益气养阴活血法改善糖尿病合并脑缺血大鼠记忆能力及神经再生研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.目的
     前期研究结果显示,气阴两虚、瘀血阻络是糖尿病合并脑缺血的最常见的基本证候,首先建立气阴两虚、瘀血阻络型糖尿病合并脑缺血大鼠模型,观察高血糖对大鼠空间学习记忆能力的影响,以及对海马DG区神经细胞的增殖、分化、存活及BDNF通路的影响,然后观察益气养阴活血中药体内和体外的干预作用,并运用工具药证实BDNF通路在其中的作用。
     2.方法
     2.1采用持续力竭性游泳、甲状腺素片混悬液灌胃、腹腔注射STZ以及线栓法制作糖尿病合并脑缺血气阴两虚、瘀血阻络证大鼠模型,从大鼠的血糖、神经功能、TTC和HE染色结果、一般状态、舌象以及最终的成功率等方面来探讨糖尿病合并脑缺血(气阴两虚、瘀血阻络)病证结合模型的可行性。
     2.2将30只大鼠分为假手术组、脑缺血组以及糖尿病合并脑缺血组,每组10只,用Brdu掺入法结合免疫组化观察糖尿病对脑缺血后大鼠海马齿状回(DG)神经细胞的新生、分化和存活的情况,免疫组化法观察BDNF表达情况,并用Morris水迷宫实验评估糖尿病对脑缺血大鼠空间学习和记忆能力的影响。
     2.3将大鼠分为假手术组、糖尿病合并脑缺血(气阴两虚、瘀血阻络证)模型对照组、益气养阴活血组、益气养阴活血+K252a(BDNF的Trk受体抑制剂)组、益气活血组,每组10只,选用了具有益气养阴活血作用的人参、川芎、玉竹、黄精组合,运用Brdu掺入法、免疫组化和Morris水迷宫实验来观察益气养阴活血法对糖尿病合并脑缺血大鼠空间学习记忆的作用和神经再生机制。
     2.4神经干细胞培养分为4组:正常对照组、缺血再灌注模型组、缺血再灌注后高糖模型组、缺血再灌注后高糖加益气养阴活血药物血清组。Brdu掺入法观察神经干细胞的增殖,甲基噻唑基四唑比色实验检测细胞活性。
     3.结果
     3.1动物模型研究结果表明,糖尿病合并脑缺血(气阴两虚、瘀血阻络)病证结合模型的最终成功率为63%,大鼠在表征、舌象、神经功能缺损、脑组织形态学以及大鼠最终的存活率等几方面指标的综合评价符合该模型的评价体系。
     3.2糖尿病对脑缺血大鼠空间记忆、海马神经再生及BDNF表达的影响
     本研究结果显示,与假手术组和模型组比较,长期高血糖能加重脑缺血大鼠的Morris水迷宫空间学习记忆能力损伤(P<0.05),但糖尿病对于脑缺血后大鼠神经细胞的增殖没有显著的影响(P>0.05),而对于脑缺血后大鼠新增殖细胞的存活及向神经元分化具有明显的抑制作用(P<0.001)。我们的研究还发现,糖尿病合并脑缺血大鼠海马齿状回BDNF表达较单纯脑缺血明显降低(P<0.001)。由于BDNF与神经再生相关,推测糖尿病可能通过抑制BDNF而影响神经再生。
     3.3益气养阴活血药物在糖尿病合并脑缺血大鼠模型中,通过BDNF调节海马的神经再生,并促进空间学习记忆的恢复
     研究结果显示,糖尿病合并脑缺血可使海马齿状回颗粒下层新生细胞增多,但益气养阴活血药物不能促进糖尿病合并脑缺血大鼠新生细胞的进一步增加(P>0.05,)。与糖尿病合并脑缺血组比较,益气养阴活血药物和益气活血药物均可以明显提高新生细胞的存活率、促进新生细胞向神经元分化(P<0.05),同时增加海马齿状回BDNF的表达(P<0.01),并促进糖尿病合并脑缺血大鼠的空间记忆能力的恢复(P<0.05-0.01),其中益气养阴活血药物效果优于益气活血药物(P<0.05)。侧脑室注射BDNF抑制剂K252a可以抑制益气养阴活血药物促进新生细胞存活和向神经元分化的作用(P<0.001),并抑制糖尿病合并脑缺血大鼠的空间记忆能力的恢复(P<0.001)。
     3.4益气养阴活血药物血清对高糖合并缺血再灌注培养模型中大鼠神经干细胞增殖和活力的影响
     结果显示,与正常组比较,脑缺血再灌注后神经干细胞增值显著增加(P<0.01),细胞活力下降(P<0.01);高糖可抑制神经干细胞的增殖(P<0.05-0.01),降低细胞活力(P<0.05-0.01);益气养阴活血药物血清可促进神经干细胞的增殖(P<0.01),提高其活力(P<0.01)。我们的体外培养结果证实了益气养阴活血药物能促进脑缺血再灌注合并高糖培养条件下神经干细胞的增殖,提高细胞活力。
     4.结论
     4.1腹腔注射链脲佐菌素、持续力竭性游泳、甲状腺素片混悬液灌胃以及线栓法制作糖尿病合并脑缺血(气阴两虚、瘀血阻络)大鼠模型,从表征、舌象、神经功能缺损、脑组织形态学以及存活率等方面综合评价大鼠病证结合模型是成功的;
     4.2糖尿病可能通过降低BDNF的表达,从而抑制再生神经存活和向神经元分化,进而加重脑缺血后的空间学习记忆障碍;
     4.3益气养阴活血药物可能通过BDNF介导的神经再生和向神经元定向分化而改善空间记忆功能;
     4.4益气养元活血药物可促进脑缺血再灌注后高糖培养大鼠神经干细胞的增殖,提高细胞活力。
1.Objective
     Previous study showed that Qi and Yin Deficiency and blood stasis were the most common Traditional Chinese Medicine (TCM) syndromes of diabetes-associated cerebral ischemia. Here, we establish animal models for the diabetes-associated cerebral ischemia due to Qi and Yin deficiency and blood stasis, and investigate the impact of diabetes on the spatial memory and nerve regeneration in hippocampus and BDNF expression in the cerebral ischemia rats. Furthermore, we evaluate the outcome of TCM of strengthening Qi, maintaining Yin, and promoting blood circulation in treatment of diabetes-associated cerebral ischemia model rats in vivo and in vitro and reveal the role of BDNF in neural regeneration.
     2.Methods
     2.1 We used continuous exhaustive swimming, gavage with thyroxine tablets suspension, and intraperitoneal injection of STZ composite preparations to establish the rat model for the diabetes-associated cerebral ischemia due to Qi and Yin deficiency and blood stasis. We explored the possibilities of the rat model for the diabetes-associated cerebral ischemia due to Qi and Yin deficiency and blood stasis from the aspects of glucose, nervous function, brain morphology, general state, tongue and the overall survival rates.
     2.2 Thirty rats were divided into 3 groups:1) sham,2) cerebral ischemia, and 3) diabetes-associated cerebral ischemia group (n=10 for each group). The BrdU incorporation assay was used to investigate the impact of diabetes on the proliferation, differentiation, and survival of neuron in the rat DG in response to cerebral ischemia. We also employed the immunohistochemistry to analyze the expression of BDNF and used the Morris water maze test to evaluate the effect of diabetes on the spatial learning and memory of cerebral ischemia rats.
     2.3 We set the following experimental groups:1) sham,2) diabetes-associated cerebral ischemia,3) diabetes-associated cerebral ischemia rats treated with TCM of benefiting Qi and maintaining Yin,4) diabetes-associated cerebral ischemia rats treated with TCM of benefiting Qi, maintaining Yin, and promoting blood circulation,5) diabetes-associated cerebral ischemia rats treated with TCM of benefiting Qi and maintaining Yin and K252a (an inhibitor of BDNF Trk receptor), and diabetes-associated cerebral ischemia rats treated with TCM of benefiting Qi and promoting blood circulation (n=10 for each group). We used Ginseng、Ligustrazine、Fragant solomonseal rhizome and Polygonatum Kingianum, which have been shown to benefit Qi, maintain Yin, and promote blood circulation. The BrdU incorporation assay was used to investigate the impact of diabetes on the proliferation, differentiation, and survival of neuron in the rat DG in response to cerebral ischemia. We also employed the immunohistochemistry to analyze the expression of BDNF and used the Morris water maze test to evaluate the effect of diabetes on the spatial learning and memory of cerebral ischemia rats.
     2.4 The cultured neural stem cells were randomly divided into four groups:A) cultured in medium supplementing with normal rat sera, B) cultured in medium supplementing with sera from rats undergoing cerebral ischemia reperfusion, C) cultured in medium supplementing with high concentration glucose and sera from rats undergoing cerebral ischemia reperfusion, and D) cultured in medium supplementing with high concentration glucose and sera from rats undergoing cerebral ischemia reperfusion and treated with TCM for supplementing Qi, nourishing Yin, and promoting blood circulation. The proliferation of neural stem cells was measured using the 5-bro-modeoxyuridine (BrdU) incorporation assay. The activity of neural stem cells was determined using methyl thiazolyl tetrazolium colorimetry.
     3.Results
     3.1 Establishment of animal models
     We used continuous exhaustive swimming, gavage with thyroxine tablets suspension, and intraperitoneal injection of STZ composite preparations to establish the rat model for the diabetes-associated cerebral ischemia due to Qi and Yin deficiency and blood stasis. The results showed that the overall successful rate for establishment of the disease model was 63%. The results showed that the model rats undergoing such treatments displayed phenotypes including tongue symptoms, neurological defects in brain morphology. The overall survival rate was consistent with the comprehensive evaluation index evaluation system for such animal models.
     3.2 The impact of diabetes on the spatial memory and nerve regeneration in hippocampus and BDNF expression in the cerebral infarction rats.
     Our current studies revealed that sustained long-term high blood sugar could increase damage of spatial learning and memory of the cerebral infarction rats in the Morris water maze test (P<0.05). We further investigated the impact of diabetes on neuron regeneration in cerebral infarction rats and found that diabetes significantly inhibited the survival and differentiation of newly proliferating neuron in the cerebral infarction rats(P<0.001), but it had little effect on facilitating neuron proliferation (P>0.05). Moreover, we found that the BDNF expression in the hippocampus of the diabetes-associated cerebral infarction rats was significantly lower than that in the hippocampus of the cerebral infarction without diabetes (P<0.001). Because BDNF expression is critical for neuron regeneration, our data suggested that diabetes might decrease the expression of BDNF, leading to inhibition of neuron differentiation and survival. This in turn affected the spatial learning and memory of cerebral isochemia patients.
     3.3Treatments of the diabetes-associated cerebral ischemia rats with TCM for benefiting Qi, maintaining Yin, and promoting blood circulation promote the recovery of spatial learning and memory via induction of BDNF-mediated nerve regeneration.
