掺杂铌酸锂晶体紫外带边光折变性质与缺陷结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铌酸锂晶体是一种优良的人工晶体,具有很多重要的性质,如声光效应、电光效应、压电效应、热电效应、光折变效应等等,在很多方面具有广泛的应用前景。然而,由于铌酸锂晶体具有特殊并且复杂的内部缺陷结构,尤其是它的紫外深能级结构更加复杂,人们对于它的很多宏观效应对应的微观结构仍然处在猜测的阶段,严重影响了铌酸锂晶体在紫外波段的应用。因此,在紫外波段尤其是紫外带边附近的相关研究对于搞清其基本缺陷结构和性质具有重要的意义。本论文通过对掺杂铌酸锂晶体紫外带边附近的光折变效应的研究以及紫外带边光谱结构的测量和分析等手段系统地研究了掺杂铌酸锂晶体的深能级缺陷结构及其光学性质。
     论文的第一章综述了铌酸锂晶体的基本物理性质、目前关于铌酸锂晶体的缺陷结构模型以及铌酸锂晶体的非线性效应及主要应用。
     第二章着重介绍了光折变非线性效应的基本理论与表征方法,包括光折变效应的物理机制及探测手段,并且对于紫外吸收谱的研究方法也做了较系统的介绍。
     第三章系统介绍了二价、三价掺杂铌酸锂晶体在325nm紫外带边附近的光折变效应。过去对紫外光折变效应的研究大多使用的是351nm激光,研究发现铌酸锂晶体的紫外光折变效应呈现出与可见光截然不同的结果,引起了人们的广泛关注。更短波长的紫外激光可以激发更深能级上的载流子,通过对掺镁、掺锌以及掺铟铌酸锂晶体的325nm紫外光折变效应的研究,发现在325nm,这些高掺杂铌酸锂晶体的紫外带边光折变效应明显强于351nm的结果。例如,在掺锌9mol%样品中,我们得到了高达38cm~(-1)的二波耦合增益以及高达37.7cm/J的灵敏度;而掺镁9mol%样品的光折变记录响应时间只有73ms,也是目前铌酸锂晶体中测得的最短的响应时间。这些结果都说明,对于这些高掺杂样品,325nm是光折变全息存储的极为适宜的波段。通过对镁铁双掺铌酸锂晶体紫外光折变效应的研究,我们发现铁的掺入可以显著地增强掺镁铌酸锂晶体的光折变全息存储性能。
     第四章系统研究了四价掺杂铌酸锂晶体——掺铪和掺锡铌酸锂晶体在325nm处的紫外带边光折变效应。发现与可见光的情况相反,同成分纯铌酸锂晶体在掺锡以后紫外光折变效应有了显著的提高。另外,掺铪也起到了促进紫外光折变效应的作用。我们的实验结果说明,掺铪铌酸锂晶体和掺锡铌酸锂晶体是很好的紫外光折变材料,因为它们具有低掺杂阈值,快响应速度,很强的抗光斑畸变能力和较高的衍射效率。
     第五章对于同成分掺镁、掺铪和掺锆的铌酸锂晶体以及近化学计量比铌酸锂晶体的紫外带边结构进行了光谱研究,并且运用Bose—Einstein单声子模型以及Urbach定则对实验结果进行了理论分析。实验发现所有样品的光谱都具有很强的温度依赖性,紫外带边的位置随温度的升高会产生明显的红移。无论是Bose-Einstein拟合还是Urbach拟合的结果都表明,当掺镁、掺铪或掺锆浓度超过阈值以后,与吸收有关的有效声子的能量明显下降,并且电子—声子相互作用强度也在阈值浓度以上突然减弱,这些拟合结果很好地从微观上解释了为什么当这些“抗光折变掺杂离子”的浓度超过阈值以后铌酸锂晶体的光电导显著增强,进而抑制了可见光波段处的光折变效应。另外,随着晶体中锂含量的增加,发现在近化学计量比铌酸锂晶体中与吸收有关的有效声子的平均能量也相对于同成分样品有明显的下降,并且它的电子—声子相互作用也有所减弱。随着晶体温度的降低,所有铌酸锂晶体的吸收边发生紫移,而且在带边附近出现新的紫外吸收带。该紫外吸收带覆盖了我们紫外光折变效应的实验波段(325nm)。并且,这个紫外吸收带的峰值高度与掺杂铌酸锂晶体紫外光折变效应的变化规律十分相似,因此有理由认为,这个紫外吸收带对应的缺陷结构在铌酸锂晶体的紫外光折变过程中起到了重要的作用。
     第六章总结了本论文的主要研究成果及其意义,并对未来的关于掺杂铌酸锂晶体缺陷结构的研究工作进行了展望。
Lithium niobate (LiNbO_3) is an excellent artificial crystal, which has manyimportant properties, such as acousto-optic, electro-optic, piezoelectric, pyroelectric,and photorefractive effects, etc. However, since the defect structure of LiNbO_3is veryunique and complicated, especially the ultraviolet (UV) deep level structures, manymicro-structure causes of the macro effects are still hypothesizes, which seriouslyhinder the development of the applications of LiNbO_3. Thus, the study in the UVregion especially that near to the UV band edge is very important in figuring out thefundamental defect structures of the crystal. In this dissertation, we systemicallystudied the optical properties of a variety of doped LiNbO_3samples and the relatedpossible deep level defect structures through the UV band edge photorefractivity andthe UV band edge absorption spectra structures.
