我国大豆花叶病毒的株系分化、P3基因序列特征以及大豆对强毒株系抗病基因的标记定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆花叶病毒(Soybean Mosaic Virus, SMV)病是一种主要的世界性大豆病毒病害。在与寄主长期互作的过程中,SMV发生了致病性分化,产生了不同的致病类型,即株系。在我国,以往的研究者各自采用了不同的鉴别寄主体系,划分的株系缺乏可比性,给抗病信息和抗性材料的交流带来困难。有的鉴别寄主体系的株系划分过细,不利于实际育种研究。因此,本研究将利用前人收集得到的SMV分离物和株系,通过在相对较一致的环境下接种鉴定,依据寄主的症状稳定性进一步精选鉴别寄主,最终构建一套更完善的鉴别寄主体系,从而调整全国大豆花叶病毒株系;比较三种不同保存方法对SMV株系的保存效果,寻找一种适合SMV长期保存的方法;从病毒分子水平,分析SMV的P3序列差异及其与致病性的关系;针对强毒株系进行抗源筛选,研究抗病品种对强毒株系的抗性遗传规律以及抗病基因的分子标记定位。主要结果如下:
     1.我国大豆花叶病毒株系的分化
     (1)根据来自全国23个省市的310份SMV分离物和4个株系在王修强-杨雅麟-战勇确定的10个鉴别寄主上的抗/感反应,归类得到24个株系。经与前人鉴定结果比较,有149份分离物在10个鉴别寄主上的抗/感反应完全一致,其余分离物在个别鉴别寄主上的抗/感反应存在差异。通过比较10个鉴别寄主的症状稳定性,最终确定将其中7个(南农1138-2、诱变30、Davis、早熟18、Kwanggyo、齐黄1号和科丰1号)组成一套简化的鉴别寄主体系,从而将我国SMV调整为16个株系,并命名为C1-C16。调整后,原SC体系的21个株系,除株系SC17因涉及另一鉴别寄主外,其他株系均归到调整后的C体系中。株系地理分布表明,弱毒株系C1和强毒株系C16分布范围最广,遍及6个大豆品种生态区,而株系C3、C12和C13分别仅分布于生态区Ⅱ、Ⅱ和Ⅴ。
     (2)选用4份SMV分离物在低温(-40℃)、超低温(-80℃)和液氮(-196℃)三种保存方法下,保存3个月、8个月和15个月。在南农1138-2上接种、鉴定,以发病率为指标,保存3个月时,三种保存方法下的各分离物的保存效果无明显差异;保存8个月和15个月,三种保存方法对各分离物的保存效果有差异,且株系间不同分离物的保存效果有显著差异。三种保存方法均能保持SMV的长期保存,其中液氮效果最佳。
     2.我国大豆花叶病毒株系P3基因的序列特征
     (3)从C1-C16中每株系取1-3个分离物进行P3基因测序,结果表明,P3基因均编码347个氨基酸。23个分离物间核苷酸及氨基酸的同源性分别为90.5%-100%和94.5%~100%;系统发育分析和多重序列分析表明,株系致病性的强弱与其P3基因的序列差异未发现有相关性。
     与SMV其他分离物P3序列同源性比较结果,中国和韩国的SMV P3序列同源性相对较高(核苷酸92.4%-98.9%,氨基酸96.0%-100%),和美国SMV的P3序列同源性相对较低(核苷酸88.5%-97.9%,氨基酸91.4%-98.6%);与文献报道为SMV的从半夏(Pinellia ternata)得到的分离物比较结果,同源性明显低于从大豆叶片分离得到的SMV分离物(核苷酸80.4%-85.2%,氨基酸82.1%-84.7%),因而对该分离物是否为SMV提出异议。
     与其他16种Potyvirus病毒的P3序列同源性以及系统发育树分析显示,SMV与西瓜花叶病毒的同源性最高(核苷酸76.0%-81.9%,氨基酸77.5%-85.3%),亲缘关系最近;与花生斑驳病毒、甜菜花叶病毒和落葵皱叶嵌纹病毒的同源性最低(核苷酸44.4%-54.3%,氨基酸21.4%-28.8%),亲缘关系较远。从氨基酸多重序列分析显示,P3序列在种内高度保守,而在种间相对可变,尤其是C端区域。
     3.大豆对大豆花叶病毒强毒株系C16的抗源筛选、遗传和抗性基因标记定位
     (4)鉴于SMV强毒株系C16可侵染全部鉴别寄主,从205份来自该株系有分布的湖南、湖北、江西等17个省份(或国家)的大豆材料中鉴定、筛选到具有抗性的RN-9、89-29、大绿豆、赣豆1号、晋大53、南农87-23、通山薄皮黄豆甲、皖82-178、早16号和矮秆黄等10个抗源。
     (5)对RN-9(抗病)×7605(感病)杂交组合的P1、P2、F1、F2和重组自交家系(RIL)接种鉴定结果,F1表现抗病,F2和200个RIL表现抗/感分离,经卡方适合性测验,F2群体抗:感符合3:1的表型分离比例,RIL符合1:1的基因型分离比例,抗性亲本RN-9对强毒株系C16的抗性受一对显性基因控制,并命名为Rcl6。
     (6)选用覆盖大豆全基因组的957对SSR引物,采用分离群体组群分析法,将大豆品种RN-9携带的抗病基因Rcl6定位于C2连锁群,所获连锁片段的标记与距离为Sat_246-(0.9 cM)-Sat_213-(8.0 cM)-RC16-(6.6 cM)-Sat_286-(9.4 cM)-Satt100-(2.7 cM)-Sat_238-(0.6 cM)-Satt079-(1.0 cM)-Sat_263-(1.7 cM)-Staga001-(13.4 cM)-Satt433。
Soybean mosaic virus (SMV) disease is one of the main diseases in soybean production worldwide. The interaction between soybean mosaic virus and host plants in a long-term co-evolution induced the pathogenic differentiation, and produced various pathogenic types, namely strains. In China, many strains were classified based on the different soybean differentials systems, which was short of the comparability and difficult for the communication of resistant information and materials. Some soybean differentials systems produced too many strains, which was inappropriate for resistance breeding. Therefore, the objectives of this study were to inoculate the SMV isolates and strains collected by the previous reporters in the relatively consistent environment, carefully choose the soybean differentials with the stable symptoms to assign a more perfect system and adjust SMV strains in China. Effects of three methods for SMV preservation were compared to find a suitable method for SMV long term preservation. P3 sequences were determined to reveal the relationship between sequence differences of P3 gene and pathogenicity of SMV in soybean differentials. Resistant-source selection, genetic analysis and gene mapping of resistance to virulent strain in soybean were conducted. The main results were as follows:
     1. Differentiation of soybean mosaic virus strains in China
     (1) Based on the reactions of ten soybean differentials previously selected by Wang-Yang-Zhan to three hundred and ten isolates and four strains of SMV from twenty-three provinces (cities) in China,24 SMV strains were grouped. Comparing with the previous results, the reactions of 10 determined soybean differentials to 149 isolates were consistent, while that of some soybean differentials to the rests were different. Based on the symptom stablility, Nannong1138-2, Youbian30, Davis, Zaoshul8, Kwanggyo, Qihuangl and Kefengl were finally considered as a simplified differential system to adjust SMV strains. All of tested SMV accessions were classified into sixteen strains finally, designated C1~C16. The results of adjustment showed that the previous strains in the SC system could be included in the C system, except for SC17. The results from geographic distribution of strains indicated that the weak strain C1 and the virulent strain C16 covered over all six eco-regions of soybean, while strains C3, C12 and C13 only distributed in eco-regionⅡ,ⅡandⅤ, respectively.