     Diabetes-associated cerebral ischemia increased the number of newly proliferating cells in the lower hippocampal dentate gyrus granule, but the treatments with these TCM did not increase the number of newly proliferating cells (P>0.05). It suggested that these TCM did not directly target the cellular proliferation pathway. On the other hand, we observed that the TCM for benefiting Qi, maintaining Yin, and promoting blood circulation or the TCM for benefiting Qi and promoting blood circulation considerably increased the survival rate and promoted the differentiation of newly proliferating neuron (P<0.05). We further found that both TCM significantly increased BDNF expression in the hippocampus of diabetes-associated cerebral ischemia mice(P<0.01) and improved their capability of spatial learning and memory (P<0.05-0.01).In addition, the beneficial effect of the TCM for benefiting Qi, maintaining Yin, and promoting blood circulation was considerably greater than the ones of the TCM for benefiting Qi and promoting blood circulation only (P<0.05) Furthermore, intracerebroventricular injection of the BDNF inhibitor K252a abolished the beneficial effects of the TCM on the survival and differentiation of newly proliferating cells (P<0.001) and on the spatial learning and memory (P<0.001). It suggested that induction of BDNF-mediated neural regeneration and differentiation to neuron plays a key role in the improvement of spatial learning and memory by the TCM for benefiting Qi, maintaining Yin, and promoting blood circulation.
     3.4 Sera containing medicine of supplementing Qi, nourishing Yin and promoting blood circulation increase cell proliferation and viability of neural stem cells of rats with high blood glucose and ischemia/reperfusion injuries.
     We found that sera containing medicine of supplementing Qi, nourishing Yin and promoting blood circulation could significantly increase proliferation (P<0.01) and viability of neural stem cells (P<0.01). MTT results showed that the viability of neural stem cells significantly decreased after reperfusion (P<0.001). Under high glucose tissue culture conditions, the viability of the cell after perfusion further decreased (P<0.05-0.01) compared to the low glucose control group. However, treatments of the neural stem cells with Sera contaning medicine of supplementing Qi, nourishing Yin and promoting blood circulation greatly increased the cellular viability and proliferation (P<0.01). These findings suggested that the joint use of Ginseng, Polygonatum, and Chuanxiong might promote the viability and proliferation of neural stem cells in rats with high blood glucose and ischemia/reperfusion injuries.
     4.Conclusion
     4.1 It is feasible to use continuous exhaustive swimming, gavage with thyroxine tablets suspension, and intraperitoneal injection of STZ composite preparations to establish the rat model for the diabetes-associated cerebral ischemia due to Qi and Yin deficiency and blood stasis
     4.2 Diabetes might inhibit BDNF expression, thus suppressing survival and differentiation of newly regenerated nerve cells in the hippocampus of the cerebral infarction rats and consequently affecting spatial learning and memory of cerebral infarction rats.
     4.3 TCM for benefiting Qi, maintaining Yin, and promoting blood circulation promote the recovery of spatial learning and memory via induction of BDNF-mediated nerve regeneration.
     4.4 Chinese prescription of supplementing Qi, nourishing Yin and promoting blood circulation can promote the proliferation and the activities of neural stem cells cultured in high concentration glucose medium from rats undergoing cerebral ischemia reperfusion.
引文
1. Sicree, R., J. Shaw, P. Zimmet, The global burden of diabetes.2nd ed. Diabetes Atlas. 2003, Brussels,Belgium:international Diabetes Federation.15-71.
    2. Zimmet, P., K.G. Alberti, J. Shaw, Global and societal implications of the diabetes epidemic. Nature,2001.414(6865):p.782-7.
    3. Currie, C.J., et dl.Epidemiology and costs of acute hospital care for cerebrovascular disease in diabetic and nondiabetic populations. Stroke.1997.28(6):p.1142-6.
    4. Alvarez-Sabin, J., et al., Effects of admission hyperglycemia on stroke outcome in reperfused tissue plasminogen activator--reated patients. Stroke,2003.34(5):p. 1235-41.
    5. Baird, T.A., et al.The influence of diabetes mellitus and hyperglycaemia on stroke incidence and outcome. J Clin Neurosci,2002.9(6):p.618-26.
    6. Association, A.D. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2008.31 Suppl 1:p. S55-60.
    7. Jia, W.P., C. Pang, L. Chen, Epidemiological characteristic of diabetes mellitus and impaired glucose regulation in a Chinese adult population:the Shanghai Diabetes Studies, a cross-sectional 3-year follow-up study in Shanghai urban communities. Diabetologia,2007.50:p.286-292.
    8. 中国心脏调查组,中国住院冠心病患者糖代谢异常研究-中国心脏调查.中华内分泌代谢杂志,2006.22:p.7-10.
    9. Khaw, K.T., et al., Glycated haemoglobin, diabetes, and mortality in men in Norfolk cohort of european prospective investigation of cancer and nutrition (EPIC-Norfolk). Bmj,2001.322(7277):p.15-8.
    10. Moss, S.E., et al., The association of glycemia and cause-specific mortality in a diabetic population. Arch Intern Med,1994.154(21):p.2473-9.
    11. Matz, K., et al., Disorders of glucose metabolism in acute stroke patients:an underrecognized problem. Diabetes Care,2006.29(4):p.792-7.
    12. Ivey, F.M., et al., High prevalence of abnormal glucose metabolism and poor sensitivity of fasting plasma glucose in the chronic phase of stroke. Cere bro vasc Dis, 2006.22(5-6):p.368-71.
    13. Tanne, D., Impaired glucose metabolism and cerebrovascular diseases. Adv Cardiol, 2008.45:p.107-13.
    14. Stamler, J., et al., Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care,1993. 16(2):p.434-44.
    15. Tuomilehto, J., et al., Diabetes mellitus as a risk factor for death from stroke. Prospective study of the middle-aged Finnish population. Stroke,1996.27(2):p. 210-5.
    16. Haheim, L.L., et al., Nonfasting serum glucose and the risk of fatal stroke in diabetic and nondiabetic subjects.18-year follow-up of the Oslo Study. Stroke,1995.26(5):p. 774-7.
    17. Barrett-Connor, E. and K.T. Khaw, Diabetes mellitus:an independent risk factor for stroke? Am J Epidemiol,1988.128(1):p.116-23.
    18. Lehto, S., et al., Predictors of stroke in middle-aged patients with non-insulin-dependent diabetes. Stroke,1996.27(1):p.63-8.
    19. Burchfiel, C.M., et al., Glucose intolerance and 22-year stroke incidence. The Honolulu Heart Program. Stroke,1994.25(5):p.951-7.
    20. D'Agostino, R.B., et al., Stroke risk profile:adjustment for antihypertensive medication. The Framingham Study. Stroke,1994.25(1):p.40-3.
    21. DCCT Research Group. Effect of intensive diabetes management on macrovascular events and risk factors in the Diabetes Control and Complications Trial. Am J Cardiol, 1995.75(14):p.894-903.
    22. You, R., et al., Risk factors for lacunar infarction syndromes. Neurology,1995.45(8): p.1483-7.
    23. Mast, H., et al., Hypertension and diabetes mellitus as determinants of multiple lacunar infarcts. Stroke.1995.26(1):p.30-3.
    24. Baird, A.E. and S. Warach, Magnetic resonance imaging of acute stroke. J Cereb Blood Flow Metab,1998.18(6):p.583-609.
    25. Kameyama, M., H. Fushimi, and F. Udaka. Diabetes mellitus and cerebral vascular disease. Diabetes Res Clin Pract,1994.24 Suppl:p. S205-8.
    26. Reske-Nielsen, E., et al., Pathological changes in the central and peripheral nervous system of young long-term diabetics. The terminal neuro-muscular apparatus. Diabetologia,1970.6(2):p.98-103.
    27. Bogousslavsky, J., F. Regli, and G. Van Melle, Risk factors and concomitants of internal carotid artery occlusion or stenosis. A controlled study of 159 cases. Arch Neurol,1985.42(9):p.864-7.
    28. Yasaka, M., T. Yamaguchi, and M. Shichiri, Distribution of atherosclerosis and risk factors in atherothrombotic occlusion. Stroke,1993.24(2):p.206-11.
    29. Beks, P.H., et al., Carotid artery stenosis is related to blood glucose level in an elderly Caucasian population:the Hoorn Study. Diabetologia,1997.40(3):p.290-8.
    30. Jorgensen, H., et al., Stroke in patients with diabetes. The Copenhagen Stroke Study. Stroke,1994.25(10):p.1977-84.
    31. Aronson, S.M., Intracranial vascular lesions in patients with diabetes mellitus. J Neuropathol Exp Neurol,1973.32(2):p.183-96.
    32. Ceriello, A., et al., Blood glucose may condition factor VII levels in diabetic and normal subjects. Diabetologia,1988.31(12):p.889-91.
    33. Colwell, J.A., P.D. Winocour, and P.V. Halushka, Do platelets have anything to do with diabetic microvascular disease? Diabetes,1983.32 Suppl 2:p.14-9.
    34. McGill, J.B., et al., Factors responsible for impaired fibrinolysis in obese subjects and NIDDMpatients. Diabetes,1994.43(1):p.104-9.
    35. Knekt, P., et al., Risk factors for subarachnoid hemorrhage in a longitudinal population study. J Clin Epidemiol,1991.44(9):p.933-9.
    36. Adams, H.P., Jr., et al., Prevalence of diabetes mellitus among patients with subarachnoid hemorrhage. Arch Neurol,1984.41(10):p.1033-5.
    37. Pulsinelli, W., Pathophysiology of acute ischaemic stroke. Lancet,1992.339(8792):p. 533-6.
    38. Laakso, M. and J. Kuusisto, Epidemiological evidence for the association of hyperglycaemia and atherosclerotic vascular disease in non-insulin-dependent diabetes mellitus. Ann Med,1996.28(5):p.415-8.
    39. Di Mario, U. and G. Pugliese,15th Golgi lecture:from hyperglycaemia to the dysregulation of vascular remodelling in diabetes. Diabetologia,2001.44(6):p. 674-92.
    40. UKPDS 28:a randomized trial of efficacy of early addition of metformin in sulfonylurea-treated type 2 diabetes. U.K. Prospective Diabetes Study Group. Diabetes Care,1998.21(1):p.87-92.
    41. Laakso, M., Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes, 1999.48(5):p.937-42.
    42. Kuebler, T.W., et al., Diabetes mellitus and cerebrovascular disease:prevalence of carotid artery occlusive disease and associated risk factors in 482 adult diabetic patients. Diabetes Care,1983.6(3):p.274-8.
    43. Shaw, J.S., R.L. Wilmot, and E.S. Kilpatrick, Establishing pragmatic estimated GFR thresholds to guide metformin prescribing. Diabet Med,2007.24(10):p.1160-3.
    44. Aziz, I., et al., Cardiac morbidity and mortality following carotid endarterectomy:the importance of diabetes and multiple Eagle risk factors. Ann Vasc Surg,2001.15(2):p. 243-6.
    45. Lyons, T.J., et al., Decrease in skin collagen glycation with improved glycemic control in patients with insulin-dependent diabetes mellitus. J Clin Invest,1991.87(6):p. 1910-5.
    46. Moore, S.A., et al., Cellular and vessel wall morphology of cerebral cortical arterioles after short-term diabetes in adult rats. Blood Vessels,1985.22(6):p. 265-77.
    47. McCall, A.L., et al., Effects of hypoglycemia and diabetes on fuel metabolism by rat brain microvessels. Am J Physiol,1988.254(3 Pt 1):p. E272-8.
    48. Ryden, L., et al., Guidelines on diabetes, pre-diabetes, and cardiovascular diseases: executive summary. The Task Force on Diabetes and Cardiovascular Diseases of the European Society of Cardiology (ESC) and of the European Association for the Study of Diabetes (EASD). Eur Heart J,2007.28(1):p.88-136.