     In chapter one, we introduced the basic physical properties of LiNbO_3. Then,presented several important models of defect structures of LiNbO_3, and gave a briefview of the nonlinear optical effects and the important applications of LiNbO_3.
     In chapter two, the fundamental theory of the photorefractive effect and itscharacterization were introduced, including the mechanism of photorefractive effectand the methods of detection. The detailed methods to study the absorption spectranear to the UV band edge were mentioned as well.
     In chapter three, the UV photorefractive properties of LiNbO_3samples doped withbivalent and trivalent dopants are systemically studied at325nm. In the past, most ofthe studies on the UV photorefractivity of LiNbO_3were carried out at the wavelengthof351nm, and people have found that the UV photorefractivity of doped LiNbO_3arequite different from the photorefractivity in the visible, which has attracted a lot ofattentions. Photons with a shorter wavelength are able to excite charge carriers ofdeeper levels. It was found that the UV photorefraction at325nm is enhanced muchmore signifcantly than that at351nm in LiNbO_3doped with Mg, Zn, and In. Forexample, two-wave coupling gain coeffcient as large as38cm1and a high photorefractive recording sensitivity of37.7cm/J were obtained in LiNbO_3dopedwith9.0mol%Zn. And a short response time of73ms was observed in LiNbO_3doped with9.0mol%Mg, which was the shortest response time reported in LiNbO_3so far. The results indicate that, in LiNbO_3doped with Mg, Zn, or In, the325nm is anexcellent wavelength for holographic storage. What’s more, doubly dopingMg:LiNbO_3crystal with Fe was found to improve the UV holographic storageproperties signifcantly.
     In chapter four, the UV photorefractive properties of LiNbO_3samples doped withtetravalent dopants such as Hf and Sn are systemically studied at325nm. On thecontrary of the result in visible, as the concentration of Sn increased, the UVphotorefractivity of LiNbO_3:Sn was improved significantly. On the other hand, theUV photorefractivity of LiNbO_3:Hf was also improved thanks to the tetravalentdopant Hf. Our experimental results suggested that LiNbO_3:Hf and LiNbO_3:Sn arepromising UV photorefractive materials with the advantages of low dopingconcentration, fast response speed, strong resistance to beam distortion, andacceptable diffraction efficiency.
     In chapter five, we studied the absorption spectra structure of the UV band edgeof LiNbO_3:Mg, LiNbO_3:Hf, and LiNbO_3:Zr with congruent composition andnominally pure LiNbO_3with both congruent and near-stoichiometric composition.The Bose-Einstein oscillator model and the Urbach law were used to analyze theexperimental results theoretically. The absorption band edge was found to bered-shifted significantly with the increase of crystal temperature in all LiNbO_3samples. As the results fitted by the Bose-Einstein expression and the Urbach lawsuggested, there was a significant drop in the average phonon frequency associatedwith the band edge absorption when the doping concentration of Mg, Hf, or Zrexceeds the threshold. The electron-phonon interaction was also weakened abovedoping threshold. The reduction in the electron-phonon interaction would lead to theincrease in the photoconductivity, which finally resulted in the suppression of opticaldamage in visible in LiNbO_3highly doped with these―anti-optical-damge dopants‖.What’s more, there was also a considerable reduction in the average energy of activephonons and electron-phonon interaction in near-stoichiometic LiNbO_3compared with the congruent ones. As the crystal temperature went down near to the cryogenictemperature, an absorption shoulder covering the wavelength of325nm showed up inall our samples. And the behavior of the height of the absorption peaks were quitesimilar to the observed UV band edge photorefractive properties, so it is reasonable todeduce that it is the defect structure corresponding to this absorption shoulder that isresponsible for the UV band edge photorefractive process in our LiNbO_3samples.