     (2) Four SMV isolates were preserved in low temperature refrigerator (-40℃), ultra low temperature freezer (-80℃) and liquid nitrogen (-196℃) for three, eight and fifteen months. Based on the incidence rate of inoculated cultivars Nannong1138-2, the results showed that the preservation effects of each isolate preserved in the three methods for three months had no significant differences, while the three methods had significant influences on the effects of each isolates preserved for eight and fifteen months. The preservation effects of isolates from different strains had significant differences. The three methods were all suitable for a long term preservation of SMV, in which the method of liquid nitrogen was the best.
     2. Sequence characteristics of P3 genes of soybean mosaic virus in China
     (3) P3 genes of 1~3 isolates from C1~C16 strains were determined. The results showed that P3 regions of all isolates encoded 347 amino acid residues. Pairwise comparisons of P3 gene of isolates were 90.5%~100% (nucleotide, nt) and 94.5%~100% (amino acid, aa) at nucleotides and amino acid levels, respectively. Phylogenetic tree and multiple sequence alignment showed that pathogenicity of strains was uncorrelated with genetic relationships of P3 gene.
     Comparing with the documented data of other SMV strains, the results showed that the P3 regions shared high identities (92.4%~98.9% nt and 96.0%~100% aa) with the reported Korean isolates, but a little lower identities (88.5%~97.9% nt and 91.4%~98.6% aa) with the reported American isolates. The identities betweem the isolates obtained from Pinellia ternate and that obtained from soybeans were obviously lower than that of the SMV isolates obtained from soybeans (80.5%~85.2% nt and 82.1%~84.7% aa), resulting that whether the virus can be regarded as SMV needs further evidences.
     The results of pairwise comparisons and phylogenetic tree between SMV and the 16 potyviruses in P3 gene showed that SMV had a close relationship with watermelon mosaic virus (76.0%~81.9% nt and 77.5%~85.3% aa), and a distant relationship with peanut mottle virus, beet mosaic virus and basella rugose mosaic virus with the lowest identities of 44.4%~54.3% nt and 21.4%~28.8% aa. Meanwhile, multiple sequence alignment indicated that P3 regions within a species were highly conserved, while that among species were relatively variable, especially in C terminal regions.
     3. Identification, inheritance and gene mapping of resistance to the virulent strain C16 in soybeans
     (4) The virulent strain C16 could infect all soybean differentials under the new system. Of 205 soybean accessions collected from seventeen province (or countries), ten resistant accessions (RN-9,89-29, Dalvdou, Gandoul, Jinda53, Nannong87-23, Tongshanbopi-huangdoujia, Wan82-178, Zao16 and Aiganhuang) resistant to strain were screened out.
     (5) The P1, P2, F1, F2 and recombinant inbred line (RIL) of RN-9×7605 were inoculated with strain C16. The symptom reaction of F1 was resistant, the F2 populations segregated in a phenotypic ratio of 3 resistant:1 susceptible and the RIL exhibited a genotypic segregation ratio of 1 resistant:1 susceptible based on the test for goodness-of-fit. Therefore, a dominant gene was conferring to the resistance to C16, designated as Rc16.
     (6) 957 pairs of simple sequence repeat markers covering all over the soybean genome were screened. The linkage analysis using bulked segregant analysis method indicated that the resistance gene RC16 of RN-9 cultivar was located on the linkage group C2, and the order and genetic distance of linked genes on the the segment linkage map were Sat_246-(0.9 cM)-Sat_213-(8.0 cM)-RC16-(6.6 cM)-Sat_286-(9.4 cM)-Satt100-(2.7 cM)-Sat_238-(0.6 cM)-Satt079-(1.0 cM)-Sat_263-(1.7 cM)-Staga001-(13.4 cM)-Satt433.