    49. Quinones, M.J., S.B. Nicholas, and C.J. Lyon, Insulin resistance and the endothelium. Curr Diab Rep,2005.5(4):p.246-53.
    50. Ruggeri, Z.M., Von Willebr and factor, platelets and endothelial cell interactions. J Thromb Haemost,2003.1(7):p.1335-42.
    51. Sullivan, K.A. and E.L. Feldman, New developments in diabetic neuropathy. Curr Opin Neurol,2005.18(5):p.586-90.
    52. Kaarisalo, M.M., et al., Diabetes worsens the outcome of acute ischemic stroke. Diabetes Res Clin Pract,2005.69(3):p.293-8.
    53. Hiraga, T., et al., Prospective study of lipoprotein(a) as a risk factor for atherosclerotic cardiovascular disease in patients with diabetes. Diabetes Care,1995. 18(2):p.241-4.
    54. Fasching, P., W. Waldhausl, and O.F. Wagner, Elevated circulating adhesion molecules in NIDDM--potential mediators in diabetic macroangiopathy. Diabetologia, 1996.39(10):p.1242-4.
    55. Fasching, P., et al., Elevated concentrations of circulating adhesion molecules and their association with microvascular complications in insulin-dependent diabetes mellitus. J Clin Endocrinol Metab,1996.81(12):p.4313-7.
    56. Otsuki, M., et al.. Circulating vascular cell adhesion molecule-1 (VCAM-1) in atherosclerotic NIDDMpatients. Diabetes,1997.46(12):p.2096-101.
    57. Koga, M., et al., Relationship between circulating vascular cell adhesion molecule-l and microvascular complications in type 2 diabetes mellitus. Diabet Med,1998.15(8): p.661-7.
    58. Kawamura, T., et al., The incidence and characteristics of silent cerebral infarction in elderly diabetic patients:association with serum-soluble adhesion molecules. Diabetologia,1998.41(8):p.911-7.
    59. Shinoda-Tagawa, T., et al., A phosphodiesterase inhibitor, cilostazol, prevents the onset of silent brain infarction in Japanese subjects with Type II diabetes. Diabetologia,2002.45(2):p.188-94.
    60. Kawamura, T., et al., Soluble adhesion molecules and C-reactive protein in the progression of silent cerebral infarction in patients with type 2 diabetes mellitus. Metabolism,2006.55(4):p.461-6.
    61. Asplund, K., et al., The natural history of stroke in diabetic patients. Acta Med Scand, 1980.207(5):p.417-24.
    62. Oppenheimer, S.M., et al., Diabetes mellitus and early mortality from stroke. Br Med J (Clin Res Ed),1985.291(6501):p.1014-5.
    63. Pulsinelli, W.A., et al., Increased damage after ischemic stroke in patients with hyperglycemia with or without established diabetes mellitus. Am J Med,1983.74(4): p.540-4.
    64. Generalized efficacy of t-PA for acute stroke. Subgroup analysis of the NINDS t-PA Stroke Trial. Stroke,1997.28(11):p.2119-25.
    65. Gentile, N.T., et al., Decreased mortality by normalizing blood glucose after acute ischemic stroke. Acad Emerg Med,2006.13(2):p.174-80.
    66. Adams, H.P., Jr., et al., Guidelines for the early management of adults with ischemic stroke:a guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups:the American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Stroke,2007.38(5):p.1655-711.
    67. European Stroke Organization(ESO) Executive Committe;ESO Writing Committe.Guidelines for management of ischaemic stroke and trasient ischaemic attack. Cerebrovasc Dis,2008.25:p.457-507.
    68. O'Neill, P.A., et al., Stress hormone and blood glucose response following acute stroke in the elderly. Stroke,1991.22(7):p.842-7.
    69. Cox, N.H. and J.W. Lorains, The prognostic value of blood glucose and glycosylated haemoglobin estimation in patients with stroke. Postgrad Med J,1986.62(723):p. 7-10.
    70. Wass, C.T. and W.L. Lanier, Glucose modulation of ischemic brain injury:review and clinical recommendations. Mayo Clin Proc,1996.71(8):p.801-12.
    71. Ginsberg, M.D., et al., Hyperglycemia reduces the extent of cerebral infarction in rats. Stroke,1987.18(3):p.570-4.
    72. Horowitz, S.H., et al., Clinical-radiographic correlations within the first five hours of cerebral infarction. Acta Neurol Scand,1992.86(2):p.207-14.
    73. Kiers, L., et al., Stroke topography and outcome in relation to hyperglycaemia and diabetes. J Neurol Neurosurg Psychiatry,1992.55(4):p.263-70.
    74. Berger, L. and A.M. Hakim, The association of hyperglycemia with cerebral edema in stroke. Stroke,1986.17(5):p.865-71.
    75. Kushner, M., et al., Relation of hyperglycemia early in ischemic brain infarction to cerebral anatomy, metabolism, and clinical outcome. Ann Neurol,1990.28(2):p. 129-35.
    76. Candelise, L., et al., Prognostic significance of hyperglycemia in acute stroke. Arch Neurol,1985.42(7):p.661-3.
    77. Hier, D.B., et al., Stroke recurrence within 2 years after ischemic infarction. Stroke, 1991.22(2):p.155-61.
    78. Sacco, R.L., et al., Determinants of early recurrence of cerebral infarction. The Stroke Data Bank. Stroke,1989.20(8):p.983-9.
    79. Jorgensen, H.S., et al., Effect of blood pressure and diabetes on stroke in progression. Lancet,1994.344(8916):p.156-9.
    80. Toyry, J.P., et al., Autonomic neuropathy predicts the development of stroke in patients with non-insulin-dependent diabetes mellitus. Stroke,1996.27(8):p.1316-8.
    81. Demchuk, A.M., et al., Serum glucose level and diabetes predict tissue plasminogen activator-related intracerebral hemorrhage in acute ischemic stroke. Stroke,1999. 30(1):p.34-9.
    82. Kase, C.S., et al., Cerebral hemorrhage after intra-arterial thrombolysis for ischemic stroke:the PROACT Ⅱ trial. Neurology,2001.57(9):p.1603-10.
    83. Intracerebral hemorrhage after intravenous t-PA therapy for ischemic stroke. The NINDS t-PA Stroke Study Group. Stroke,1997.28(11):p.2109-18.
    84. de Courten-Myers, G.M., et al., Normoglycemia (not hypoglycemia) optimizes outcome from middle cerebral artery occlusion. J Cereb Blood Flow Metab,1994. 14(2):p.227-36.
    85. Tracey, F., et al., Hyperglycaemia and mortality from acute stroke. Q J Med,1993. 86(7):p.439-46.
    86. Weir, C.J., et al., Is hyperglycaemia an independent predictor of poor outcome after acute stroke? Results of a long-term follow up study. Bmj,1997.314(7090):p. 1303-6.
    87. van Kooten, F., et al., Hyperglycemia in the acute phase of stroke is not caused by stress. Stroke,1993.24(8):p.1129-32.
    88. Anderson, R.E., et al., Effects of glucose and PαO2 modulation on cortical intracellular acidosis, NADH redox state, and infarction in the ischemic penumbra. Stroke,1999.30(1):p.160-70.
    89. Martini, S.R. and T.A. Kent, Hyperglycemia in acute ischemic stroke:a vascular perspective. J Cereb Blood Flow Metab,2007.27(3):p.435-51.
    90. Li, D., et al., Kinetics of tumor necrosis factor alpha in plasma and the cardioprotective effect of a monoclonal antibody to tumor necrosis factor alpha in acute myocardial infarction. Am Heart J,1999.137(6):p.1145-52.
    91. Brownlee, M., The pathobiology of diabetic complications:a unifying mechanism. Diabetes,2005.54(6):p.1615-25.
    92. Capes, S.E., et al., Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients:a systematic overview. Stroke,2001.32(10):p.2426-32.
    93. Obrosova, I.G. and L. Fathallah, Evaluation of an aldose reductase inhibitor on lens metabolism, ATPases and antioxidative defense in streptozotocin-diabetic rats:an intervention study. Diabetologia,2000.43(8):p.1048-55.
    94. Obrosova, Ⅰ.G., et al., Aldose reductase inhibition counteracts oxidative-nitrosative stress and poly(ADP-ribose) polymerase activation in tissue sites for diabetes complications. Diabetes,2005.54(1):p.234-42.
    95. Rehncrona, S., I. Rosen, and B.K. Siesjo, Brain lactic acidosis and ischemic cell damage:1. Biochemistry and neurophysiology. J Cereb Blood Flow Metab,1981.1(3): p.297-311.
    96. Pulsinelli, W.A., et al., Moderate hyperglycemia augments ischemic brain damage:a neuropathologic study in the rat. Neurology,1982.32(11):p.1239-46.
    97. Warner, D.S., et al., Temporal thresholds for hyperglycemia-augmented ischemic brain damage in rats. Stroke,1995.26(4):p.655-60.
    98. Li, P.A., et al., Hyperglycemia enhances extracellular glutamate accumulation in rats subjected to forebrain ischemia. Stroke,2000.31(1):p.183-92.
    99. Turner, R.C., The U.K. Prospective Diabetes Study. A review. Diabetes Care,1998.21 Supp13:p. C35-8.
    100. Capes, S.E., et al., Stress hyper glycaemia and increased risk of death after myocardial infarction in patients with and without diabetes:a systematic overview. Lancet,2000. 355(9206):p.773-8.
    101. Fath-Ordoubadi, F. and K.J. Beatt, Glucose-insulin-potassium therapy for treatment of acute myocardial infarction:an overview of randomized placebo-controlled trials. Circulation,1997.96(4):p.1152-6.
    102. Malmberg, K., et al., Randomized trial of insulin-glucose infusion followed by subcutaneous insulin treatment in diabetic patients with acute myocardial infarction (DIGAMI study):effects on mortality at I year. J Am Coll Cardiol,1995.26(1):p. 57-65.
    103. van den Berghe, G., et al., Intensive insulin therapy in the critically ill patients. N Engl J Med,2001.345(19):p.1359-67.
    104. Auer, R.N., Insulin, blood glucose levels, and ischemic brain damage. Neurology, 1998.51(3 Suppl 3):p. S39-43.
    105. Scott, J.F., et al., Blood pressure response to glucose potassium insulin therapy in patients with acute stroke with mild to moderate hyperglycaemia. J Neurol Neurosurg Psychiatry,2001.70(3):p.401-4.
    106. Helgason, CM., Blood glucose and stroke. Stroke,1988.19(8):p.1049-53.
    1. Altman, J., Are new neurons formed in the brains of adult mammals. Science,1962. 135(3509):p.1127-1128.
    2. Kaplan, M.S. J.W. Hinds, Neurogenesis in the adult rat:electron microscopic analysis of light radioautographs. Science,1977.197(4308):p.1092-1094.
    3. Nottebohm, F., A brain for all seasons:cyclical anatomical changes in song control nuclei of the canary brain. Science,1981.214(4527):p.1368-1370.
    4. Goldman, S.A. and F. Nottebohm, Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proceedings of the National Academy of Sciences of the United States of America,1983.80(8):p.2390.
    5. Eriksson, P.S., et al., Neurogenesis in the adult human hippocampus. Nature medicine, 1998.4(11):p.1313-1317.
    6. Gould, E., et al., Hippocampal neurogenesis in adult Old World primates. Proceedings of the National Academy of Sciences of the United States of America,1999.96(9):p. 5263.