     In chapter six, we summarized our work in this dissertation, and then presentedour plans for the further research on the exploration of defect structures in dopedLiNbO_3.
引文
[1]孔勇发,许京军,张光寅,等.多功能光电材料——铌酸锂晶体.北京:科学出版社,2005.
    [2] Tatyana Volk and Manfred W hlecke. Lithium Niobate Defects, Photorefraction andFerroelectric Switching. Berlin: Springer,2008.
    [3]http://www.nature.com/cgi-taf/gateway.taf?g=3&file=/materials/month/articles/m021031-6.html.
    [4] S.C. Abrahams, W.C. Hamilton, and J.M. Reddy. Ferroelectric lithium niobate.5. PolycrystalX-ray diffraction study between24°and1200°C. Journal of Physics and Chemistry of Solids,1966,27(6–7):1019-1026.
    [5] S.C. Abrahams, E. Buehler, W. C. Hamilton, et al. Ferroelectric lithium tantalate—III.Temperature dependence of the structure in the ferroelectric phase and the para-electric structureat940°K. Journal of Physics and Chemistry of Solids,1973,34(3):521-532.
    [6] R.S. Weis, and T.K. Gaylord. Lithium niobate: Summary of physical properties and crystalstructure. Applied Physics A: Materials Science&Processing,1985,37(4):191-203.
    [7] H. Boysen, and F. Altorfer, A neutron powder investigation of the high-temperature structureand phase transition in LiNbO3. Acta Crystallographica Section B,1994,50(4):405-414.
    [8] E. Schempp, G.E. Peterson, and J.R. Carruthers.93Nb Nuclear Quadrupole ResonanceInvestigation of LiNbO3. The Journal of Chemical Physics,1970,53(1):306-311.
    [9] V. V. Zhdanova, V.P.Klyev, and V. V. Lemanov, et al. Fiz. Tverd. Tela.. Soviet Physics SolidState1968,10(1725):1360-1364.
    [10] P.K. Gallagher, and H.M. O'Bryan, Characterization of LiNbO3by Dilatometry and DTA.Journal of the American Ceramic Society,1985,68(3):147-150.
    [11] D. Redfield, W.J.Burke. Optical absorption edge of LiNbO3. Journal of Applied Physics,1974,45(10):4566-4571.
    [12] R.L. Byer, J.F. Young, and R.S. Feigelson. Growth of High-Quality LiNbO3Crystals fromthe Congruent Melt. Journal of Applied Physics,1970,41(6):2320-2325.
    [13] H.M. O'Bryan, P.K. Gallagher, and C.D. Brandle. Congruent Composition and Li-Rich PhaseBoundary of LiNbO3. Journal of the American Ceramic Society,1985,68(9):493-496.
    [14] B.C. Grabmaier, W. Wersing, and W. Koestler. Properties of undoped and MgO-dopedLiNbO3; correlation to the defect structure. Journal of Crystal Growth,1991,110(3):339-347.
    [15] H. Fay, W. J. Alford, and H.M. Dess. Dependence of second-harmonic phase-matchingtemperature in LiNbO3crystals on melt composition. Applied Physics Letters,1968,12(3):89-92.
    [16] P. Lerner, C. Legras, and J.P. Dumas. Stoechiométrie des monocristaux de métaniobate delithium. Journal of Crystal Growth,1968,3–4(0):231-235.
    [17] L. Kovács, and K. Polgár. Density Measurements on LiNbO3Crystals Confirming NbSubstitution for Li. Crystal Research and Technology,1986,21(6): K101-K104.
    [18] N. Iyi, K. Kitamura, F. Izumi, et al. Comparative study of defect structures in lithium niobatewith different compositions. Journal of Solid State Chemistry,1992,101(2):340-352.
    [19] G.E. Peterson, and A. Carnevale.93Nb NMR Line widths in Nonstoichiometric LithiumNiobate. The Journal of Chemical Physics,1972,56(10):4848-4851.