引文
1. 白丽,李海朝,马莹,等.大豆对大豆花叶病毒SC-11株系抗性的遗传及基因定位[J].大豆科学,2009,28(1):1-6
    2. 白丽,李凯,陈应志,等.部分国家和省(市)区试品种对大豆花叶病毒的抗性分析[J].中国油料作物学报,2007,29(1):86-89
    3.长泽次南.大豆抗病毒病育种.国外农学-大豆,1981,6:13-16
    4.陈炯,黎吴雁,尚佑芬,等.大豆花叶病毒黄淮5号株系的基因组全序列分析[J].病毒学报,2002,9(3):270-274
    5.陈庆山,张忠臣,刘春燕,等.应用Charleston×东农59重组自交系群体构建SSR大豆遗传图谱[J].中国农业利学,2005,38(7):1312-1316
    6.陈怡.大豆种质对SMV1号株系的抗性遗传[J].黑龙江农业科学,1999,(1):4-6
    7.陈怡,栾晓燕,谷秀芝,等.大豆品种抗花叶病毒3号株系的遗传研究初报[J].黑龙江农业科学,1990,(5):23-25
    8.陈永萱,薛宝娣,胡蕴珠.大豆花叶病毒(SMV)两个新株系的鉴定[J].植物保护学报,1986,13(4):221-226
    9.储瑞银,冷晓红,鲍一明,等.应用聚合酶链式反应扩增大豆花叶病毒外壳蛋白基因及其序列分析[J].植物学报,1992,34(7):523-528
    10.东方阳.大豆对SMV株系抗性遗传分析和RAPD标记研究[M].南京农业大学博士论文,1999
    11.董宏平,程宁辉,濮祖芹.大豆花叶病毒Sc株系外壳蛋白基因的部分序列分析[J].南京师大学报,1998,21(3):67-71
    12.盖钧镒,胡蕴珠,崔章林,等.大豆资源对SMV株系的抗性鉴定[J].大豆科学,1989,84(4):323-330
    13.盖钧镒,汪越胜.中国大豆品种生态区域划分的研究[J].中国农业科学,2001,34(2):139-145
    14.郜李彬,曹越平,周斐红,等.大豆种质资源对SMV东北3号株系和黄淮7号株系的抗性鉴定[J].中国种业,2008,2:48-50
    15.巩鹏涛.一张含有315个SSR和40个AFLP标记的大豆分子遗传图的整合[J].分子植物育种,2006,4(3):309-316
    16.郭东全,王延伟,智海剑,等.大豆对SMV SC13株系群的抗性遗传及基因定位的研究[J].大豆科学,2007,26(1):21-24
    17.郭东全,智海剑,王延伟,等.黄淮中北部大豆花叶病毒株系的鉴定与分布[J].中国油料作物学报,2005,27(4):64-68
    18.郭东全,智海剑,王延伟,等.大豆花叶病毒5个分离物的鉴定及外壳蛋白序列分析[J].大豆科学,2006,3:218-222
    19.胡蕴珠,盖钧镒,马育华,等.大豆对两个大豆花叶病毒株系的抗性遗传[J].南京农业大学学报,1985,8(3):17-22
    20.李海朝,智海剑,白丽,等.大豆对SMV株系SC11的抗性遗传及抗性基因的等位性研究[J].大豆科学,2006,25(4):365-368
    21.李文福,刘春燕,高运来,等.大豆种粒斑驳抗性的遗传分析及基因定位[J].作物学报,2008,34(9):1544-1548
    22.李学湛.复合病毒感染对大豆叶片细胞超微结构的影响[J].电子显微学报,1991,10(1):12-16
    23.刘峰,庄炳昌,张劲松,等.大豆遗传图谱的构建和分析[J].遗传学报,2000,27(11):1018-1026
    24.刘俊军,彭学贤.大豆花叶病毒外壳蛋白基因的克隆及其在大肠杆菌中的表达[J].生物工程学报,1993,9(3):198-203
    25.刘仁虎,孟金陵Mapdraw,在Excel中绘制遗传连锁图的宏[J].遗传,2003,25(3):317-321
    26.刘伟.大豆花叶病毒[J].大豆通报,1998,2:29
    27.廖林,刘玉芝,孙大敏,等.大豆花叶病毒的抗性遗传-几个引用抗源对东北大豆花叶病毒二号株系的抗性遗传[J].遗传学报,1994,21(5):403-408
    28.廖林,刘玉芝,孙大敏,等.大豆花叶病引起的大豆顶端坏死症[J].作物学报,1995,21(6):707-710
    29.黎吴雁,陈炯,陈剑平.大豆花叶病毒杭州分离物基因组全序列测定及其结构分析[J].科技通报,2003,3(2):90-93
    30.栾晓燕.大豆对SMV3号株系成株抗性遗传的研究[J].大豆科学,1997,16(3):223-226
    31.栾晓燕,李宗飞,满为群,等.与大豆SMV3号株系抗性相关的分子标记的鉴定[J].分子植物育种,2006,4(6):841-845
    32.罗瑞梧,杨崇良,尚佑芬.山东省大豆花叶病毒株系鉴定[J].山东农业科学,1990,(5):16-19
    33.吕蓓.用AFLP标记饱和大豆SSR遗传连锁图[J].分子植物育种,2005,3(2):162-172
    34.吕文清,李延华.大豆花叶病毒的株系划分及株系间的交互作用[J].大豆科学,1992,11(4):290-298
    35.吕文清,张明厚,魏培文,等.东北三省大豆花叶病毒(SMV)株系的种类与分布[J].植物病理学报,1985,15(4):225-229
    36.马洪波,冯子力,谭华.菌(毒)种保存及复苏技术[J].中国国境卫生检疫杂志,2006,29(4):243-247
    37.马淑梅.中国大豆品种对大豆花叶病毒(SMV)病抗性鉴定结果[J].大豆科学,1991,10(3):240-244
    38.濮祖芹,曹琦,房德纯.大豆花叶病毒的株系鉴定[J].植物保护学报,1982,9(1):31-36
    39.尚佑芬,赵玖华,杨崇良.黄淮区大豆花叶病毒株系组成与分布[J].植物病理学报,1999,29(2):115-11
    40.宋淑云,晋齐鸣,张伟,等.大豆花叶病毒超低保存对毒力的影响[J].吉林农业科学,2005,30(3):36-37
    41.宋显军.基于SSR标记的大豆遗传图谱构建与重要农艺性状QTL定位[D].沈阳:沈阳农业 大学,2007
    42.孙浩华,薛峰,陈集双.大豆花叶病毒研究进展[J].生命科学,2007,19(3):338-344
    43.孙志强,刘玉芝,孙大敏,等.大豆对大豆花叶病毒1、2、3号株系抗性的遗传[J].中国油料,1990(2):20-24
    44.孙自锦.基于微卫星标记的大豆遗传图谱的构建和QTLs定位[D].广州:华南农业大学,2004
    45.滕卫丽,李文滨,韩英鹏,等.大豆抗感品种(系)接种SMV1叶片细胞超微结构变化的比较[J].作物杂志,2008,1:34-36
    46.滕卫丽,李文滨,邱丽娟,等.大豆SMV3号株系抗病基因的SSR标记[J].大豆科学,2005,24(3):244-249
    47.田波,裴美云.植物病毒研究方法[M].北京:科学出版社,1987,366-372
    48.王修强,盖钧镒,濮祖芹.黄淮和长江中下游地区大豆花叶病毒株系鉴定与分布[J].大豆科学,2003,22(2):102-107
    49.王修强,盖钧镒,喻德跃.等.大豆品种(品系)对黄淮和长江中下游地区SMV株系群的抗性反应[J].大豆科学,2003,22(4):241-244
    50.王修强,盖钧镒,喻德跃.广谱抗源科丰1号对大豆花叶病毒强毒株系群SC-8抗性的遗传研究[J].大豆科学,2003,8(3):190-192
    51.王延伟,智海剑,郭东全,等.中国北方春大豆区大豆花叶病毒株系的鉴定与分布[J].大豆科学,2005,24(4):263-268
    52.王延伟,智海剑,郭东全,等.致病性不同的大豆花叶病毒分离物外壳蛋白的基因序列分析[J].中国油料作物学报,2006,28(4):461-464
    53.王月明,侯春燕,张孟臣,等.河北省推广大豆品种对六个SMV株系的抗性鉴定[J].华北农学报,2006,21(增刊):183-186
    54.王永军,东方阳,王修强,等.大豆5个花叶病毒株系抗性基因的定位[J].遗传学报,2004,31(1):87-90
    55.王永军,吴晓雷,贺超英,等.大豆作图群体检验与调整后构建的遗传图谱[J].中国农业科学,2003,36(11):1254-1260
    56.王玉正,岳跃海.大豆玉米间作和同穴混播对大豆病虫发生的综合效应研究[J].植物保护,1998,1:13-15
    57.宛煜嵩,王珍,肖英华,等.一张含有227个SSR标记的大豆遗传连锁图[J].分子植物育种,2005,3(1):15-20
    58.武军,王辉,刘伟华,等.小麦新种质4844中外源P染色质的GISH与SSR分析[J].西北植物学报,2006,26(6):1093-109
    59.吴晓雷,贺超英,王永军,等.大豆遗传图谱的构建与分析[J].遗传学报,2001,28(11):1051-1061
    60.吴云锋.植物病毒学原理与方法[M].西安地图出版社,1999年7月第1版
    61.吴宗璞.中国“七五”大豆育种攻关专题交流材料[R],1988
    62.吴宗璞,钟兆西,高凤兰,等.大豆品种对SMV不同毒株抗性反应与种粒斑驳关系的研究[J].大豆科学,1986,5(2):153-160
    63.向远道,盖钧镒,马育华.大豆对四个大豆花叶病毒株系抗性及连锁遗传研究[J],遗传学报,1991,(2):20-24
    64.熊克娟,周覆谦,薛翠峰,等.我国几种主要的辣椒病毒和花生病毒的保存方法与效果[J].湖北农业科学,1991,11:22-23
    65.熊克娟,李天宪,陈绳亮,等.常见植物病毒冷冻干燥方法的改进与效果观察[J].华中农业大学学报,1999,18(2):151-153
    66.许艳丽,战丽莉,李春杰,等.大豆病害发生特点和综合防治技术[J].大豆科技,2009,3:15-17
    67.许志刚,濮祖琴,曹琦,等.长江流域蚕豆病毒病的发生情况[J].南京农业大学学报,1985,4:42-28
    68.许志刚,Goodman R M, Polston J E大豆花叶病毒株系的鉴定[J].南京农学院学报,1983,3:36-40
    69.杨喆.大豆遗传图谱的构建和若干农艺性状的QTL定位分析[J].植物遗传资源学报,2004,5(4):309-314
    70.杨雅麟.长江中下游地区大豆花叶病毒(SMV)株系组成、分布及抗性研究[D].南京农业大学硕十论文,2002
    71.杨华,李凯,杨清华,等.国内部分新品种对大豆花叶病毒抗性的鉴定[J].华北农学报,2008,23(增刊):1-4
    72.严隽析,马育华.大豆花叶病抗性遗传的初步研究[J].大豆科学,1985,4(4):249-259
    73.余子林.湖北地区大豆花叶病毒的研究[R].全国大豆病害学术讨论会论文摘要汇编,1986
    74.张德水,董伟,惠东威,等.用栽培大豆与野生大豆间的杂种F2群体构建基因组分子标记连锁框架图[J].科学通报,1997,42(12):1326-1330
    75.张明厚,魏培文,张春泉.我国东北部五省市SMV对大豆主栽品种的毒力测定[J].植物病理学报,1998,28(3):237-242
    76.张伟,宋淑云,晋齐鸣,等.吉林省大豆新品种(系)抗大豆花叶病毒病鉴定及抗源筛选[J].吉林农业大学学报,2004,26(4):371-374
