装饰建材辐射剂量模式及其无损检测筛选方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如果使用天然放射性核素比活度增高的建筑材料,室内空气中剂量率就相应升高。但目前对于建材的辐射剂量还缺乏较精确的定量表示,从一定程度上制约了建筑材料这种持续性低剂量照射对公众健康影响的研究。
     本研究对几类建筑装饰材料的辐射剂量学模式及其放射性核素限量进行了研究,并找到一种可用于已建住房装饰建筑材料放射性水平检测判断的检测筛选方法。得到如下结论。
     1.给出了各类装饰建筑材料的辐射剂量模式
     由于各种装饰材料的厚度、密度和核素活度浓度都不一样,它们的核素放射性比活度—空气吸收剂量率转换因子应有很大差别;同时,土壤作为半无限大的体源,其空气吸收剂量率转换因子较装饰材料这种有限大的体源要大得多。显然,建筑装饰材料不能近似采用室外土壤的转换因子。要较准确地反应各类装饰建材对室内空气吸收剂量率的贡献,必须考虑各类材料本身的特性。本研究用蒙特卡罗方法的应用程序EGSnrc计算出几类饰材的核素比活度—室内空气吸收剂量转换系数。得到各类饰材的Y外照射剂量学计算模式如下:
     花岗石 (?)=0.0648C_(Ra)+0.0750C_(th)+0.0516C_K
     抛光砖 (?)=0.0273C_(Ra)+0.0376C_(th)+0.0227C_K
     彩釉砖 (?)=0.0190C_(Ra)+0.0215C_(th)+0.0171C_K
     式中,(?)为空气吸收剂量率,nGyh~(-1);C_(Ra)、C_(th)、C_K分别为各类材料中~(226)Ra、
    
    四川大学博士学位论文
    ”勺h和气的放射性比活度,Bqkg一,;式中的常数分别为各类材料中鞠系、脚h
    系和,0K的核素放射性比活度一空气吸收剂量率转换因子(nGyh-l/Bqkg一,).
     用该模式算出的空气吸收剂量率与实测值一致。而用UNSCEAR(联合国原
    子辐射效应科学委员会)报告给出的土壤Y外照射剂量计算模式算出的装饰材
    料的空气吸收剂量率与实测值相差很大。说明该模式更符合实际。
    2.推导出各类装饰建材的放射核素限t
     由于装饰材料不能使用土壤的剂量模式。同时,Ic即(国际放射防护委
    员会)和U王A(国际原子能机构)都已明确我国《放射卫生防护基本标准》
    GB 4792一1984对公众的剂量限值不适用于天然放射性,而我们的国家标准仍使
    用土壤的剂量转换因子和公众的年剂量限值来推导建筑材料的核素限量。显
    然,要较合理地限制装饰材料对公众的照射,必须使用装饰材料本身的剂量模
    式,以及可用于天然源的年剂量限值。本论文根据三类不同装饰材料核素比活
    度一空气吸收剂量转换因子,对花岗石和抛光砖使用ICRP第82号报告“在持
    续照射情况下公众的防护一委员会辐射防护体系应用于由天然源和长寿命放
    射性残存物引起的可控制的辐射照射”:用于单一源的辐射防护最优化的年剂
    量约束不大于每年0.3msv,对彩釉砖使用“含放射性物质消费品”的年有效
    剂量限制O.05msv。得到各类装饰材料的天然放射性核素限制式为:
     花岗石:
     Y外照射限制:Cth/570+C、/660+C‘/830蕊1
     内照射限制:C、/200簇l
     抛光砖:
     Y外照射限制:Cth/1140+C、/1570+Q/1890蕊1
     内照射限制:CRa/200续1
    彩釉砖:Y外照射限制:Ctn/332
     内照射限制:釉面料中
    +C、/375+
    2肠Ra的比活度
    CK/417蕊1
     C澎1000蕊1
     虽然本论文推导Y外照射限制采用的年剂量限值较现行国家标准的小,本
    论文给出的花岗石和抛光砖的外照射限制都较现行国家标准要宽,这是因为本
    
    四川大学博士学位论文
    论文算出的这些饰材天然放射性核素比活度一空气吸收剂t转换因子要比现行
    国家标准采用的土坡剂t转换因子小得多。彩釉砖由于采用“含放射性物质消
    费品”的附加年剂t限值,加上表层釉面的放射性水平较高,它的外照射限制
    较现行国家标准要严格一些;内照射限制也与现行国家标准完全不同。
    3.建立起装饰建材的无损检测筛选方法并给出了结果判断筛选值
     根据核素衰变纲图,对天然放射性核素均匀分布的材料来说,幻勺h、226Ra、
    气的Y比活度就与单位质t材料中的。、p辐射水平有固定的关系,这时,由
    于单位质盘材料中的Q、p辐射水平与其表面的。、p水平有确定的关系,而
    表面。、p辐射水平可以在其表面无损侧出。因此,只要通过上述关系,找到
    比活度超限值时对应的表面Q、p放射性水平,以后就可以通过测得的。、p
    水平来判断样品的丫放射性是否超限值。这样就将丫射线强度的测量问题转化
    为表面Q、B射线的强度测量问题,从而实现建材较准确的无损检测筛选。由
    于天然放射系中最大能t的p射线在建筑装饰材料中的最大射程大于单块饰
    材的厚度,在对已装饰室内测盆时,测得的p辐射水平还包括饰材下面主体建
    材的贡献,此时用测得的p辐射水平来判断就会产生错误。然而a粒子在材料
    中的射程只有几微米,因此可用材料的表面Q水平与国家标准内、外照射指数