    [20] G. Malovichko, V. Grachev, and O. Schirmer. Interrelation of intrinsic and extrinsic defects–congruent, stoichiometric, and regularly ordered lithium niobate. Applied Physics B: Lasers andOptics,1999,68(5):785-793.
    [21] A.P. Wilkinson, A.K. Cheetham, and R.H. Jarman. The defect structure of congruentlymelting lithium niobate. Journal of Applied Physics,1993,74(5):3080-3083.
    [22] N. Zotov, H. Boysen, F. Frey, et al. Cation substitution models of congruent LiNbO3investigated by X-ray and neutron powder diffraction. Journal of Physics and Chemistry of Solids,1994,55(2):145-152.
    [23] J. Blümel, E. Born, and T. Metzger. Solid state NMR study supporting the lithium vacancydefect model in congruent lithium niobate. Journal of Physics and Chemistry of Solids,1994,55(7):589-593.
    [24] S. Kojima. Composition Variation of Optical Phonon Damping in Lithium Niobate Crystals.Japanese Journal of Applied Physics.1993,32:4373.
    [25] O.F. Schirmer, O. Thiemann, and M. W hlecke. Defects in LiNbO3--I. experimental aspects.Journal of Physics and Chemistry of Solids,1991,52(1):185-200.
    [26] H.J. Donnerberg, S.M. Tomlinson, and C.R.A. Catlow. Defects in LiNbO3—II. Computersimulation. Journal of Physics and Chemistry of Solids,1991,52(1):201-210.
    [27] O.F. Schirmer, and D. von der Linde, Two-photon-and x-ray-induced Nb4+and O-smallpolarons in LiNbO3. Applied Physics Letters,1978,33(1):35-38.
    [28] G.Q. Zhang, and Y. Tomita. Broadband absorption changes and sensitization of near-infraredphotorefractivity induced by ultraviolet light in LiNbO3: Mg. Journal of Applied Physics,2002,91(7):4177-4180.
    [29] L. Hesselink, S. S. Orlov, A. Liu, et al. Photorefractive materials for nonvolatile volumeholographic data storage. Science,1998,282(5391):1089-1094.
    [30] J.L. Ketchum, K. L. Sweeney, L. E. Halliburton, et al. Vacuum annealing effects in lithiumniobate. Physics Letters A,1983,94(9):450-453.
    [31]刘思敏,郭儒,许京军.光折变非线性光学及其应用.北京:科学出版社,2004.
    [32] S. Kar, S. Verma, and K.S. Bartwal. Growth Optimization and Optical Characteristics of FeDoped LiNbO3Crystals. CRYSTAL GROWTH&DESIGN,2008,8(12):4424–4427.
    [33] Kurz, H. and E. Kratzig. Spectroscopic investigation of the photorefractive recording anderasure process in LiNbO3: Fe. Applied Physics Letters,1975,26(11):635-637.
    [34] G G Zhong, J.Jin, Z K Wu, Measurements of optically induced refractive index damage oflithium niobate doped with different concentrations of MgO. Proceeding of11th InternationalQuantum Electronic Conference, IEEE Cat.(Optical Society of America, Washington, D.C.),1980.80:631.
    [35] T. Volk, M. W hlecke, N. Rubinina, et al. Optical-damage-resistant impurities (Mg, Zn, In,Sc) in lithium niobate. Ferroelectrics,1996,183(1):291-300.
    [36] E.P. Kokanyan, L. Razzari, I. Cristiani, et al. Reduced photorefraction in hafnium-dopedsingle-domain and periodically poled lithium niobate crystals. Applied Physics Letters,2004.84(11):1880-1882.
    [37] L. Razzari, P. Minzioni, I. Cristiani, et al. Photorefractivity of Hafnium-doped congruentlithium--niobate crystals. Applied Physics Letters,2005,86(13):131914-3.
    [38] Y. F. Kong, S. G. Liu, Y. J. Zhao, et al. Highly optical damage resistant crystal:Zirconium-oxide-doped lithium niobate. Applied Physics Letters,2007,91(8):081908.
    [39] L. Z. Wang, S. G. Liu, Y. F. Kong, et al. Increased optical-damage resistance in tin-dopedlithium niobate. Optics Letters,2010,35(6):883-885.
    [40] J. J. Xu, G. Y. Zhang, F. F. Li, et al. Enhancement of ultraviolet photorefraction in highlymagnesium-doped lithium niobate crystals. Optics Letters,2000,25(2):129-131.