    7. Parent, J.M., et al., Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. Journal of Neuroscience,1997.17(10):p.3727.
    8. Gould, E., et al., Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMD A receptor activation. Journal of Neuroscience,1997. 17(7):p.2492.
    9. Liu, J., et al., Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. Journal of Neuroscience,1998.18(19):p.7768.
    10. Jiang, W., et al., Cortical neurogenesis in adult rats after transient middle cerebral artery occlusion. Stroke,2001.32(5):p.1201.
    11. Dash, P.K., S.A. Mach, and A.N. Moore, Enhanced neurogenesis in the rodent hippocampus following traumatic brain injury. Journal of neuroscience research,2001. 63(4):p.313-319.
    12. Dempsey, R.J., et al., Stroke-induced progenitor cell proliferation in adult spontaneously hypertensive rat brain:effect of exogenous IGF-1 and GDNF. Journal of neurochemistry,2003.87(3):p.586-597.
    13. Yan, Y.P., et al., Insulin -like growth factor-1 is an endogenous mediator of focal ischemia -induced neural progenitor proliferation. European Journal of Neuroscience, 2006.24(1):p.45-54.
    14. Yoshimura. S., et al., FGF-2 regulates neurogenesis and degeneration in the dentate gyrus after traumatic brain injury in mice. Journal of Clinical Investigation,2003. 112(8):p.1202-1210.
    15. Ernst, C. B.R. Christie, Temporally specific proliferation events are induced in the hippocampus following acute focal injury. Journal of neuroscience research,2006. 83(3):p.349-361.
    16. Wacker, I., et al., Zag-1, a Zn-finger homeodomain transcription factor controlling neuronal differentiation and axon outgrowth in C. elegans. Development,2003. 130(16):p.3795.
    17. Pleasure, S.J., A.E. Collins, and D.H. Lowenstein, Unique expression patterns of cell fate molecules delineate sequential stages of dentate gyrus development. Journal of Neuroscience,2000.20(16):p.6095.
    18. Lois, C. A. Alvarez-Buylla, Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proceedings of the National Academy of Sciences of the United States of America,1993.90(5):p.2074.
    19. Doetsch, F., et al., Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell,1999.97(6):p.703-716.
    20. Alvarez-Buylla, A., B. Seri, and F. Doetsch, Identification of neural stem cells in the adult vertebrate brain. Brain research bulletin,2002.57(6):p.751-758.
    21. Gage, F.H., Mammalian neural stem cells. Science,2000.287(5457):p.1433.
    22. Weiss, S., et al., Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. Journal of Neuroscience,1996.16(23):p.7599.
    23. Johe, K.K., et al., Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes & development,1996.10(24):p.3129.
    24. Gould, E., et al., Neurogenesis in the neocortex of adult primates. Science,1999. 286(5439):p.548.
    25. Nguyen, L., et al., Coupling cell cycle exit, neuronal differentiation and migration in cortical neurogenesis. Cell cycle (Georgetown, Tex.),2006.5(20):p.2314.
    26. Merkle, F.T., et al., Radial glia give rise to adult neural stem cells in the subventricular zone. Proceedings of the National Academy of Sciences of the United States of America,2004.101(50):p.17528.
    27. Garcia-Verdugo, J.M., et al., Architecture and cell types of the adult subventricular zone:in search of the stem cells. Journal of neurobiology,1998.36(2):p.234-248.
    28. Altman, J., Autoradiographic and histological studies of postnatal neurogenesis. Ⅲ. Dating the time of production and onset of differentiation of cerebellar microneurons in rats. The Journal of comparative neurology,1969.136(3):p.269-293.
    29. Lois, C. A. Alvarez-Buylla, Long-distance neuronal migration in the adult mammalian brain. Science,1994.264(5162):p.1145.
    30. Shapiro, E.M., O. Gonzalez-Perez. G.V. Manuel, Magnetic resonance imaging of the migration of neuronal precursors generated in the adult rodent brain. Neuroimage, 2006.32(3):p.1150-1157.
    31. Kirschenbaum, B., et al., Adult subventricular zone neuronal precursors continue to proliferate and migrate in the absence of the olfactory bulb. Journal of Neuroscience, 1999.19(6):p.2171.
    32. Gheusi, G., et al., Importance of newly generated neurons in the adult olfactory bulb for odor discrimination. Proceedings of the National Academy of Sciences of the United States of America,2000.97(4):p.1823.
    33. Petreanu, L. A. Alvarez-Buylla, Maturation and death of adult-born olfactory bulb granule neurons:role of olfaction. Journal of Neuroscience,2002.22(14):p.6106.
    34. Rochefort, C., et al., Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. Journal of Neuroscience,2002.22(7):p.2679.
    35. Cameron, H.A. R.D.G. McKay, Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. The Journal of comparative neurology,2001.435(4): p.406-417.
    36. Seri, B., et al., Astrocytes give rise to new neurons in the adult mammalian hippocampus. Journal of Neuroscience,2001.21(18):p.7153.
    37. Namba, T., et al., The fate of neural progenitor cells expressing astrocytic and radial glial markers in the postnatal rat dentate gyrus. European Journal of Neuroscience, 2005.22(8):p.1928-1941.
    38. Seaberg, R.M. and D. van der Kooy, Stem and progenitor cells:the premature desertion of rigorous definitions. TRENDS in Neurosciences,2003.26(3):p.125-131.
    39. Kuhn, H.G., et al., Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. Journal of Neuroscience, 1997.17(15):p.5820.
    40. Bayer, S.A., J.W. Yackel, P.S. Puri, Neurons in the rat dentate gyrus granular layer substantially increase during juvenile and adult life. Science,1982.216:p.890-892.
    41. Gage, F.H., et al., Multipotent progenitor cells in the adult dentate gyrus. Journal of Neurobiology,1998.36(2):p.249-266.
    42. van Praag, H., et al., Functional neurogenesis in the adult hippocampus. Nature,2002. 415(6875):p.1030-1034.
    43. Christie, B.R. H.A. Cameron, Neurogenesis in the adult hippocampus. Hippocampus, 2006.16(3):p.199-207.
    44. Nakatomi. H., et al., Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell,2002.110(4):p. 429-441.
    45. Herrera, D.G., et al., Selective impairment of hippocampal neurogenesis by chronic alcoholism:protective effects of an antioxidant. Proceedings of the National Academy of Sciences of the United States of America,2003.100(13):p.7919.
    46. Malberg, J.E., et al., Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. Journal of Neuroscience,2000.20(24):p.9104.
    47. Dranovsky, A. R. Hen, Hippocampal neurogenesis:regulation by stress and antidepressants. Biological psychiatry,2006.59(12):p.1136-1143.
    48. Powrozek, T.A., et al., Neurotransmitters and substances of abuse:effects on adult neurogenesis. Current Neurovascular Research,2004.1(3):p.251-260.
    49. Mirescu, C., J.D. Peters, E. Gould, Early life experience alters response of adult neurogenesis to stress. Nature Neuroscience,2004.7(8):p.841-846.
    50. Hauser, K.F., et al., Opioids intrinsically inhibit the genesis of mouse cerebellar granule neuron precursors in vitro:differential impact of μ and δ receptor activation on proliferation and neurite elongation. European Journal of Neuroscience,2000. 12(4):p.1281-1293.
    51. Raber, J., et al., Irradiation attenuates neurogenesis and exacerbates ischemia-induced deficits. Annals of neurology,2004.55(3):p.381-389.
    52. Ekdahl, C.T., et al., Inflammation is detrimental for neurogenesis in adult brain. Proceedings of the National Academy of Sciences of the United States of America, 2003.100(23):p.13632.
    53. Lindqvist, A., et al., High -fat diet impairs hippocampal neurogenesis in male rats. European Journal of Neurology,2006.13(12):p.1385-1388.
    54. Beauquis, J., et al., Reduced hippocampal neurogenesis and number of hilar neurones in streptozotocin-induced diabetic mice:reversion by antidepressant treatment. European Journal of Neuroscience,2006.23(6):p.1539-1546.
    55. 姚小梅,李敏.神经再生的研究进展.医学研究杂志,2009.38(002):p.99-101.
    56. van Praag, H., G. Kempermann, and F.H. Gage, Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature neuroscience,1999.2(3):p. 266-270.
    57. Gould, E., et al., Learning enhances adult neurogenesis in the hippocampal formation. nature neuroscience,1999.2(3):p.260-265.
    58. Lichtenwalner. R.J. J.M. Parent, Adult neurogenesis and the ischemic forebrain. Journal of Cerebral Blood Flow & Metabolism,2005.26(1):p.1-20.
    59. Komitova, M., et al., Effects of cortical ischemia and postischemic environmental enrichment on hippocampal cell genesis and differentiation in the adult rat. Journal of Cerebral Blood Flow & Metabolism,2002.22(7):p.852-860.
    60. Lee, J., K.B. Seroogy, M.P. Mattson, Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. Journal of neurochemistry.2002.80(3):p.539-547.
    61. Naylor, M., et al., Preconditioning-induced ischemic tolerance stimulates growth factor expression and neurogenesis in adult rat hippocampus. Neurochemistry international,2005.47(8):p.565-572.
    62. Gu, W.G., T. Br nnstr m, P. Wester, Cortical neurogenesis in adult rats after reversible photothrombotic stroke. Journal of Cerebral Blood Flow & Metabolism,2000.20(8):p. 1166-1173.
    63. Rola, R., et al., Alterations in hippocampal neurogenesis following traumatic brain injury in mice. Experimental neurology,2006.202(1):p.189-199.
    64. 田兆华,刘柏炎.血管新生与脑缺血神经再生.临床合理用药,2010.3(20):p.135-136.
    65. Magavi, S.S., B.R. Leavitt, J.D. Macklis, Induction of neurogenesis in the neocortex of adult mice. Nature,2000.405(6789):p.951-955.
    66. Parent, J.M., et al., Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Annals of neurology,2002.52(6):p.802-813.
    67. Parent, J.M., V.V. Valentin, and D.H. Lowenstein, Prolonged seizures increase proliferating neuroblasts in the adult rat subventricular zone-olfactory bulb pathway. Journal of Neuroscience,2002.22(8):p.3174.
    68. Arvidsson, A., et al., Neuronal replacement from endogenous precursors in the adult brain after stroke. Nature medicine,2002.8(9):p.963-970.
    69. Yan, Y.P., et al., Monocyte chemoattractant protein-1 plays a critical role in neuroblast migration after focal cerebral ischemia. Journal of Cerebral Blood Flow & Metabolism,2006.27(6):p.1213-1224.
    70. Sun, D., et al., Anatomical integration of newly generated dentate granule neurons following traumatic brain injury in adult rats and its association to cognitive recovery. Experimental neurology,2007.204(1):p.264-272.
    71. Hicks, A.U., et al., Enriched environment enhances transplanted subventricular zone stem cell migration and functional recovery after stroke. Neuroscience,2007.146(1): p.31-40.
    72. Wang, Y., et al., VEGF-overexpressing transgenic mice show enhanced post-ischemic neurogenesis and neuromigration. Journal of neuroscience research, 2007.85(4):p.740-747.
    73. Imai, F., et al., Neuroprotective effect of exogenous microglia in global brain ischemia. Journal of Cerebral Blood Flow & Metabolism,2006.27(3):p.488-500.
    74. Takagi. Y., et al., Proliferation of neuronal precursor cells in the dentate gyrus is accelerated after transient forebrain ischemia in mice. Brain research,1999.831(1-2): p.283-287.