    分类临界值对应的值,来进行无损检测筛选结果的判断。由于用于表面Q辐射
    水平侧量的仪器(进口仅万元人民币左右)相对高纯锗Y谱仪(进口需要近六
    十万人民币)来说便宜许多,而且携带方便,可用于现场检测;表面a水平也
    不用像Y谱分析那样
Indoors absorbed dose rates in air would arise when materials with elevated levels of natural radionuclides are used. Because there is not accurate radiological dose model of building materials, the studies on health effect coming from materials are restricted.
    This paper discusses radiological dose model and limits of decorative building materials. And a new method of undamaged samples of decorative building materials is suggested.
    1. Studies on radiological dose models for some kind of decorative building materials
    Because there are different thickness, different densities and different specific activities between different kind of decorative building materials and soil, decorative building materials cannot be adopted the radiological dose model of soil. This paper calculated conversion factor between specific activities and absorbed dose rate for some kind of decorative building materials by Monte Carlo EGSnrc.
    Then the results show that gamma external dose model of granite is: D = 0.0648CRa +0.0750Cth + 0.0516CK
    
    
    The gamma external dose model of polishing tiles is:
    D = 0.0273CRa + 0.0376Cth + 0.0227CK The gamma external dose model of color-glazed tiles is:
    D = 0.0190CR, + 0.021 5Cth+ 0.01 71 CK Here, D is absorbed dose rate in air, nGyh-1; CRa, Cth, CK are the specific activities of 232Th, 226Ra and 40K, Bqkg-1; The constants in above formulas are conversion factor between specific activities of 232Th, 226Ra and ^K and absorbed dose rate of decorative building materials.
    The absorbed dose rates in air for decorative building materials calculated by above models are in keeping with the test values.
    2. The radiological limits of different kind for decorative building materials
    This paper adopted gamma external dose model of different decorative building materials in calculating radiological limits of different kind of decorative building materials. A 0.3mSv restriction on the effective dose per year is used according to ICRP 82 for granite and polishing tiles. A 0.05mSv annual effective dose limit is adopted in color-glazed tiles according to the limit for consumer substances containing radioactive materials.