    [41] H.J. Qiao, J. J. Xu, G. Y. Zhang, et al. Ultraviolet photorefractivity features in doped lithiumniobate crystals. Physical Review B,2004,70(9):094101.
    [42] G. Y. Zhang, J. J. Xu, S. M. Liu, et al. SPIE,1995,2529:89.
    [43] G. Y.Zhang, Q. Sun, J. J. Xu, et al. SPIE,1996,2849:151.
    [44] D. Sun, J. Xiao, L. Zhang, et al. Study on the growth facets and ferroelectric domains innear-stoichiometric LiNbO3crystals. Journal of Crystal Growth,2004,262(1–4):240-245.
    [45] Y. Kondo, T. Fukuda, Y. Yamashita, et al. An Increase of More Than30%in the ElectroopticCoefficients of Fe-Doped and Ce-Doped Stoichiometric LiNbO3Crystals. Japanese Journal ofApplied Physics,2000,39:1477.
    [46] D.A. Bryan, R. Gerson, and H.E. Tomaschke, Increased optical damage resistance in lithiumniobate. Applied Physics Letters,1984,44(9):847-849.
    [47] K. Polgár, á. Péter, L. Kovács, et al. Growth of stoichiometric LiNbO3single crystals by topseeded solution growth method. Journal of Crystal Growth,1997,177(3–4):211-216.
    [48] F. Abdi, M. Aillerie, P. Bourson, et al. Electro-optic properties in pure LiNbO3crystals fromthe congruent to the stoichiometric composition. Journal of Applied Physics,1998,84(4):2251-2254.
    [49] C. Fischer, M. W hlecke, T. Volk, et al. Influence of the Damage Resistant Impurities Zn andMg on the UV-Excited Luminescence in LiNbO3. physica status solidi (a),1993,137(1):247-255.
    [50] M.C.Wengler, B. Fassbender, E. Soergel, et al. Impact of ultraviolet light on coercive field,poling dynamics and poling quality of various lithium niobate crystals from different sources.Journal of Applied Physics,2004,96(5):2816-2820.
    [51] C.L. Sones, M. C. Wengler, C. E. Valdivia, et al. Light-induced order-of-magnitude decreasein the electric field for domain nucleation in MgO-doped lithium niobate crystals. Applied PhysicsLetters,2005,86(21):212901-3.
    [52] G.D. Miller, R. G. Batchko, W. M. Tulloch, et al.42%-efficient single-pass cwsecond-harmonic generation in periodically poled lithium niobate. Optics Letters,1997,22(24):1834-1836.
    [53] D. Richter, D. G. Lancaster, R. F. Curl, et al., Compact mid-infrared trace gas sensor basedon difference-frequency generation of two diode lasers in periodically poled LiNbO3. AppliedPhysics B: Lasers and Optics,1998,67(3):347-350.
    [54] C. W. Hoyt, M. Sheik-Bahae, and M. Ebrahimzadeh. High-power picosecond opticalparametric oscillator based on periodically poled lithium niobate. Optics Letters,2002,27(17):1543-1545.
    [55] G.H. Ma, S. H. Tang, G. Kh Kitaeva, et al. Terahertz generation in Czochralski-grownperiodically poled Mg:Y:LiNbO3by optical rectification. J. Opt. Soc. Am. B,2006,23(1):81-89.
    [56] V. Berger. Nonlinear Photonic Crystals. Physical Review Letters,1998.81(19):4136-4139.
    [57] N.G.R. Broderick, G. W. Ross, H. L. Offerhaus, et al. Hexagonally Poled Lithium Niobate: ATwo-Dimensional Nonlinear Photonic Crystal. Physical Review Letters,2000,84(19):4345-4348.
    [58] J.W. Fleischer, Mordechai Segev, Nikos K. Efremidis, et al. Observation of two-dimensionaldiscrete solitons in optically-induced nonlinear photonic lattices. Optical Society of America.2003.
    [59] Y.S. Bai, and R. Kachru. Nonvolatile Holographic Storage with Two-Step Recording inLithium Niobate using cw Lasers. Physical Review Letters,1997,78(15):2944.
    [60] K. Buse, A. Adibi, and D. Psaltis. Non-volatile holographic storage in doubly doped lithiumniobate crystals. Nature,1998,393(6686):665-668.