    75. Iwai, M., et al., Induction of highly polysialylated neural cell adhesion molecule (PSA-NCAM) in postischemic gerbil hippocampus mainly dissociated with neural stem cell proliferation. Brain research,2001.902(2):p.288-293.
    76. Yagita, Y., et al., Neurogenesis by progenitor cells in the ischemic adult rat hippocampus. Stroke,2001.32(8):p.1890.
    77. Kee, N.J., E. Preston, J.M. Wojtowicz, Enhanced neurogenesis after transient global ischemia in the dentate gyrus of the rat. Experimental Brain Research,2001.136(3):p. 313-320.
    78. Schmidt, W. K.G. Reymann, Proliferating cells differentiate into neurons in the hippocampal CA1 region of gerbils after global cerebral ischemia. Neuroscience letters,2002.334(3):p.153-156.
    79. Jin, K., et al., Evidence for stroke-induced neurogenesis in the human brain. Proceedings of the National Academy of Sciences,2006.103(35):p.13198.
    80. Tonchev, A.B., et al., Expression of angiogenic and neurotrophic factors in the progenitor cell niche of adult monkey subventricular zone. Neuroscience,2007.144(4): p.1425-1435.
    81. Iwai, M., et al., Three steps of neural stem cells development in gerbil dentate gyrus after transient ischemia. Journal of Cerebral Blood Flow & Metabolism,2002.22(4): p.411-419.
    82. Tonchev, A.B., et al., Proliferation of neural and neuronal progenitors after global brain ischemia in young adult macaque monkeys. Molecular and Cellular Neuroscience,2003.23(2):p.292-301.
    83. Liu, J., et al., Microglia/macrophages proliferate in striatum and neocortex but not in hippocampus after brief global ischemia that produces ischemic tolerance in gerbil brain. Journal of Cerebral Blood Flow & Metabolism,2001.21(4):p.361-373.
    84. Iwai, M., et al., Temporal profile of stem cell division, migration, and differentiation from subventricular zone to olfactory bulb after transient forebrain ischemia in gerbils. Journal of Cerebral Blood Flow & Metabolism,2003.23(3):p.331-341.
    85. Pforte, C., et al., Increase in proliferation and gliogenesis but decrease of early neurogenesis in the rat forebrain shortly after transient global ischemia. Neuroscience, 2005.136(4):p.1133-1146.
    86. Tonchev, A.B., et al., Enhanced proliferation of progenitor cells in the subventricular zone and limited neuronal production in the striatum and neocortex of adult macaque monkeys after global cerebral ischemia. Journal of neuroscience research,2005.81(6): p.776-788.
    87. Bendel, O., et al., Reappearance of hippocampal CA1 neurons after ischemia is associated with recovery of learning and memory. Journal of Cerebral Blood Flow & Metabolism,2005.25(12):p.1586-1595.
    88. Jin, K., et al., Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proceedings of the National Academy of Sciences of the United States of America,2001.98(8):p.4710.
    89. Zhang, R., et al., Bcl-2 enhances neurogenesis and inhibits apoptosis of newborn neurons in adult rat brain following a transient middle cerebral artery occlusion. Neurobiology of disease,2006.24(2):p.345-356.
    90. Zhang, R.L., et al., Delayed treatment with sildenafil enhances neurogenesis and improves functional recovery in aged rats after focal cerebral ischemia. Journal of neuroscience research,2006.83(7):p.1213-1219.
    91. Zhu, D.Y., et al., Expression of inducible nitric oxide synthase after focal cerebral ischemia stimulates neurogenesis in the adult rodent dentate gyrus. Journal of Neuroscience,2003.23(1):p.223.
    92. Palmer, T.D., et al., Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. Journal of Neuroscience, 1999.19(19):p.8487.
    93. Rakic, P., Neurogenesis in adult primate neocortex:an evaluation of the evidence. Nature Reviews Neuroscience,2002.3(1):p.65-71.
    94. Kornack, D.R. and P. Rakic, Cell proliferation without neurogenesis in adult primate neocortex. Science,2001.294(5549):p.2127.
    95. Hess, D.C., et al., Bone marrow as a source of endothelial cells and Neuh^-expressing cells after stroke. Stroke,2002.33(5):p.1362.
    96. Jin, K., et al., Directed migration of neuronal precursors into the ischemic cerebral cortex andstriatum. Molecular and Cellular Neuroscience,2003.24(1):p.171-189.
    97. Soriano, M.A., et al., Parallel gene expression monitoring using oligonucleotide probe arrays of multiple transcripts with an animal model of focal ischemia. Journal of Cerebral Blood Flow & Metabolism,2000.20(7):p.1045-1055.
    98. Jin, K., et al., Microarray analysis of hippocampal gene expression in global cerebral ischemia. Annals of neurology,2001.50(1):p.93-103.
    99. Lu, A., et al., Genomics of the periinfarction cortex after focal cerebral ischemia. Journal of Cerebral Blood Flow & Metabolism,2003.23(7):p.786-810.
    100. Reynolds, B.A., W. Tetzlaff, and S. Weiss, A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. Journal of Neuroscience, 1992.12(11):p.4565.
    101. Richards, L.J., T.J. Kilpatrick, and P.F. Bartlett, De novo generation of neuronal cells from the adult mouse brain. Proceedings of the National Academy of Sciences of the United States of America,1992.89(18):p.8591.
    102. Endoh, M., W.A. Pulsinelli, and J.A. Wagner, Transient global ischemia induces dynamic changes in the expression of bFGF and the FGF receptor. Molecular Brain Research,1994.22(1-4):p.76-88.
    103. Lin, T.N., et al., Induction of basic fibroblast growth factor (bFGF) expression following focal cerebral ischemia. Molecular Brain Research,1997.49(1-2):p. 255-265.
    104. Yoshimura, S., et al., FGF-2 regulation of neurogenesis in adult hippocampus after brain injury. Proceedings of the National Academy of Sciences of the United States of America,2001.98(10):p.5874.
    105. Leker, R.R., et al., Long-Lasting Regeneration After Ischemia in the Cerebral Cortex* Supplemental Materials and Methods. Stroke,2007.38(1):p.153.
    106. Ninomiya, M., et al., Enhanced neurogenesis in the ischemic striatum following EGF-induced expansion of transit-amplifying cells in the subventricular zone. Neuroscience letters,2006.403(1-2):p.63-67.
    107. Shirakata, Y., et al., Hepar in-binding EGF-like growth factor accelerates keratinocyte migration and skin wound healing. Journal of cell science,2005.118(11):p. 2363-2370.
    108. Liu, Y.P., et al., The potential of neural stem cells to repair stroke-induced brain damage. Acta Neuropathologica,2009.117(5):p.469-480.
    109. Raab, G. and M. Klagsbrun, Heparin-binding EGF-like growth factor. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer,1997.1333(3):p. F179-F199.
    110. Jin, K., et al., Heparin-binding epidermal growth factor-like growth factor: hypoxia-inducible expression in vitro and stimulation of neurogenesis in vitro and in vivo. Journal of Neuroscience,2002.22(13):p.5365.
    111. Sugiura, S., et al., Adenovirus-mediated gene transfer of heparin-binding epidermal growth factor-like growth factor enhances neurogenesis and angiogenesis after focal cerebral ischemia in rats. Stroke,2005.36(4):p.859.
    112. Tureyen, K., et al., EGF and FGF-2 infusion increases post-ischemic neural progenitor cell proliferation in the adult rat brain. Neurosurgery,2005.57(6):p.1254.
    113. Takami, K., et al., Increase of basic fibroblast growth factor immunoreactivity and its mRNA level in rat brain following transient forebrain ischemia. Experimental Brain Research.1992.90(1):p.1-10.
    114. Kokaia, Z., et al., Regulation of brain-derived neurotrophic factor gene expression after transient middle cerebral artery occlusion with and without brain damage. Experimental neurology,1995.136(1):p.73-88.
    115. Kitagawa, H., et al., Induction of glial cell line-derived neurotrophic factor receptor proteins in cerebral cortex and striatum after permanent middle cerebral artery occlusion in rats. Brain research,1999.834(1-2):p.190-195.
    116. 魏丽夏,曹云涛,刘华庆, 等.神经生长因子对新生鼠缺氧血性脑损伤后神经再生 的影响. 临床儿科杂志,2008.26(007):p.612-616.
    117. Nygren, J., M. Kokaia, and T. Wieloch, Decreased expression of brain-derived neurotrophic factor in BDNF+/-mice is associated with enhanced recovery of motor performance and increased neuroblast number following experimental stroke. Journal of neuroscience research,2006.84(3):p.626-631.
    118. Wang, L., et al., Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke,2004.35(7):p.1732.
    119. Chen, J., et al., Endothelial nitric oxide synthase regulates brain-derived neurotrophic factor expression and neurogenesis after stroke in mice. Journal of Neuroscience, 2005.25(9):p.2366.
    120. Soliman, F., et al., A genetic variant BDNF polymorphism alters extinction learning in both mouse and human. Science,2010.327(5967):p.863.
    121. Jin, K., et al., Stem cell factor stimulates neurogenesis in vitro and in vivo. Journal of Clinical Investigation,2002.110(3):p.311-319.
    122. Jin, K., et al., Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America,2002.99(18):p.11946.
    123. Shingo, T., et al., Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. Journal of Neuroscience,2001.21(24):p.9733.
    124. Tsai, P.T., et al., A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. Journal of Neuroscience,2006.26(4):p.1269.
    125. Hayashi, T., et al., Rapid induction of vascular endothelial growth factor gene expression after transient middle cerebral artery occlusion in rats. Stroke,1997. 28(10):p.2039.
    126. Gluckman, P., et al., A role for IGF-1 in the rescue of CNS neurons following hypoxic-ischemic injury. Biochemical and biophysical research communications,1992. 182(2):p.593-599.
    127. Kalluri, H.S.G., R. Vemuganti, and R.J. Dempsey, Mechanism of insulin-like growth factor Ⅰ-mediated proliferation of adult neural progenitor cells:role of Akt. European Journal of Neuroscience,2007.25(4):p.1041-1048.
    128. Zhang, R., et al., A nitric oxide donor induces neurogenesis and reduces functional deficits after stroke in rats. Annals of neurology,2001.50(5):p.602-611.
    129. Sehara, Y., et al., Distribution of inducible nitric oxide synthase and cell proliferation in rat brain after transient middle cerebral artery occlusion. Brain research,2006. 1093(1):p.190-197.
    130. Sun, Y., et al., Neuronal nitric oxide synthase and ischemia-induced neurogenesis. Journal of Cerebral Blood Flow & Metabolism,2005.25(4):p.485-492.
    131. Cameron, H.A., B.S. McEwen, and E. Gould, Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. Journal of Neuroscience,1995.15(6):p.4687.
    132. Cameron, H.A., T.G. Hazel, R.D.G. McKay, Regulation of neurogenesis by growth factors and neurotransmitters. Journal of neurobiology,1998.36(2):p.287-306.
    133. Bernabeu, R. F.R. Sharp, NMD A and AMPA/kainate glutamate receptors modulate dentate neurogenesis and CA3 synapsin-Ⅰ in normal and ischemic hippocampus. Journal of Cerebral Blood Flow & Metabolism,2000.20(12):p.1669-1680.
    134. Kluska, M.M., et al., Neurogenesis in the adult dentate gyrus after cortical infarcts: effects of infarct location, N-methyl-D-aspartate receptor blockade and anti-inflammatory treatment. Neuroscience,2005.135(3):p.723-735.