    The results show that limits of granite are
    gamma external exposure limit: Cth/570 + CRa/660 + CK/830 ≤ 1
    internal exposure limit: CRa/200≤ 1
    Limits of polishing tiles are:
    gamma external exposure limit: Cth/1140 + Caa/1570 + CK/1890≤1
    internal exposure limit: CRa/200 ≤1
    Limits of color-glazed tiles are:
     gamma external exposure limit: Cth/332 + CRa/375+CK/417 internal exposure limit: 226Ra specific activity in glaze CRa/1000≤1
    Although the annual effective dose limits used in calculating radiological
    VI
    
    
    limits of different kind of decorative building materials in this paper are lower than the annual effective dose limits used in national criteria of China, "Limit of radionuclides in building materials", the radiological limits of granite and polishing tiles in this paper are more easy than limit of national criteria. Because the conversion factors between specific activities and absorbed dose rate of decorative building materials are far lower than the conversion factors of soil. The annual effective dose limit of "consumer substances containing radioactive materials" is adopted by color-glazed tiles, and radioactive levels of surface color-glazed tiles are higher, so its gamma external exposure limit is more strict than the limit of national criteria. The internal exposure limit of color-glazed tiles is greatly different from the limit of national criteria.
    3. Method of undamaged samples and critical values of decorative building materials
    On the basis of radionuclides decay outline, the ratio between the alpha and beta activities and the gamma ray activity of every nuclide is fixed. Measurement of gamma ray activities can be transformed to that of alpha ray and beta ray activities. When natural radionuclides are well distributed in materials, there is fixed interrelationship
引文
1 在持续照射情况下公众的防护—委员会辐射防护体系应用于由天然源和长寿命放射性残存物引起的可控制的辐射照射,国际放射防护委员会第82号报告。辐射防护,2001,Vol.21,增刊.
    2 卢西庭主编,原子核物理,北京,原子能出版社,1982.
    3 章仲侯主编,放射卫生学,北京,原子能出版社,1985.
    4 李士俊编,电离辐射剂量学,北京,原子能出版社,1986.
    5 夏寿萱主编,分子放射生物学,北京,原子能出版社,1992
    6 (美)F.H.阿蒂克斯,W.C.罗奇主编,辐射剂量学.北京,原子能出版社,1981.
    7 李德平,孙世权等译,国际放射防护委员会1990年建议书,北京,原子能出版社,1993.
    8 OECD, NEA. A guide for controlling consumer products containing radioactive subsances. 1985:25
    9 电离辐射,辐射源与生物效应(UNSCEAR 1982年报告).辐射防护通讯,1983年增刊.
    10 电离辐射源与效应(UNSCEAR 1993).中国核工业总公司安防环保卫生局,中国辐射防护学会译.北京:原子能出版社,1995:40—70.
    11 General principles for the radioation protection of work, ICRP 75,1997.
    12 国际电离辐射防护和辐射源安全的基本安全标准.国际原子能机构,维也纳,1997.
    13 R.S.O'Brien, et al. Radon exhalation rates and gamma dose from ceramic tiles. Health Pysics, 1998. Vol. 75, No. 6.
    14 刘宝霞等。部分瓷砖类建材的放射性水平,中国公共卫生,1995,Vol.11,No.1.
    15 张瑞香等。国产彩釉砖的天然放射性水平。中华放射医学与防护杂志,1997,Vol.17.No.2.
    16 韩寿岭。某厂锆(Zr)生产流程中不同产物的天然放射性核素含量测定。辐射防护,1993,Vol.13.No.2.
    17 孙性善,等。建筑材料放射性限制量研究,中华放射医学与防护杂志,1986,vol.6,No.5.
    18 毛亚虹,刘怡刚等。居室内装饰瓷砖的辐射安全性评价指标探讨,中国公共卫生.1997,Vol.13,No.3.
    19 毛亚虹,刘怡刚。釉面砖放射性水平及其内照射限值研究,中华放射医学与防护杂志.
    
    2000,Vol.20,No.2.
    20 刘怡刚,毛亚虹。天然电离辐射源的“职业照射”,中国辐射卫生,2000,Vol.9,No.3.
    21 电离辐射源与效应(UNSCEAR 2000)[R].中国核学会辐射防护学会译.太原,山西科学技术出版社,2002,9.
    22 Mao yahong, Liu yigang, Zhang guang, et al. The Studies on Radiological limits of Color-Glazed Tiles Used in Home Decoration. Health Physics, 2002, 82(4):510-512.
    23 毛亚虹,刘怡刚,张光,等.彩釉砖的放射性水平及制定限值管理的建议.中国辐射卫生,2001,10(1):8-9.