    77.张玉东,盖钧镒,马育华,等.大豆对两个大豆花叶病毒本地株系抗性的遗传研究[J].作物学报,1989,15(3):213-220张志永,陈受宜,盖均镒.大豆花叶病毒抗性基因Rsa的分子标记[J].科学通报,1998,43(20):2197-2201
    78.战勇.黄淮地区大豆花叶病毒株系的鉴定与分布[J].中国农业科学,2006,39(10):2009-2015
    79.战勇,喻德跃,陈受宜,等.大豆对SMV SC-7株系群的抗性遗传与基因定位[J].作物学报,2006,32(6):936-938
    80.郑翠明,常汝镇,邱丽娟,等.大豆种质资源对SMV3号株系的抗性鉴定[J].大豆科学,2000,19(4): 299-305
    81.郑翠明,常汝镇,邱丽娟,等.大豆对SMV3号株系的抗性遗传分析及抗病基因的RAPD标记研究[J].中国农业科学,2001,34(1):14-18
    82.智海剑,盖钧镒,郭东全,等.不同大豆花叶病毒抗性类型品种的细胞超微结构特征[J].南京农业大学学报,2005,(1):6-10
    83.智海剑,盖钧镒.大豆花叶病毒及抗性遗传的研究进展[J].大豆科学,2006,25(2):174-180
    84.智海剑,盖钧镒,何小红.大豆对SMV数量(程度)抗性的综合分级方法研究[J].大豆科学,2005,24(2):5-11
    85.智海剑,胡蕴珠.大豆花叶病毒对大豆主要性状的影响[J].大豆通报,1995,3:11
    86.周建农,蒋伶活,濮祖琴,等.大豆花叶病毒的越冬寄主[J].江苏农业学报,1991,7(2):56
    87.周雪平,濮祖琴.自然侵染豌豆的大豆花叶病毒[J].南京农业大学学报,1990,13(1):53-56
    88.朱晓丽.大豆遗传图谱构建及在两个群体重要农艺性状的QTL定位[D].哈尔滨:东北农业大学,2006
    89. Akkaya M S, Shoemaker R C, Specht J E, et al. Integration of simple sequence repeat DNA markers into a soybean linkage map[J]. Crop Sci,1995,35:1439-1445
    90. Ali A, Natsuaki T, Okuda S. The complete nucleotide sequence of a Pakistani isolate of watermelon mosaic virus provides further insights into the taxonomic status in the bean common mosaic virus subgroup[J]. Virus Genes,2006,32:307-311
    91. Andrejeva J, Puurand U, Merits A, et al. Potyvirus helper component-proteinase and coat protein (CP) have coordinated functions in virus-host interactions and the same CP motif affects virus transmission and accumulation[J]. J Gen Virol,1999,80:1133-1139
    92. Anthony J. Brookes[J]. Gene,1999,234 (2):177-186
    93. Apuya N R, Keim P, Kei M, et al. Restriction fragment length polymorphisms as genetic markers in soybean, Glycine max (L.) Merr. [J]. TheorAppl Genet,1988,75:889-901
    94. Arumanagathan K. Nuclear DNA content of some important plant species[J]. Plant Mol Biol Rep, 1991,9:229-241
    95. Berger P H, Barnett O W, Brunt A A, Colinet D, Edwardson J R, Hammond J, Hill J H, Jordan R L, Kashiwazaki S, Makkouk K, Morales F J, Rybicki E, Spence N, Ohki S T, Uyeda I, van Zaayen A, Vetten H J. Family Potyviridae. In:van Regenmortel M H V, Fauquet C M, Bishop DHL, Carstens E B, Estes M K, Lemon S M, Maniloff J, Mayo M A, McGeoch D J, Pringle C R, Wickner R B (eds) Virus taxonomy:Seventh Report of the International Committee on Taxonomy of Viruses[C]. Academic Press, London, pp,2000:703-724
    96. Bos L. Experiences with a collection of plant viruses in leaf material dried and stored over alcium chloride and a discussion of literature on virus reservation[J]. Meded Rijksfac Landbwet Gent, 1969,34:875-887
    97. Boswell K F, Gibbs A J. Viruses of Legumes[M]. Descriptions and keys from VIDE. Canberra: The Australian National University Research School of Biological Science,1983,77:107
    98. Bowers G J, Goodman R M. New sources of resistance to seed transmission of soybean mosaic virus in soybeans[J]. Crop Sci,1992 (22):155-156
    99. Buss GR, Chen P, Tolin S A, et al. Breeding soybean for resistance to soybean mosaic virus [M]. Proceedings of World Soybean Research Conference,1989, Ⅳ:1144-1154
    100. Buzzell R I, Tu J C. Inheritance of a stem tip necrosis reaction to soybean mosaic virus [J]. Heredity,1989,80:400-401
    101. Buzzell R I, Tu J C. Inheritance of soybean resistance to soybean mosaic virus[J]. J Hered,1984, 75:82
    102. Carrington J C, CarySM, Parkd T D, et al. A second proteinase encoded by a plant potyvirus gene. EMBO Journal,1989,8:365-370
    103. Carrington J C, Fred D D, Oh C H. Expression of potyviral polyproteins in transgenic plants reveals three proteolytic activities required for complete processing. EMBOJ,1990,9:1347-1353
    104. Cassidy B, Sherwood J L, Nelson R S. Cloning of the capsid protein gene from a blotch isolate of peanut stripe virus[J]. Arch Virol,1993,128:287-297
    105. Chen J, Chen J P, Chen J S, et al. Molecular characterization of an isolate of dasheen mosaic virus from Zantedeschia aethiopica in China and comparisons in the genus Potyvirus[J]. Arch Virol, 2001,146 (9):1821-1829
    106. Chen J S, Hong J, Zhou X P, et al. Dasheen mosaic virus causing mosaic disease of Pinellia cordata [J]. Acta Phytopathol Sinica,1996,26:87-91
    107. Chen J, Zheng H Y, Lin L, et al. A virus related to soybean mosaic virus from Pinellia ternate in China and its comparison with local soybean SMV isolates[J]. Arch Virol,2004,149 (2):349-363
    108. Chen J, Zheng H Y, Shi Y H, et al. Detection and characterisation of a second potyvirus from Thunberg fritillary in China[J]. Arch Virol,2006,151 (3):439-447
    109. Chen P, Buss G R, Tolin S A, et al. A tissue culture method for the preservation of soybean mosaic virus strains[J]. Plant Cell, Tissue and Organ Culture,2003,74:185-192
    110. Chen Y, Wu D J. Single nucleotide polymorphisms (SNPs)-The third DNA molecular marker [J]. Animal Husbandry and Veterimary medicine,2003,35 (12):37-39