    135. Arvidsson, A., Z. Kokaia, O. Lindvall, N-methyl-d-aspartate receptor-mediated increase of neurogenesis in adult rat dentate gyrus following stroke. European Journal of Neuroscience,2001.14(1):p.10-18.
    136. Borta, A. G.U. H glinger, Dopamine and adult neurogenesis. Journal of neurochemistry,2007.100(3):p.587-595.
    137. Kotani, S., et al., Pharmacological evidence of cholinergic involvement in adult hippocampal neurogenesis in rats. Neuroscience,2006.142(2):p.505-514.
    138. Suzuki, S., et al., Estradiol enhances neurogenesis following ischemic stroke through estrogen receptors α and β. The Journal of Comparative Neurology,2007.500(6):p. 1064-1075.
    139. Louissaint Jr, A., et al., Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron,2002.34(6):p.945-960.
    140. Br nnvall, K., et al.,19-Nor testosterone influences neural stem cell proliferation and neurogenesis in the rat brain. European Journal of Neuroscience,2005.21(4):p. 871-878.
    141. Miyashita, K., et al., The neuroprotective and vasculo-neuro-regenerative roles of adrenomedullin in ischemic brain and its therapeutic potential. Endocrinology,2006. 147(4):p.1642.
    142. Monje, M.L., H. Toda, and T.D. Palmer, Inflammatory blockade restores adult hippocampal neurogenesis. Science's STKE,2003.302(5651):p.1760.
    143. Liu, Z., et al., Chronic treatment with minocycline preserves adult new neurons and reduces functional impairment after focal cerebral ischemia. Stroke,2007.38(1):p. 146.
    144. Rahpeymai, Y., et al., Complement:a novel factor in basal and ischemia-induced neurogenesis. The EMBO journal,2006.25(6):p.1364-1374.
    145. Hoehn, B.D., T.D. Palmer, and G.K. Steinberg, Neurogenesis in rats after focal cerebral ischemia is enhanced by indomethacin. Stroke,2005.36(12):p.2718.
    146. Sasaki, T., et al., Implication of cyclooxygenase-2 on enhanced proliferation of neural progenitor cells in the adult mouse hippocampus after ischemia. Journal of neuroscience research,2003.72(4):p.461-471.
    147. Chao, J. L. Chao, Experimental therapy with tissue kallikrein against cerebral ischemia. Front biosci,2006.11(3):p.1323-1327.
    148. Xia, C.F., et al., Kallikrein protects against ischemic stroke by inhibiting apoptosis and inflammation and promoting angiogenesis and neurogenesis. Human gene therapy, 2006.17(2):p.206-219.
    149. Schneider, A., et al., The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. Journal of Clinical Investigation,2005.115(8):p.2083-2098.
    150. Kawada, H., et al., Administration of hematopoietic cytokines in the subacute phase after cerebral infarction is effective for functional recovery facilitating proliferation of intrinsic neural stem/progenitor cells and transition of bone marrow-derived neuronal cells. Circulation,2006.113(5):p.701.
    151. Androutsellis-Theotokis, A., et al., Notch signalling regulates stem cell numbers in vitro and in vivo. Nature,2006.442(7104):p.823-826.
    152. Arumugam, T.V., et al., Gamma secretase-mediated Notch signaling worsens brain damage and functional outcome in ischemic stroke. Nature medicine,2006.12(6):p. 621-623.
    153. Yamashita, T., et al., Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. Journal of Neuroscience,2006.26(24):p.6627.
    154. Komitova, M., et al., Enriched environment increases neural stem/progenitor cell proliferation and neurogenesis in the subventricular zone of stroke-lesioned adult rats. Stroke,2005.36(6):p.1278.
    155. Nygren, J., et al., Enriched environment attenuates cell genesis in subventricular zone after focal ischemia in mice and decreases migration of newborn cells to the striatum. Stroke,2006.37(11):p.2824.
    156. Matsumori, Y., et al., Enriched environment and spatial learning enhance hippocampal neurogenesis and salvages ischemic penumbra after focal cerebral ischemia. Neurobiology of disease,2006.22(1):p.187-198.
    157. Sun, L., J. Lee, H.A. Fine, Neuronally expressed stem cell factor induces neural stem cell migration to areas of brain injury. Journal of Clinical Investigation,2004.113(9): p.1364-1374.
    158. Thored, P., et al., Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells,2006.24(3):p.739-747.
    159. Tanaka, R., et al., Neurogenesis after transient global ischemia in the adult hippocampus visualized by improved retroviral vector. Stroke,2004.35(6):p.1454.
    160. Luskin, M.B., Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron,1993.11(1):p.173-189.
    161. Rao, M.S., B. Hattiangady, A.K. Shetty, The window and mechanisms of major age-related decline in the production of new neurons within the dentate gyrus of the hippocampus. Aging Cell,2006.5(6):p.545-558.
    162. Koketsu, D., et al., Increased number of new neurons in the olfactory bulb and hippocampus of adult non-human primates after focal ischemia. Experimental neurology,2006.199(1):p.92-102.
    163. Aarum, J., et al., Migration and differentiation of neural precursor cells can be directed by microglia. Proceedings of the National Academy of Sciences of the United States of America,2003.100(26):p.15983.
    164. Imitola, J., et al., Directed migration of neural stem cells to sites ofCNS injury by the stromal cell-derived factor la/CXC chemokine receptor 4 pathway. Proceedings of the National Academy of Sciences of the United States of America,2004.101(52):p. 18117.
    165. Robin, A.M., et al., Stromal cell-derived factor lα mediates neural progenitor cell motility after focal cerebral ischemia. Journal of Cerebral Blood Flow & Metabolism, 2005.26(1):p.125-134.
    166. Rossi, D. A. Zlotnik, The biology of chemokines and their receptors. Immunology, 2000.18(1):p.217.
    167. Widera, D., et al., MCP-1 induces migration of adult neural stem cells. European journal of cell biology,2004.83(8):p.381-387.
    168. Tran, P.B., et al., Chemokine receptors are expressed widely by embryonic and adult neural progenitor cells. Journal of neuroscience research,2004.76(1):p.20-34.
    169. Ji, J.F., et al., Expression of chemokine receptors CXCR4, CCR2, CCR5 and CX3CRl in neural progenitor cells isolated from the subventricular zone of the adult rat brain. Neuroscience letters,2004.355(3):p.236-240.
    170. Wang, L., et al., MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture. Hematology,2002.7(2):p. 113-117.
    171. Miller, J.T., et al., The neuroblast and angioblast chemotaxic factor SDF-1(CXCL 12) expression is briefly up regulated by reactive astrocytes in brain following neonatal hypoxic-ischemic injury. BMC neuroscience,2005.6(1):p.63.
    172. Ohab, J.J., et al., A neurovascular niche for neurogenesis after stroke. Journal of Neuroscience,2006.26(50):p.13007.
    173. Asahi, M., et al., Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. Journal of Neuroscience,2001.21(19):p.7724.
    174. Kamada, H., et al., Influence of hyperglycemia on oxidative stress and matrix metalloproteinase-9 activation after focal cerebral ischemia/reperfusion in rats: relation to blood-brain barrier dysfunction. Stroke,2007.38(3):p.1044.
    175. Yang, Y., et al., Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. Journal of Cerebral Blood Flow & Metabolism,2006.27(4):p. 697-709.
    176. Gu, Z., et al., A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia. Journal of Neuroscience,2005.25(27):p.6401.
    177. Tejima, E., et al., Astrocytic induction of matrix metalloproteinase-9 and edema in brain hemorrhage. Journal of Cerebral Blood Flow & Metabolism,2006.27(3):p. 460-468.
    178. Zhao, B.Q., et al., Role of matrix metalloproteinases in delayed cortical responses after stroke. Nature medicine,2006.12(4):p.441-445.
    179. Lee, S.R., et al., Involvement of matrix metalloproteinase in neuroblast cell migration from the subventricular zone after stroke. Journal of Neuroscience,2006.26(13):p. 3491.
    180. Wang, L., et al., Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin-activated endothelial cells promote neural progenitor cell migration. Journal of Neuroscience,2006.26(22):p.5996.
    181. Sasaki, T., et al., Bcl2 enhances survival of newborn neurons in the normal and ischemic hippocampus. Journal of neuroscience research,2006.84(6):p.1187-1196.
    182. Chou, J., et al., Neuroregenerative effects of BMP 7 after stroke in rats. Journal of the neurological sciences,2006.240(1-2):p.21-29.
    183. Popovich, P.G., et al., The neuropathological and behavioral consequences of intraspinal microglial/macrophage activation. Journal of Neuropathology & Experimental Neurology,2002.61(7):p.623.
    184. Heldmann, U., et al., TNF-[alpha] antibody infusion impairs survival of stroke-generated neuroblasts in adult rat brain. Experimental neurology,2005.196(1): p.204-208.
    185. Tsai, T.H., et al., Recombinant adeno-associated virus vector expressing glial cell line-derived neurotrophic factor reduces ischemia-induced damage. Experimental neurology,2000.166(2):p.266-275.
    186. Teramoto, T., et al., EGF amplifies the replacement of parvalbumin-expressing striatal interneurons after ischemia. Journal of Clinical Investigation,2003.111(8):p. 1125-1132.
    187. Zhang, Z.G., et al., VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. Journal of Clinical Investigation,2000.106(7):p. 829-838.
    188. Sun, Y., et al., VEGF-induced neuroprotection, neurgenesis, and angiogenesis after focal cerebral ischemia. Journal of Clinical Investigation,2003.111(12):p. 1843-1851.
    189. Mabuchi, T., et al., Focal cerebral ischemia preferentially affects neurons distant from their neighboring microvessels. Journal of Cerebral Blood Flow & Metabolism,2005. 25(2):p.257-266.
    190. Yamashima, T., et al., Vascular adventitia generates neuronal progenitors in the monkey hippocampus after ischemia. Hippocampus,2004.14(7):p.861-875.
    191. Ohlsson, A.L. B.B. Johansson, Environment influences functional outcome of cerebral infarction in rats. Stroke,1995.26(4):p.644.
    192. Dahlqvist, P., et al., Environmental enrichment reverses learning impairment in the Morris water maze after focal cerebral ischemia in rats. European Journal of Neuroscience,2004.19(8):p.2288-2298.
    193. Gobbo, O.L. S.M. O'Mara, Impact of enriched-environment housing on brain-derived neurotrophic factor and on cognitive performance after a transient global ischemia. Behavioural brain research,2004.152(2):p.231-241.
    194. Pereira, L.O., et al., Effects of daily environmental enrichment on memory deficits and brain injury following neonatal hypoxia-ischemia in the rat. Neurobiology of learning and memory,2007.87(1):p.101-108.
    195. Cameron, H.A. E. Gould, Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neuroscience,1994.61(2):p.203-209.
    196. Reznikov, K.I., Incorporation of 3H-thymidine into glial cells of the parietal region and cells of the subependymal zone of two-week and adult mice under normal conditions and following brain injury. Ontogenez,1975.6(2):p.169.
    197. Kernie, S.G., T.M. Erwin, L.F. Parada, Brain remodeling due to neuronal and astrocytic proliferation after controlled cortical injury in mice. Journal of neuroscience research,2001.66(3):p.317-326.