    [61] G.Q. Zhang, Y. Tomita, W. S. Xu, et al. Nonvolatile two-color holography in indium-dopedlithium niobate. Applied Physics Letters,2000,77(22):3508-3510.
    [62] F.H. Mok. Angle-multiplexed storage of5000holograms in lithium niobate. Optics Letters,1993,18(11):915-917.
    [63] S. Tao, D.R. Selviah, and J.E. Midwinter. Spatioangular multiplexed storage of750holograms in an Fe:LiNbO3crystal. Optics Letters,1993,18(11):912-914.
    [64] M. Lee, S. Takekawa, Y. Furukawa, et al. Nonvolatile two-color holographic recording inTb-doped LiNbO3. Applied Physics Letters,2000,76(13):1653-1655.
    [65]方容川.固体光谱学.合肥:中国科学技术大学出版社,2001.
    [66] K. Polgár, L. Kovács, I.F ldvári, et al. Spectroscopic and electrical conductivityinvestigation of Mg doped LiNbO3single crystals. Solid State Communications,1986,59(6):375-379.
    [67] P.H. Günter, and Jean-Pierre. Photorefractive Materials and Their Applications I and II.Springer,1988.
    [68] K. Buse. Light-induced charge transport processes in photorefractive crystals I: Models andexperimental methods. Applied Physics B: Lasers and Optics,1997,64(3):273-291.
    [69] K. Buse. Light-induced charge transport processes in photorefractive crystals II: Materials.Applied Physics B: Lasers and Optics,1997,64(4):391-407.
    [70] N.V. Kukhtarev, V. B. Markov, S. G. Odulov, et al. Holographic storage in electroopticcrystals. II. beam coupling—light amplification. Ferroelectrics,1978,22(1):961-964.
    [71] N.V. Kukhtarev, V. B. Markov, S. G. Odulov, et al. Holographic storage in electroopticcrystals. i. steady state. Ferroelectrics,1978,22(1):949-960.
    [72] D.L. Staebler, and J.J. Amodei. Coupled-Wave Analysis of Holographic Storage in LiNbO3.Journal of Applied Physics,1972,43(3):1042-1049.
    [73] G.C. Valley. Erase rates in photorefractive materials with two photoactive species. AppliedOptics,1983,22(20):3160-3164.
    [74] G.A. Brost, R.A. Motes, and J.R. Rotge. Intensity-dependent absorption and photorefractiveeffects in barium titanate. Journal of the Optical Society of America B,1988,5(9):1879-1885.
    [75] P. Tayebati, and D. Mahgerefteh. Theory of the photorefractive effect for Bi12SiO20andBaTiO3with shallow traps. Journal of the Optical Society of America B,1991,8(5):1053-1064.
    [76] G.C. Valley, Simultaneous electron/hole transport in photorefractive materials. Journal ofApplied Physics,1986,59(10):3363-3366.
    [77] R. Orlowski, and E. Kr tzig. Holographic method for the determination of photo-inducedelectron and hole transport in electro-optic crystals. Solid State Communications,1978,27(12):1351-1354.
    [78] G. C. Valley and M. B. Klein. Optimal properties of photorefractive materials for optical dataprocessing. Optical Engineering,1983,22:704-711.
    [79] H. Kogelnik. Coupled wave theory for thick hologram gratings. The Bell System TechnicalJournal,1969,48:2909-2947.
    [80] F.H. Mok, G.W. Burr, and D. Psaltis. System metric for holographic memory systems. OpticsLetters,1996,21(12):896-898.
    [81] L. Solymar, D. J. Webb, and A. Grunnet-Jepsen. The Physics and Applications ofPhotorefractive Materials. New York: Oxford University Press,1996.
    [82] P. Yeh. Two-wave mixing in nonlinear media. IEEE Journal of Quantum Electronics,1989,25(3):484-519.
    [83] L. Kovacs, G. Ruschhaupt, K. Polgar, et al. Composition dependence of the ultravioletabsorption edge in lithium niobate. Applied Physics Letters,1997,70(21):2801-2803.
    [84] U. Schlarb, and K. Betzler. Refractive indices of lithium niobate as a function of temperature,wavelength, and composition: A generalized fit. Physical Review B,1993.48(21):15613-15620.
    [85] T. R. Volk, N. V. Razumovski, A. V. Mamaev, et al. Hologram recording in Zn-dopedLiNbO3crystals. Journal of the Optical Society of America B,1996,13(7):1457-1460.