    111.Cho E K, Choi S H, Cho W T. Newly recognized soybean mosaic virus mutants and sources of resistance in soybeans[J]. Res Rep ORD (S.P.M.U.),1983,25:18-22
    112. Cho E K, Goodman R M. Strains of soybean mosaic virus:classification based on virulence in resistant soybean cultivars[J]. Phytopathology,1979,69 (5):467-470
    113. Choi I Y, Hyten D L, Matukumalli L K, et al. A soybean transcript map:gene distribution, haplotype and SNP analysis[J]. Genetics,2007,10:1-38
    114. Cooper R L. A major gene for resistance to seed coat mottling in soybean[J]. Crop Sci,1966,6: 290-292
    115. Conover R A. Studies of two viruses causing mosaic diseases of soybean[J]. Phytopathology,1948, 38:724-735
    116. Cregan P B, Jarvik T, Bush A L, et al. An integrated genetic linkage map of the soybean genome [J]. Crop Sci,1999,39:1464-1490
    117. Desbiez C, Costa C, Wipf-Scheibel C, et al. Serological and molecular variability of watermelon mosaic virus (genus Potyvirus) [J]. Arch Virol,2007,152:775-781
    118. Desbiez C, Lecoq H. Evidence for multiple intraspecific recombinants in natural populations of watermelon mosaic virus (WMV, Potyvirus) [J]. Arch Virol,2008,153:1749-1754
    119. Desbiez C, Lecoq H. The nucleotide sequence of watermelon mosaic virus (WMV, Potyvirus) reveals interspecific recombination between two related potyviruses in the 5'part of the genome [J]. Arch Virol,2004,149:1619-1632
    120. De Wijs, Suda-Bachmann. The long-term preservation of potato virus Y and watermelon mosaic virus in liquid nitrogen in comparison to other preservation methods[J]. Neth J Plant Path,1979, 85:23-29
    121.Doly J J, Doly J L. Isolation of plant DN A from fresh tissue[J]. Focus,1990,12:13-15
    122. Domier L L, Shaw J G, Rhoads R E. Potyviral proteins share amino sequence homology with picorn-, como-, and caulimo-viral proteins[J]. Virology,1987,158:20-27
    123. Drijfhout E, Silbernagel M J, Burke D W. Interaction between phaseolous vulgaris and bean common mosaic virus[J]. Neth J Plant Pathol,1978,84:13-25
    124. Duran-Vila N, Cambra M, Medina V et al. Growth and morphogenesis of citrus tissue cultures infected with citrus tristeza virus and citrus infectious variegation virus[J]. Phytopathology,1989, 79:820-826
    125. Edwardson J R, Christie R G. Potyvirus cylindrical inclusion subdibition 4[J]. Phytopathology, 1984,74 (9):1111-1114
    126. Eggenberger A L, Stark D M, Beachy R N. The nucleotide sequence of soybean mosaic virus coat protein coding region and its expression in E. Coli, Agrobacterium tumefaciens and tobacco callus [J]. J Gen Virol,1989,70:1853-1860
    127. Fang G W, Allison R F, Zambolim E M, et al. The complete nucleotide sequence and genome organization of bean common mosaic virus (NL3 strain) [J]. Virus Res.1995,39 (1):13-23
    128. Fanquet C M, Mayo M A, Maniloff J, et al. Virus taxonomy, eighth report of the international committee on taxonomy of viruses[M]. Elsevier Academic Press,2005
    129. Flasinski S, Gunasinghe U B, Gonzales R A, et al. The cDNA sequence and infectious transcripts of peanut stripe virus[J]. Gene,1996,171 (2):299-300
    130. Frenkel M J, Ward C W, Shukla D D. The use of 3'non-coding nucleotide sequences in the taxonomy of poty viruses:application to watermelon mosaic virus 2 and soybean mosaic virus-N [J]. J Gen Virol,1989,70:2775-2783
    131. Fumiyoshi F. Preservation of alfalfa mosaic virus by freezing and freeze-drying and similarities to Cucumoviruses[J]. J Gen Plant Pathol,2008,74:164-170
    132. Fu S X, Zhan Y, Zhi H J, et al. Mapping of SMV resistance gene RSC-7 by SSR markers in soybean[J]. Genetica,2006,128:63-69
    133. Gai J, Yu H, Zhang Y, et al. Inheritance of resistance of soybean to four local strains of soybean [C]. Proceedings of the world soybean research conference IV, Buenos Aires Argentina,1989, 182-1187
    134. Gai J Y, Hu Y Z. Inheritance of resistance of soybean to four local strains of soybean mosaic virus [M]. World Soybean Research Conference,1989, IV:1182-1187
    135.Gal-On A, Antignus Y, Rosner A, et al. Nucleotide sequence of the zucchini yellow mosaic virus capsid-encoding gene and its expression in Escherichia coli[J]. Gene,1990,87 (2):273-277
    136. Gardner M W, Kendrick J B. Soybean mosaic virus[J]. J Agr Res,1921,2 (10):111-114
    137. Germundsson A, Valkonen Jari P T. P1- and VPg-transgenic plants show similar resistance to potato virus A and may compromise long distance movement of the virus in plant sections expressing RNA silencing-based resistance[J]. Virus Res,2006,116:208-213
    138. Goodman R M. Evaluation of resistance in soybean to soybean mosaic virus strains[J]. Crop Sci, 1982,22 (6):1133-1136
    139. Ha C, Coombs S, Revill P A, et al. Design and application of two novel degenerate primer pairs for the detection and complete genomic characterization of potyviruses[J]. Arch Virol,2008,153 (1):25-36