    198. Chirumamilla, S., et al., Traumatic brain injury induced cell proliferation in the adult mammalian central nervous system. Journal of neurotrauma,2002.19(6):p.693-703.
    199. Mino, M., et al., Temporal changes of neurogenesis in the mouse hippocampus after experimental subarachnoid hemorrhage. Neurological research,2003.25(8):p. 839-845.
    200. Chen, X.H., et al., Neurogenesis and glial proliferation persist for at least one year in the subventricular zone following brain trauma in rats. Journal of neurotrauma,2003. 20(7):p.623-631.
    201. Kleindienst, A., et al., Enhanced hippocampal neurogenesis by intraventricular SlOOB infusion is associated with improved cognitive recovery after traumatic brain injury. Journal of neurotrauma,2005.22(6):p.645-655.
    202. Givogri, M.I., et al., Notch signaling in astrocytes and neuroblasts of the adult subventricular zone in health and after cortical injury. Developmental neuroscience, 2006.28(1-2):p.81-91.
    203. Gaulke, L.J., et al., Environmental enrichment increases progenitor cell survival in the dentate gyrus following lateral fluid percussion injury. Molecular Brain Research, 2005.141(2):p.138-150.
    204. Sundholm-Peters, N.L., et al., Subventricular zone neuroblasts emigrate toward cortical lesions. Journal of Neuropathology & Experimental Neurology,2005.64(12): p.1089.
    205. Emery, D.L., et al., Newly born granule cells in the dentate gyrus rapidly extend axons into the hippocampal CA3 region following experimental brain injury. Journal of neurotrauma,2005.22(9):p.978-988.
    206. Smith, P.D., et al., Seizures, not hippocampal neuronal death, provoke neurogenesis in a mouse rapid electrical amygdala kindling model of seizures. Neuroscience,2005. 136(2):p.405-415.
    207. Gray, W.P., K. May, and L.E. Sundstr m, Seizure induced dentate neurogenesis does not diminish with age in rats. Neuroscience letters,2002.330(3):p.235-238.
    [1]林兰.中西医结合糖尿病学[M].北京:中国医药科技出版社,1999:318
    [2]张慧,闰咏梅.糖尿病性与非糖尿病性脑梗死中医证候及CT特点的对比观察[J].陕西中医,2008,29(2):174-176
    [3]韩禅虚,张智龙,吉学群.等.针刺治疗非胰岛素依赖型糖尿病合并脑梗塞临床研究[J],天津中医,1995,12(1):13-171
    [4]任鹤民,张金芬,张晓莉.78例2型糖尿病合并脑梗死临床研究[J],中国现代药物应用,2009,3(1):68-69
    [5]李希言,高士清.中风与糖尿病[M].上海:上海科技教育出版社,2000:317
    [6]高彦彬,赵慧玲.糖尿病性脑血管病中医辨治[J].北京中医药大学学报(中医临床版),2004,11(3):47-49.
    [7]王永炎,栗德林.今日中医内科(下卷)[M].北京:北京人民卫生出版社,1999:654
    [8]鞠凤芝.从痰瘀论治2型糖尿病浅探[J].实用中医内科杂志,2005,19(1):22
    [9]陈路燕,赵东英.2型糖尿病合并急性脑梗塞早期的中医辨证特点[J].中国中医基础医学杂志,2005,11(3):205-206
    [10]刘建平.补阳还五汤治疗糖尿病并发脑梗死疗效观察[J].现代中西医结合杂志,2003,12(16):1744-1745
    [11]王文英,王成银,孔荣华.复脉饮对2型糖尿病合并急性脑梗死患者ET、CGRP.TXB2、 6-keto-PGF1α的影响[J].中国中医药信息杂志,2006,13(7):12-14
    [12]王啸,喇万英,郑欣.血府逐瘀汤加味治疗糖尿病性脑梗死55例临床观察[J].国际中医中药杂志,2007,29(2):73-75
    [13]陈旭,陈华琴,刘春兰.消梗死颗粒治疗糖尿病并发脑梗死临床研究[J].山东中医杂志,2009,28(7):456-457
    [14]严华,补肾活血解毒汤治疗糖尿病合并脑梗死的临床疗效[J].中医药导报,2005,11(7):17-18
    [15]方建安.滋阴活血汤治疗糖尿病性脑梗死87例[J].陕西中医,2006,27(7):818-819
    [16]邓奕辉,崔莲珠,喻嵘.降糖通脉方治疗糖尿病合并脑梗死32例临床观察[J].湖南中医学院学报,2004,24(5):40-42
    [17]阚鲁.脑心康合六味地黄软胶囊在糖尿病性脑梗死中的应用[J].贵阳中医学院学报,2005,21(7):34-35
    [18]陈德仁.健脾化瘀汤治疗2型糖尿病并脑梗死的临床疗效[J].实用中医药杂志,2008,24(12):762-763
    [19]姚.欣艳,范良,张黎.温胆汤加味治疗糖尿病性脑梗死临床观察[J].中华中医药学刊,2009,27(4):867-868
    [20]郑建民,穆绪超.中西医结合治疗糖尿病脑梗死临床观察[J].实用中医药杂志,2008,24(1):33
    [21]许素琴,徐佩华.中西药结合治疗糖尿病合并脑梗死48例[J].浙江中医药大学学报,2007,31(3):359-360
    1.方水林.糖尿病防治新理念.实用中医内科杂志,2008.21(1):p.11-12.
    2.张海燕.2型糖尿病并发脑梗死的危险因素研究.第四军医大学学报,2008.29(5):p.477.
    3.张秀彬,李俐乐.糖尿病合并急性脑血管病41例临床分析.中国实用内科杂志,2003.23(7):p.42.
    4. Kaarisalo, M.M., et al., Diabetes worsens the outcome of acute ischemic stroke. Diabetes Res Clin Pract,2005.69(3):p.293-8.
    5.邓奕辉,陈大舜.糖尿病合并缺血性中风基本病机及治法探讨.中国中医药信息杂志,2002.9(004):p.49-49.
    6.薛会芳.浅析益气活血法在中风病中的应用.国医论坛,2008.23(5):p.17-18.
    7.韩辉,吴丽敏,涂晋文,等.人参川芎嗪注射液对局灶性大鼠脑梗死ET-1,TNF-α,IL-1β含量的影响.安徽医药,2005.9(001):p.17-18.
    8.韩辉,吴丽敏,汪瀚,等.人参川芎嗪注射液对局灶性脑缺血大鼠血清SOD活性,MDA含量及脑组织氨基酸含量的影响.成都中医药大学学报,2009.32(1):p.76-79.
    9.韩辉,吴丽敏,杨文明,等.参芎嗪注射液对大鼠脑缺血损伤血液流变学,脑含水量的影响.中西医结合心脑血管病杂志,2010(001):p.71-73.
    10.韩辉,吴丽敏,汪美霞,等.人参川芎嗪注射液对局灶性脑缺血大鼠血浆t-PA含量及活性,PAI-1含量,脑组织形态学的影响.安徽中医学院学报,2008.27(006):p.37-40.
    11.韩辉,吴丽敏,解清,等.人参川芎嗪注射液对大鼠局灶性脑缺血损伤的保护作用.中国中医急症,‘2009.18(004):p.581-582.
    12.丁登峰,向大雄,刘韶,等.玉竹多糖的提取及其对链脲佐菌素诱导糖尿病大鼠血糖的影响.中南药学,2005.3(004):p.222-224.
    13.谢雁鸣,宇文亚,王永炎.血性中风的二级预防及中医药应用述评.时珍国医国药,2008.9(11):p.2730-2731.
    14. Kuhn, H.G., et al., Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. The Journal of neuroscience,1997.17(15): p.5820.
    1. 韩辉,田金洲,韩明向,等.糖尿病脑梗死的中医证候特征.中医药临床杂志.22(11):p.1002-1005.
    2.封继宏,王铸.中医药治疗糖尿病合并脑梗死研究进展.辽宁中医药大学学报,2007.9(4):p.50-52.
    3.熊晓东,益气养阴活血方治疗糖尿病合并脑梗死36例疗效观察.首届国际中西医结合内分泌代谢病学术大会暨糖尿病论坛论文集,2008.
    4.乔凤霞,申竹芳.链脲佐菌素糖尿病金黄地鼠模型建立的研究:一种同时评价药....中国糖尿病杂志,2000.8(004):p.215-218.
    5.张允岭,张锦,扈新刚,等.制作缺血性中风气虚血瘀证大鼠模型的实验研究.中国中西医结合杂志,2009.29(4):p.343-346.
    6.娄金丽,张允岭,郑宏,等.气虚血瘀证动物模型研究的思路与方法.北京中医药大学学报,2006.29(2):p.87-90.
    7.付晓伶,方肇勤.阴虚证动物模型的造模方法及评析.上海中医药大学学报,2004.18(002):p.51-54.
    8. 刘亢丁,苏志强.实验性局灶性脑缺血再灌注动物模型的改进及评价.中风与神经疾病杂志,1997.14(002):p.87-89.
    9. Longa, E.Z., et al., Reversible middle cerebral artery occlusion without craniectomy in rats. stroke,1989.20(1):p.84.
    10.李泽庚,彭波,张念芳,等.证候研究的层次论和阶段论术.天津中医药,2007.24(3):p.
    1. 方水林.糖尿病防治新理念.实用中医内科杂志,2008.21(1):p.11-12.
    2. 张海燕.2型糖尿病并发脑梗死的危险因素研究.第四军医大学学报,2008.29(5):p.477.
    3. Kaarisalo, M.M., et al., Diabetes worsens the outcome of acute ischemic stroke. Diabetes Res Clin Pract,2005.69(3):p.293-8.
    4. Paul RH, Cohen RA, Moser DJ, Clinical correlates of cognitive decline in vascular dementia. Cogn Behav Neurol,2003.16(1):p.40-46.
    5.宋莉莉.糖尿病对血管性痴呆认知功能影响的实验研究.第二军医大学博士毕业论文,2004.
    6. 王利平,卜淑霞,包晓群,等.脑梗死后血管性认知障碍影响因素的探讨.中国老年学杂 志,2007.27(7):p.656-658.
    7. Hassing, L.B., et al., Diabetes mellitus is a risk factor for vascular dementia, but not for Alzheimer's disease:a population-based study of the oldest old. International psychogeriatrics, 2002.14(03):p.239-248.
    8. Rehncrona, S., I. Rosen, and B.K. Siesjo, Brain lactic acidosis and ischemic cell damage: 1. Biochemistry and neurophysiology. J Cereb Blood Flow Metab,1981.1(3):p.297-311.
    9. Pulsinelli, W.A., et al., Moderate hyperglycemia augments ischemic brain damage:a neuropathologic study in the rat. Neurology,1982.32(11):p.1239-46.
    10. Kaarisalo, M.M., et al., Diabetes worsens the outcome of acute ischemic stroke. Diabetes research and clinical practice,2005.69(3):p.293.
    11. Rehncrona, S., I. Rosen, and B.K. Siesj, Brain lactic acidosis and ischemic cell damage:1. Biochemistry and neurophysiology. Journal of cerebral blood flow and metabolism:official journal of the International Society of Cerebral Blood Flow and Metabolism,1981.1(3):p. 297.
    12. Pulsinelli, W.A., et al., Moderate hyperglycemia augments ischemic brain damage:a neuropathologic study in the rat. Neurology,1982.32(11):p.1239.