    24 中华人民共和国国家标准.放射卫生防护基本标准GB4792—84.1984.
    25 中华人民共和国国家标准.含放射性物质消费品的放射卫生防护标准 GB16353—1996.
    26 中华人民共和国国家标准.建筑物表面氡析出率的活性炭测量方法GB/T 16143-1995.1996.
    27 中华人民共和国国家标准.辐射源和实践的豁免管理原则 GB 13367-92.1992.
    28 中华人民共和国国家标准.住房内氡浓度控制标准GB/T 16146-1995.1996.
    29 中华人民共和国国家标准.空气中氡浓度的闪烁瓶测量方法GB/T 16147-1995.
    30 中华人民共和国国家标准.建筑材料放射性核素限量GB 6566—2001.
    31 复旦大学,清华大学,北京大学合编,原子核物理实验方法,北京,原子能出版社,1982
    32 Birgitta Roos and Harry J. Whitlow, Computer simulation and experimental studies of implanted ~(210)Pb in glass resulting from radon exposure. Health Physics, 2003, Vol.84, No.1.
    33 Gary H. Kramer and Steven Guerriere, Coparison of sliced lungs with whole lung sets for a torso phantom measured with Ge detectors using Monte Carlo simulations(MCNP). Health Physics, 2003, Vol.84, No. 2.
    34 毕志英,孟文斌,我国建材、饰材放射性控制标准的历史和现状。中国辐射卫生,2003,Vol.12,No.1.
    35 李蓉,~(222)Rn及其子体的研究进展。中国辐射卫生,2003,Vol.23,No.1.
    
    
    36 Hein Stigum, Terje Strand, and Per Magnus, Should radon be reduced in home?A cost-effect analysis. Health Physics, 2003, Vol. 84, No. 2.
    37 H. Schulz, L. Funke, A. Schellenberger, Study of long term radon transport by measuring the difference of the ~(210)Pb and ~(226)Ra activity in soil as a function of the depth. Health Physics, 2003, Vol. 84, No. 2.
    38 金益和,郭秋菊,氡浓度测量的时间代表性,中华放射医学与防护杂志.2002,Vol.22.No.2.
    39 李爱新,个旧市部分建材和室内外环境γ辐射剂量水平。中华放射医学与防护杂志.2002,Vol.22,No.2.
    40 邓文,张亦云等,锆英砂及瓷砖釉的放射性水平与评价,中国公共卫生,1995,Vol.11,No.7
    41 金绍道,浙江省建材中放射性比活度。中华放射医学与防护杂志.2002,Vol.22,No.5.
    42 Gary H. Kramer, Linda C. Burns, and Steven Guerriere, Monte Carlo simulation of scanning dector whole body counter and the effect og BOMAB phantom size on the calibration. Health Physics, 2002, Vol. 83, NO. 4
    43 M. Schubert and H. Schulz, Diurnal radon variation in the upper soil layers and at the soil-air interface related to meterological parameters, Health Physics, 2002, Vol. 83, NO.1
    44 H. EI Samman, W. Arafa, and A. Abd alla, Temperature and humidity consideration for caculating airborne ~(222)Rn using activated charcoal canisters, Health Physics, 2002, Vol. 83, NO.1
    45 W. Arafa, H. EI Samman, A. Ashry, and A. Abd alla, Airborn ~(222)Rn concentrtion in an Egyptian village. Health Physics. 2002. Vol. 83. NO.1
    46 成君方,边云秀,范金荣等,淄博市主要建筑材料所致室内γ辐射水平与管理,中国辐射卫生,2002,Vol.11,No.4.
    47 贾成铁,程俊良,张淑蓉等,居室放射性水平检测及其超限值控制对策研究,中国辐射卫生,2000,Vol.9,No.3
    48 程俊良,贾成铁,张淑蓉等,黄山市建筑材料放射性水平,中华放射医学与防护杂志.1999,Vol.19,No.3.
    
    
    49 胡秀兰,武汉市建筑材料放射性水平调查,中华放射医学与防护杂志.1999,Vol.19,No.3.
    50 张淑蓉,用天然石材装饰房屋的放射卫生评价,中国辐射卫生,2000,Vol.9,No.1.