    140. Hajimorad M R, Eggenberger A L, Hill J H. Evolution of Soybean mosaic virus-G7 molecularly cloned genome in Rsv1-genotype soybean results in emergence of a mutant capable of evading Rsv1-mediated recognition[J]. Virology,2003,314 (2):497-509
    141. Hayes A J, Ma G R, Buss G R, et al. Molecular marker mapping of Rsv4, a gene conferring resistance to all known strains of soybean mosaic virus[J]. Crop Sci,2000,40 (5):1434-1437
    142. Hill JH, Benner H I. Porperities of soybean mosaic virus ribonucleic acid[J]. Phytopathology, 1980,70 (3):236-239
    143. Hollings M, Stone O M. The long-term survival of some plant viruses preserved by lyophilisation [J]. Ann Appl Biol,1970,65:411-418
    144. Hong Y, Hunt A G. RNA polymerase activity catalyzed by a poty virus-encoded RNA-dependent RNA polymerase[J]. Virology,1996,226:146-151
    145. Huang C H, Chang Y C. Identification and molecular characterization of zantedeschia mild mosaic virus, a new calla lily-infecting potyvirus[J]. Arch Virol,2005,150 (6):1221-1230
    146. Huguenot C, Furneaux M T, Hamilton R I. Capsid protein properties of cowpea aphid-borne mosaic virus and blackeye cowpea mosaic virus conform the existence of two major subgroups of aphid-transmitted, legume-infecting potyviruses[J]. J Gen Virol,1994,175:3555-3560
    147. Hunst P L, Tolin S A. Ultrastrural cytology of soybean infected with mild and severe strains of soybean mosaic virus[J]. Phytopathology,1983,73 (4):615-619
    148. Iwai H, Terahara R, Yamashita Y, et al. Complete nucleotide sequence of the genomic RNA of an Amami-O-shima strain of East Asian passiflorapotyvirus[J]. Arch Virol,2006,151 (7):1457-1460
    149. Jayaram C H, Hill J H, Allen M W. Complete nucleotide sequences of two soybean mosaic virus strains differentiated by response of soybean containing the Rsv resistance gene[J]. J Gen Virol, 1992,73:2067-2077
    150. Jayaram C H, Hill J H, Allen M W. Nucleotide sequence of the coat protein genes of two aphid-transmissible strains of soybean mosaic virus[J]. J Gen Virol,1991,72:1001-1003
    151. Jayaram C H, Hill J H, Miller W A. Complete nucleotide sequences of two soybean mosaic virus strains differentiated by response of soybean containing the Rsv resistance gene[J]. J Gen Virol, 1992,73 (PT8):2067-2077
    152. Jenner C E, Wang X, Tomimura K, et al. The dual role of the potyvirus P3 protein of turnip mosaic virus as a symptom and avirulence determinant in Brassica[J]. Mol Plant Microbe Interact,2003, 16 (9):777-784
    153.Jeong S C, Kristipati S, Hayes A J. Genetic and sequence analysis of markers tightly linked to the soybean mosaic virus resistance gene, Rsv3[J]. Crop Sci,2002,42 (1):265-270
    154. Jeremy A, Bruenn. Relationships among the positive strand and double strand RNA viruses as viewed through their RNA dependent RNA polymerase, Nucleic Acid Research,1991,19(2): 217-228
    155. Johansen I E, Lund O S, Hjulsager C K, et al. Recessive resistance in Pisum sativum and Potyvirus pathotype resolved in a gene-for-citron correspondence between host and virus[J]. J Virol,2001, 75:6609-6614
    156. Keim P, Diers B W, Olson T C, et al. RFLP mapping in soybean:association between marker loci and variation in quantitative traits[J]. Genetics,1990,126:735-742
    157. Keim P, Schupp J M, Travis S E, et al. A high-density soybean genetic map based on AFLP marker [J]. Crop Sci,1997,37:537-543
    158. Kekarainen T, Savilahti H, Valkonen J P T. Functional genomics on potato virus A:virus genome-wide map of sites essential for virus propagation[J]. Genome Res,2002,12:584-594
    159. Kennedy B W, Cooper R L. Association of virus infection with mottling of soybean seed coats. Phytopathology,1967,57:35-37
    160. Kiihl R A S, artwig E E. Inheritance of reaction to soybean mosaic virus in soybeans[J]. Crop Sci, 1979,19:372-375
    161. Kim Y H, Kim O S, Lee B C, et al. G7H, a new soybean mosaic virus strain:Its virulence and nucleotide sequence of CI gene[J]. Plant Dis,2003,87:1372-1375
    162. Kosaka Y, Fukunishi T. Application of cross-protection to the control of black soybean mosaic disease[J]. Plant Dis,1994,78 (4):339-341
    163. Koshimizu Y, Iizuka M. Studies on soybean virus diseases in Japan[J]. Bull Tohoku Agric Exp Stn, 1963,27:1-103
    164. Koshimizu Y. Relationship between virus disease and mottling seeds of soybean[J]. Acta Jpn Soc Plant Pathol,1957,22:18
    165. Kreuze J F. Molecular studies on the sweet potato virus disease and its two causal agents [D]. Uppsala:Swedish University of Agricultural Sciences,2002
    166. Kwon S W, Kim M S, Choi H S, et al. Biological characteristics and nucleotide sequences of three Korean isolates of zucchini yellow mosaic virus[J]. J Gen Plant Pathol,2005,71 (1):80-85
    167. Kwon S H, Oh J H. Resistance to a necrotic strain of soybean mosaic virus in soybean[J]. Crop Sci, 1979,20:403-404
    168. Lander E S. The new genomics:glabal views of biology[J]. Science,1996,274:536-539