    [86] X. J. Chen, D. S. Zhu, B. Li, et al. Fast photorefractive response in strongly reducednear-stoichiometric LiNbO3crystals. Optics Letters,2001,26(13):998-1000.
    [87] Y. Guo, Y. Liao, L. Cao, et al. Improvement of photorefractive properties and holographicapplications of lithium niobate crystal. Optics Express,2004,12(22):5556-5561.
    [88] S. Q. Li, S. G. Liu, Y. F. Kong, et al. Enhanced photorefractive properties of LiNbO3: Fecrystals by HfO2codoping. Applied Physics Letters,2006.89(10):101126.
    [89] Y. F. Kong, S. Q. Wu, S. U. Liu, et al. Fast photorefractive response and high sensitivity ofZr and Fe codoped LiNbO3crystals. Applied Physics Letters,2008.92(25):251107.
    [90] W. Zheng, B. Liu, J. Bi, et al. Holographic associative memory by phase conjugate offour-wave-mixing in Sc:Fe:LiNbO3crystal. Optics Communications,2005,246(4–6):297-301.
    [91] G. Q. Zhang, Z. G. Zhang, S. M. Liu, et al. The threshold effect of incident light intensity forthe photorefractive light-induced scattering in LiNbO3:Fe,M (M=Mg2+, Zn2+, In3+) crystals.Journal of Applied Physics,1998,83(8):4392-4396.
    [92] T. R. Volk, and N. M. Rubinina. A new optical damage resistant impurity in lithium niobatecrystals: Indium. Ferroelectrics Letters Section,1992,14(1-2):37-43.
    [93] H. Qiao, J.Xu, Q. Wu, et al. The enhancement photorefractive sensitivity in Indium-dopedlithium niobate crystal. SPIE,2002,4930(30):110.
    [94] G. Q. Zhang, S. Sunarno, M. Hoshi, et al. Characterization of Two-Color HolographyPerformance in Reduced LiNbO3:In. Applied Optics,2001,40(29):5248-5252.
    [95] G. Q. Zhang, Y. Tomita, X. Z. Zhang, et al. Near-infrared holographic recording withquasi-nonvolatile readout in LiNbO3: In,Fe. Applied Physics Letters,2002,81(8):1393-1395.
    [96] R. Jungen, G. Angelow, F. Laeri, et al. Efficient ultraviolet photorefraction in LiNbO3.Applied Physics A: Materials Science& Processing,1992,55(1):101-103.
    [97] F. Laeri, R. Jungen, G. Angelow, et al. Photorefraction in the ultraviolet: Materials andeffects. Applied Physics B: Lasers and Optics,1995,61(4):351-360.
    [98] M. Lee, S. Takekawa, Y. Furukawa, et al. Photochromic effect in near-stoichiometric LiNbO3and two-color holographic recording. Journal of Applied Physics,2000,88(8):4476-4485.
    [99] M. Lee, S. Takekawa, Y. Furukawa, et al. Quasinondestructive Holographic Recording inPhotochromic LiNbO3. Physical Review Letters,2000,84(5):875-878.
    [100] V. S. Vikhnin, S. Kapphan, and J. Seglins. Temperature induced red shift of the UVfundamental absorption edge in ferroelectric oxide crystals: effect of charge transfer vibronicexcitons. Radiation Effects and Defects in Solids: Incorporating Plasma Science and PlasmaTechnology,1999,150(1):109-114.
    [101] V. S. Vikhnin, R. I. Eglitis, S. E. Kapphan, et al. Polaronic-type excitons in ferroelectricoxides: Microscopic calculations and experimental manifestation. Physical Review B,2002,65(10):104304.
    [102] V. S. Vikhnin, A. A. Kaplyanskii, A. B. Kutsenko, et al."Charge transfer-lattice" clustersinduced by charged impurities. Journal of Luminescence,2001,94-95:775-779.
    [103] W. B. Yan, L. H. Shi, H. J. Chen, et al. Investigations on the UV photorefractivity ofLiNbO3:Hf. Optics Letters,2010,35(4):601-603.
    [104] F. C. Liu, Y. F. Kong, W. Li, et al. High resistance against ultraviolet photorefraction inzirconium-doped lithium niobate crystals. Optics Letters,2010,35(1):10-12.
    [105] S. Sunarno, Y. Tomita, G. Q. Zhang, Light-induced absorption changes in In-dopedcongruent LiNbO3. Applied Physics Letters,2002,81(24):4505-4507.
