrocarbons (PAHs) from spiked sandy soil. Chemosphere, 2003, 50(3): 387-395

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700