    169. Lark K G. A genetic map of soybean using intraspecific cross of two cultivars:"Minsoy" and "Noir 1"[J]. Theor Appl Genet,1993,86:901-906
    170. Larsen R C, Miklas P N, Druffel K L, et al. The NL-3K strain is a stable and naturally occurring interspecific recombinant derived from bean common mosaic necrosis virus and bean common mosaic virus[J]. Phytopathology,2005,95:1037-1042
    171. Liang W X, Song L M, TianGZ, et al. The genomic sequence of wisteria vein mosaic virus and its similarities with other potyviruses[J]. Arch Virol,2006,151 (11):2311-2319
    172. Li H C, Zhi H J, Gai J Y, et al. Inheritance and gene mapping of resistance to soybean mosaic virus strain SC14 in soybean[J]. Journal of Integrative Plant Biology,2006,48 (12):1466-1472
    173. Li K, Yang Q H, Zhi H J, et al. Identification and distribution of soybean mosaic virus strains in Southern China. Plant Dis,2009, (Submitted)
    174. Lim S M. Resistance to soybean mosaic virus in soybeans[J]. Phytopathology,1985,75:199-201
    175. Lim W S, Kim Y H, Kim K H. Complete genome sequences of the genomic RNA of soybean mosaic virus strains G7H and G5[J]. Plant Pathol.2003,19 (3):171-176
    176. Liu J J, Peng X X, Mang K Q. cDNA cloning and sequence analysis of NIb gene of soybean mosaic virus[J]. Sci China B,1995,38 (2):160-168
    177. Lopez-Moya J J, Wang R Y, Pirone T P. Context of the coat protein DAG motif affects Potyvirus transmissibility by aphids[J]. J Gen Virol,1999,80:3281-3288
    178. Mansur L M, Orf J H, Chase K. Genetic mapping of agronomic traits using recombinant inbred lines of soybean[J]. Crop Sci,1996,36:1327-1336
    179. Mckern N M, Omink G I, Barnett O W. Isolates of bean common mosaic virus comprising two distinct potyviruses[J]. Phytopathology,1992,82:923-929
    180. Mckern N M, Ward C W, Shukla D D. Strains of bean common mosaic virus consist of at least two distinct potyviruses[J]. Arch Virol Suppl,1992,5:407-414
    181. McKinney H H, Silber G. Methods of preservation and storage of plant viruses. In:Maramorosch K, Koprowski H (eds) Methods in Virology Vol,1968,4, pp:491-501. Academic Press, New York
    182. Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease resistance genes by bulkes segregant analysis:a rapid method to detect markers in specific genomic regions using segregating populations. Proc Natl Acad Sci USA,1991
    183. Mink G I, Vetten J, Ward C W, et al. Taxonomy and classification of legume-infecting potyviruses: A proposal from the Potyviridae study group of the plant virus subcommittee of ICTV[J]. Arch Virol,1994,139:231-235
    184. Mlotshwa S, Verver J, Sithole-Niang I, et al. The genomic sequence of cowpea aphid-borne mosaic virus and its similarities with other potyviruses[J]. Arch Virol,2002,147 (5),1043-1052
    185.Nemchinov L G, Hammond J, Jordan R, et al. The complete nucleotide sequence, genome organization, and specific detection of beet mosaic virus[J]. Arch Virol,2004,149(6):1201-1214
    186. Owen F V. Hereditary and environment factors that produce mottling in soybeans. J Agric Res, 1927,34:559-587
    187. Pelah D, Altman A, Czosnek H. Tomato yellow leaf curl virus-DNA in callus-cultures derived from infected tomato leaves[J]. Plant Cell Tiss Org Cult,1994,39:37-42
    188. Pio-Pieiro G, Wyatt S D, Kuhn C W. Cowpea stunt:A disease caused by a synergistic interaction of two viruses[J]. Phytopathology,1978,68:1260-1265
    189. Puustinen P, Makinen K. Uridylylation of the Potyvirus VPg by viral replicase NIb correlates with the nucleotide binding capacity of VPg[J]. J Biol Chem,2004,279 (37):38103-38110
    190. Rajamaki M L, Kelloniemia J, Alminaitea A, et al. A novel insertionsite inside the Potyvirus P1 cistron allows expression of heterologous proteins and suggests some P1 functions[J]. Virology, 2005,342 (1):88-101
    191. Rajamaki M L, Valkonen Jari P T. Genome-linked protein(VPg)controls accumulation and phloem loading of a Potyvirus in inoculated potato leaves[J]. MPMI,2002,15 (2):138-149
    192. Restrepo-Hartwig M A, Carrington J C. The tobacco etch Potyvirus 6-kilodalton protein is membrane associated and involved in viral replication. J Virol,1994,68 (4):2388-2397
    193. Ruiz-Ferrer V, Boskovic J, Alfonso C, et al. Structural analysis of Tobacco etch potyvirus HC-Pro oligomers involved in aphid transmission[J]. J Virol,2005,79 (6):3758-3765
    194. Ruiz-Ferrer V, Goytia E, Martinez-Garcia B, et al. Expression of functionally active helper component protein of tobacco etch potyvirus in the yeast Pichia pastoris[J]. J Gen Virol,2004,85: 241-249
    195. Saenz P, Salvador B, Simon-Mateo C, et al. Host-specific involvement of the HC protein in the long-distance movement of poty viruses[J]. J Virol,2002,76 (4):1922-1931
    196. Sambhaji P, Gopal W, Shailendra S, et al. Vacuum foam drying for preservation of LaSota virus: effect of additives. A APS Pharm Sci Tech,2006,7(3):Article 60 (http://www.aapspharmscitech. org)