    [106] D. Conradi, C. Merschjann, B. Schoke, et al. Influence of Mg doping on the behaviour ofpolaronic light-induced absorption in LiNbO3. physica status solidi,2008,2(6):284–286.
    [107] H. Qiao, and Y. Tomita, Ultraviolet-light-induced absorption changes in highly Zn-dopedLiNbO3. Optics Express,2006,14(12):5773-5778.
    [108] M. Muller, E. Soergel, and K. Buse, Influence of ultraviolet illumination on the polingcharacteristics of lithium niobate crystals. Applied Physics Letters,2003,83(9):1824-1826.
    [109] J. M. DrDomenico, and S.H. Wemple. Oxygen-Octahedra Ferroelectrics. I. Theory ofElectro-optical and Nonlinear optical Effects. Journal of Applied Physics,1969,40(2):720-734.
    [110] C. Kittel. Introduction to Solid State Physics. New York:6th Edition, John Wiley&Sons,Inc.1986.
    [111] F. Urbach. The Long-Wavelength Edge of Photographic Sensitivity and of the ElectronicAbsorption of Solids. Physical Review,1953,92(5):1324.
    [112] X. Li, Y. Kong, H. Liu, et al. Origin of the generally defined absorption edge ofnon-stoichiometric lithium niobate crystals. Solid State Communications,2007,141(3):113-116.
    [113] S. Cabuk, and A. Mamedov. Urbach rule and optical properties of the LiNbO3and LiTaO3.Journal of Optics a-Pure and Applied Optics,1999,1(3):424-427.
    [114] S. Cabuk, and A. Mamedov. A Study of the LiNbO3and LiTaO3Absorption Edge. TurkishJournal of Physics,1998,22:41-45.
    [115] J.D. Dow, and D. Redfield, Toward a Unified Theory of Urbach's Rule and ExponentialAbsorption Edges. Physical Review B,1972,5(2):594.
    [116] G.D. Cody, T. Tiedje, B. Abeles, et al. Disorder and the Optical-Absorption Edge ofHydrogenated Amorphous Silicon. Physical Review Letters,1981,47(20):1480.
    [117] B. Abay, H. S. Güder, H Efeo lu, et al. Excitonic absorption and Urbach-Martienssen's tailsin Er-doped and undoped n-type InSe. Journal of Physics D: Applied Physics,1999,32(22):2942.
    [118] A.H. Kahn, and A.J. Leyendecker, Electronic Energy Bands in Strontium Titanate. PhysicalReview,1964,135(5A): A1321.
    [119] Y. Repelin, E. Husson, F. Bennani, et al. Raman spectroscopy of lithium niobate and lithiumtantalate. Force field calculations. Journal of Physics and Chemistry of Solids,1999,60(6):819-825.
    [120] S.D. Ross, The vibrational spectra of lithium niobate, barium sodium niobate and bariumsodium tantalate. Journal of Physics C: Solid State Physics,1970,3(8):1785.
    [121] R. Claus, G. Borstel, E. Wiesendanger, et al. Assignments of Optical Phonon Modes inLiNbO3. Physical Review B,1972,6(12):4878.
    [122] N. Iyi, K. Kitamura, Y. Yajima, et al. Defect Structure Model of MgO-Doped LiNbO3.Journal of Solid State Chemistry,1995,118(1):148-152.
    [123] P. Herth, T. Granzow, D. Schaniel, et al. Evidence for Light-Induced Hole Polarons inLiNbO3. Physical Review Letters,2005,95(6):067404.
    [124] F. Jermann, M. Simon, and E. Kr tzig. Photorefractive properties of congruent andstoichiometric lithium niobate at high light intensities. Journal of the Optical Society of AmericaB,1995,12(11):2066-2070.
    [125] K. Kitamura, Y. Furukawa, Y. Ji, et al. Photorefractive effect in LiNbO3crystals enhancedby stoichiometry control. Journal of Applied Physics,1997,82(3):1006-1009.
    [126]乔海军.掺杂铌酸锂晶体中弱光非线性光学效应及其应用的研究:[博士学位论文].天津:南开大学,2003.
    [127] F. Mok, and D.Psaltis. Holographic Memories. Scientific American,1995,273:70–76.
    [128] P. Yeh. Fundamental limit of the speed of photorefractive effect and its impact on deviceapplications and material research. Appled Optics,1987,26(4):602-604.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700