    13. Warner, D.S., et al., Temporal thresholds for hyperglycemia-augmented ischemic brain damage in rats. Stroke,1995.26(4):p.655.
    14. Anderson, R.E., et al., Effects of Glucose and PaO2 Modulation on Cortical Intracellular Acidosis, NADH Redox State, and Infarction in the Ischemic Penumbra* Editorial Comment. Stroke,1999.30(1):p.160.
    15. Li, P.A., et al., Hyperglycemia Enhances Extracellular Glutamate Accumulation in Rats Subjected to Forebrain Ischemia Editorial Comment. Stroke,2000.31(1):p.183.
    16. Ma, D.K., et al., Adult neural stem cells in the mammalian central nervous system. Cell research,2009.19(6):p.672-682.
    17. Lynch, G., C. Gall, and T.V. Dunwiddie, Neuroplasticity in the hippocampal formation. Progress in brain research,1978.48:p.113-130.
    18. Suh, S.W., et al., Hypoglycemia induces transient neurogenesis and subsequent progenitor cell loss in the rat hippocampus. Diabetes,2005.54(2):p.500-9.
    19. Lang, B.T., et al., Impaired neurogenesis in adult type-2 diabetic rats. Brain Res,2009. 1258:p.25-33.
    20. Hui. Z., G. Cai-zuan, and Z. Chao-dong, Expression of NGF and BDNF after cerebral infarction and cerebral infarction combined with diabetes in rats brain. Journal of Apoplexy and Nervous Diseases,2006.
    21. Sugiura. S., et al., Adenovirus-mediated gene transfer of heparin-binding epidermal growth factor-like growth factor enhances neurogenesis and angiogenesis after focal cerebral ischemia in rats. Stroke,2005.36(4):p.859.
    22.乔凤霞,申竹芳.链脲佐菌素糖尿病金黄地鼠模型建立的研究:一种同时评价药.中国 糖尿病杂志,2000.8(004):p.215-218.
    23.刘亢丁,苏志强.实验性局灶性脑缺血再灌注动物模型的改进及评价.中风与神经疾病杂志,1997.14(002):p.87-89.
    24. Morris, R., Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods,1984.11(1):p.47-60.
    25. Warner, D.S., et al., Temporal thresholds for hyperglycemia-augmented ischemic brain damage in rats. Stroke,1995.26(4):p.655-60.
    26. Anderson, R.E., et al., Effects of glucose and PaO2 modulation on cortical intracellular acidosis, NADH redox state, and infarction in the ischemic penumbra. Stroke,1999.30(1):p. 160-70.
    27. Magavi, S.S., B.R. Leavitt, and J.D. Macklis, Induction of neurogenesis in the neocortex of adult mice. Nature,2000.405(6789):p.951-955.
    28. Jin, K., et al., Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proceedings of the National Academy of Sciences of the United States of America,2001.98(8):p.4710.
    29. Zhang, R., et al., Bcl-2 enhances neurogenesis and inhibits apoptosis of newborn neurons in adult rat brain following a transient middle cerebral artery occlusion. Neurobiology of disease,2006.24(2):p.345-356.
    30. Zhang, R.L., et al., Delayed treatment with sildenafil enhances neurogenesis and improves functional recovery in aged rats after focal cerebral ischemia. Journal of neuroscience research,2006.83(7):p.1213-1219.
    31. Komitova, M., et al., Effects of cortical ischemia and postischemic environmental enrichment on hippocampal cell genesis and differentiation in the adult rat. Journal of Cerebral Blood Flow & Metabolism,2002.22(7):p.852-860.
    32. Parent, J.M., et al., Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Annals of neurology,2002.52(6):p.802-813.
    33. Dempsey, R.J., et al., Stroke-induced progenitor cell proliferation in adult spontaneously hypertensive rat brain:effect of exogenous IGF-1 and GDNF. Journal of neurochemistry,2003.87(3):p.586-597.
    34. Zhu, D.Y., et al., Expression of inducible nitric oxide synthase after focal cerebral ischemia stimulates neurogenesis in the adult rodent dentate gyrus. Journal of Neuroscience, 2003.23(1):p.223.
    35. Gu, W.G., T. Br nnstr m, and P. Wester, Cortical neurogenesis in adult rats after reversible photothrombotic stroke. Journal of Cerebral Blood Flow & Metabolism,2000.20(8):p. 1166-1173.
    36. Gould, E., et al., Neurogenesis in the neocortex of adult primates. Science,1999. 286(5439):p.548.
    37. Jiang, W., et al., Cortical neurogenesis in adult rats after transient middle cerebral artery occlusion. Stroke,2001.32(5):p.1201.
    38. Palmer, T.D., et al., Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. Journal of Neuroscience,1999. 19(19):p.8487.
    39. Rakic, P., Neurogenesis in adult primate neocortex:an evaluation of the evidence. Nature Reviews Neuroscience,2002.3(1):p.65-71.
    1. Pencea, V., K.D. Bingaman, S.J. Wiegand, M.B. Luskin, Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci,2001.21:p. 6706-6717.
    2. Zigova, T., V. Pencea, S.J. Wiegand, M.B. Luskin, Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Mol Cell Neurosci,1998.11:p.234-245.
    3.乔凤霞,申竹芳.链脲佐菌素糖尿病金黄地鼠模型建立的研究:一种同时评价药….中国糖尿病杂志,2000.8(004):p.215-218.
    4. 张允岭,张锦,扈新刚,等.制作缺血性中风气虚血瘀证大鼠模型的实验研究.中国中西医结合杂志,2009.29(4):p.343-346.
    5.娄金丽,张允岭,郑宏,等.气虚血瘀证动物模型研究的思路与方法.北京中医药大学学报,2006.29(2):p.87-90.
    6.付晓伶,方肇勤.阴虚证动物模型的造模方法及评析.上海中医药大学学报,2004.18(002):p.51-54.
    7. Longa, E.Z., et al., Reversible middle cerebral artery occlusion without craniectomy in rats, stroke,1989.20(1):p.84.
    8. Morris, R., Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods,1984.11(1):p.47-60.
    9.韩辉,吴丽敏,涂晋文,等.人参川芎嗪注射液对局灶性大鼠脑梗死ET-1,TNF-α,IL-1β含量的影响.安徽医药,2005.9(001):p.17-18.
    10.韩辉,吴丽敏,汪瀚,等.人参川芎嗪注射液对局灶性脑缺血大鼠血清SOD活性,MDA含量及脑组织氨基酸含量的影响.成都中医药大学学报,2009.32(1):p.76-79.
    11.韩辉,吴丽敏,杨文明,等.参芎嗪注射液对大鼠脑缺血损伤血液流变学,脑含水量的影响.中西医结合心脑血管病杂志,2010(001):p.71-73.
    12.韩辉,吴丽敏,汪美霞,等.人参川芎嗪注射液对局灶性脑缺血大鼠血浆t-PA含量及活性,PAI-1含量,脑组织形态学的影响.安徽中医学院学报,2008.27(006):p.37-40.
    13.韩辉,吴丽敏,解清,等.人参川芎嗪注射液对大鼠局灶性脑缺血损伤的保护作用.中国中医急症,2009.18(004):p.581-582.
    14.丁登峰,向大雄,刘韶,等.玉竹多糖的提取及其对链脲佐菌素诱导糖尿病大鼠血糖的影响.中南药学,2005.3(004):p.222-224.
    15.谢雁鸣,宇文亚,王永炎.血性中风的二级预防及中医药应用述评.时珍国医国药,2008.9(11):p.2730-2731.
    16.Kuhn, H.G., et al., Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. The Journal of neuroscience,1997.17(15): p.5820.
    17.赖红,赵海花,曾亮,等.人参皂甙对老龄大鼠海马结构BDNF及Trk B蛋白表达的影响.中国组织化学与细胞化学杂志,2006.15(001):p.60-65.
    18.马潞,刘文科,张跃康,等.川芎嗪对重型脑损伤组织BDNF, bFGF表达的影响及对神经元的保护作用.四川大学学报:医学版,2008.39(002):p.207-210.
    19.周卫华,米长忠,钟飞,等.玉竹提取物对D-半乳糖衰老小鼠模型学习记忆的影响.中国民族民间医药杂志,2009.18(001):p.6-7.
    20.祝凌丽,徐维平,魏伟,等.黄精总皂苷对慢性应激模型大鼠的行为学以及对海马的BDNF和TrkB表达的影响.中国新药杂志,2010(006):p.517-525.
    21.Yan, X.B., et al., Lithium regulates hippocampal neurogenesis by ERK pathway and facilitates recovery of spatial learning and memory in rats after transient global cerebral ischemia. Neuropharmacology,2007.53(4):p.487-95.
    22.Lang, B.T., et al., Impaired neurogenesis in adult type-2 diabetic rats. Brain Res,2009. 1258:p.25-33.
    1. Reynolds, B.A. and S. Weiss, Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science,1992.255(5052):p.1707.
    2. Goldman, S., Stem and progenitor cell-based therapy of the human central nervous system. Nature biotechnology,2005.23(7):p.862-871.
    3. Iwanami, A., et al., Transplantation of human neural stem cells for spinal cord injury in primates. Journal of neuroscience research,2005.80(2):p.182-190.
    4. Liu, J., et al., Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. Journal of Neuroscience,1998.18(19):p.7768.
    5. 韩辉,吴丽敏,汪瀚,等.人参川芎嗪注射液对局灶性脑缺血大鼠血清SOD活性,MDA含量及脑组织氨基酸含量的影响.成都中医药大学学报,2009.32(1):p.76-78.
    6. 韩辉,吴丽敏,涂晋文,等.人参川芎嗪注射液对局灶性大鼠脑梗死ET-1,TNF-α,IL-1β含量的影响.安徽医药,2005.9(001):p.17-18.
    7. 韩辉,吴丽敏,杨文明,等.参芎嗪注射液对大鼠脑缺血损伤血液流变学,脑含水量的影响.中西医结合心脑血管病杂志,2010(001):p.71-73.
    8. 韩辉,吴丽敏,汪美霞,等.人参川芎嗪注射液对局灶性脑缺血大鼠血浆t-PA含量及活性,PAI-1含量,脑组织形态学的影响.安徽中医学院学报,2008.27(006):p.37-40.
    9. 韩辉,吴丽敏,解清,等.人参川芎嗪注射液对大鼠局灶性脑缺血损伤的保护作用.中国中医急症,2009.18(004):p.581-582.
    10. 丁登峰,向大雄,刘韶,等.玉竹多糖的提取及其对链脲佐菌素诱导糖尿病大鼠血糖的影响.中南药学,2005.3(004):p.222-224.
    11. 谢雁鸣,宇文亚,王永炎.缺血性中风的二级预防及中医药应用述评.时珍国医国药,2008.9(11):p.2730-2731.
    12. 崔荣太,蒲传强,刘洁晓.人参皂甙Rgl对大鼠局灶性脑缺血脑组织神经干细胞增殖的影响.解放军医学杂志,2007.32(008):p.842-845.
    13. 祁存芳,刘勇,田玉梅.川芎嗪对成体大鼠脑缺血再灌注损伤后海马齿状回细胞增殖的影响.西安交通大学学报:医学版,2007.28(002):p.142-144.
    14. Tang, H., et al., Effect of neural precursor proliferation level on neurogenesis in rat brain during aging and after focal ischemia. Neurobiol Aging,2009.30(2):p.299-308.
    15. Liu, J., et al., Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci,1998.18(19):p.7768-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700