    197. Shi Y H, Hong X Y, Chen J, et al. Further molecular characterization of potyviruses infecting aroid plants for medicinal use in China[J]. Arch Virol,2005,150 (1):125-135
    198. Shoemaker R C, Olson T C. Molecular linkage map of soybean (Glyxine max(L.)Merr.) [M].//O'BRIEN S.Genetic Maps:Locus maps of complex genomes.New York:Cold Spring Harbor Laboratory Press,1993
    199. Shukla D D, Ward C W, Brunt A A. Genome structure, variation and function[A]. The Potyviridae [M]. Wallingford, England:CAB International,1994:74-110
    200. Smartt J. A guide to soybean cultivation in northern Rhodesia. Rhodesia Agric,1960,57:459-463
    201. Song Q J, Marek L F, Shoemaker R C, et al. A new integrated genetic linkage map of the soybean [J]. Theor Appl Genet,2004,109 (1):122-128
    202. Spasic M. A contribution to the knowledge of the parasitic flora of the region Timocka Krajina. Zast Bilja,1961,63:57-63
    203. Spetz C, Valkonen J P T. Potyviral 6K2 protein long-distance movement and symptom-induction functions are independent and host-specific[J]. MPMI,2004,17 (5):502-510
    204. Suehiro N. Natsuaki T, Watanabe T, et al. An important determinant of the ability of turnip mosaic virus to infect Brassica spp. and/or Raphanus sativus is in its P3 protein[J]. J Gen Virol,2004, 85 (7):2087-2098
    205. Sun H H, Xue F, Chen J S. Advances in study on soybean mosaic virus(SMV)[J]. Chinese Bulletin of Life Sciences,2007,19 (3):338-345
    206. Takahashi K, lizuka N. The distinction of the soybean viral disease[J]. Plant Protection,1965, 19 (8):339-342
    207. Takahashi K, Tanaka T, lida W, et al. Studies on virus disease and causal viruses of soybean in Japan[J]. Bull Tohoku Natl Agric Exp Stn,1980,62:1-130
    208. Toyoda H, Chatani K, Matsuda Y et al. Multiplication of tobacco mosaic virus in tobacco callus tissues and in vitro selection for viral disease resistance[J]. Plant Cell Rep,1989,8:433-436
    209. Urcuqui I S, Haenni A L, Bernaidi F. Proteins:a Wealth of Functions[J]. Virus Res,2001,74: 157-175
    210. Vance V B, Beachy R N. Translation of soybean mosaic virus RNA in vitro:Evidence for protein processing[J]. Virology,1984,132:271-281
    211. Van Regenmortel M H V, Fauquet C M, Bishop D H L, et al. Virus taxonomy:seventh report of the ICTV[M]. New York:Academic Press,2000
    212. Vetten H J, Lesemann D E, Maiss E. Serotype A and B strains of bean common mosaic virus are two distinct potyviruses[J]. Arch Virol Suppl,1992,5:415-431
    213. Walkey D G A. Storage of virus isolates. In:Walkey D G A (ed) Applied Plant Virology,1985, pp:107-108. Chapman and Hall. London, New York
    214. Wang Y. Genetic analysis of resistance to soybean mosaic virus in four soybean cultivars from China[J]. Crop Sci,1998,38:922-925
    215. Woodworm C M, Cole LJ. Mottling of soybean[J]. J Hered,1924,15:349-354
    216. Xiang H, Han Y H, Han C, et al. Molecular characterization of two Chinese isolates of beet mosaic virus[J]. Virus Gene,2007,35 (3),795-799
    217. Yeh S D, et al. Complete nucleotide sequence and genetic organization of papaya ringspot virus RNA[J]. J Gen Virol,1992,73:2531-2541
    218. Yordanova A, Donev T, Stoimenova E. A model for longevity prediction of freeze-dried tobamo viruses[J]. Biotechnology letters,2002,24:1505-1508
    219. Yordanova A, Donev T, Stoimenova E. Prediction of the preservation of lyophilized tobamoviruses [J]. Biotechnol & Biotechnol Eq,2005,19 (2):46-51
    220. Yordanova A, Stoimenova E, Donev T. Application of accelerated storage test to lyophilized plant viruses[M]. Biotechnology techniques,1996, pp:977-982
    221. Yordanova A, Stoimenova E, Donev T. Prediction of the preservation of freeze-dried cucumber mosaic virus [J]. Biotechnology letters,2000,22:1779-1782
    222. Yu M H, Frenkel M J, McKern N M, et al. Coat protein of Potyviruses 6. Amino-acid sequences suggest watermelon mosaic virus 2 and soybean mosaic virus-N are strains of the same Potyvirus [J]. Arch Virol,1989,105:55-64
    223. Yu Y G, Saghai-Maroof M A, Buss G R, et al. RFLP and microsatellite mapping of a gene for soybean mosaic virus resistance[J]. Phytopathology,1994,84 (1):60-64
    224. Zhang W K, Wang Y J, Luo G Z, et al. QTL mapping of ten agronomic traits on the soybean (Glycine max(L.)Merr.) genetic map and their association with EST markers[J]. Theor Appl Genet,2004,108:1131-1139
    225. Zhao M F, Chen J, Zheng H Y, et al. Molecular analysis of zucchini yellow mosaic virus isolates from Hangzhou, China. J Phytopathology,2003,151:307-311
    226. Zheng H, Chen J, Chen J P, et al. Bean common mosaic virus isolates causing different symptoms in asparagus bean in China differ greatly in the 5'-parts of their genomes[J]. Arch Virol,2002,147 (6),1257-1262
    227. Zhi H J, Gai J Y. Performances and germplasm evaluation of quantitative resistance to soybean mosaic virus in soybeans[J]. Agri Sci in China,2004,3 (4):247-253

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700