    51 C.C. Goddard, Measurment of outdoor terrestrial gamma radiation in the sultannate of Oman. Health Physics, 2002,Vol.82,No.6.
    52 M. Alonso,T. Barriuso,et,al. Monte Carlo estimation of absorbed dose to organs in computed tomography. Health Physics, 2002,Vol. 82,No. 2.
    53 陈晗,邱玉会,贾建奇等,天然石材产品Y照射量率与放射性比活度的相关分析。中国辐射卫生,2002,Vol.11,No.1.
    54 武丽,王建华,秦文华等,石材及其它建材的放射性核素分析与评价。中国辐射卫生,2001,Vol.10.No.4.
    55 常全新,潘庆玲,艾自珈,荣成市建筑材料放射性水平调查,中国辐射卫生,2001,Vol.10.No.3.
    56 覃家光,杨刚,陆有荣等,南宁地区建筑材料放射性水平,中华放射医学与防护杂志.2000,Vol.20,No.6.
    57 邓志宏,黄兆慧,曾庆祥等,宣威室内空气中氡暴露及地表γ辐射与肺癌关系地流行病学研究。中华放射医学与防护杂志.2001,Vol.21,No.5.
    58 肖惠娟,深圳地区室内天然贯穿辐射水平。中华放射医学与防护杂志.2000,Vol.20,No.5.
    59 金益和,卓维海,空气中天然放射性粒子的沉积率。中华放射医学与防护杂志.2000,Vol.20,No.4。
    60 胡芳芳,沈卫星,杭州市成品花岗岩表面γ辐射剂量水平调查。中华放射医学与防护杂志.2000,Vol.20,No.3.
    61 张林,胡灿云,梁婷婷,广州市建筑材料放射性核素含量与外照射剂量估算。中华放射医学与防护杂志.1999,Vol.19,No.5.
    62 刘克良,姜德智编,《放射损伤与防护》,北京,原子能出版社,1995.
    63 林理彬著,《核物理基础》,成都,四川大学出版社,2001.
    64 樊程芳,吴茂良著,《核辐射装置及其应用》,成都,四川大学出版社,1988.
    65 刘树铮主编,《医学放射生物学》,北京,原子能出版社,1986.
    66 ICRP第65号出版物,住宅和工作场所~(222)Rn的防护。北京,原子能出版社,1997.
    
    
    67 ICRP第51号出版物,外照射防护中使用的数据.北京,原子能出版社,1991.
    68 NCRP第56号报告,来自消费品及其它辐射源的辐射照射,北京,原子能出版社,1986.
    69 中华人民共和国国家标准,用半导体γ谱仪分析低比活度γ放射性样品的标准方法,GB11713-1989.
    70 徐小桦,陈晶,蒙特卡罗模拟法在辐射剂量计算上的应用,辐射防护,1995,Vol.15.No.1.
    71 黄日生,陈超明,湛江市建筑材料放射性水平调查,中国辐射卫生,2001,Vol.10,No.1.
    72 路克平,王军,赵桂玲等,常用建筑材料放射性水平测定及室内γ辐射剂量估算,中国辐射卫生,2001,Vol.10,No.1.
    73 李作宁,丛庆美,姜兆刚等,威海市建筑材料的放射性水平,中华放射医学与防护杂志,2000,Vol.20,No.2.
    74 王小林,110种花岗岩等装饰石材表面γ辐射量的调查,中华放射医学与防护杂志,2001,Vol.21,No.1.
    75 IAEA Safety Standards Series, No. RS-G-1.1, Occupational Radiation Protection, International Atomic Energy Agency,Vienna.
    76 贾天文,荣,肖云春,包头地区建筑装饰材料电离辐射水平,中华放射医学与防护杂志,2000,Vol.20,No.5.
    77 中华人民共和国国家标准,室内空气质量标准,GB/T 18883-2002.
    78 B.M. Hartley, The measurement of radiation levels in Australian zircon milling plants, Health Physics, 2001, Vol. 80, No.1.
    79 Maire S.A. Heikkinen and Naomi H. Harley, Calculation of the air concentrations of serially decaying nuclides—a new method applied to radon progeny. Health Physics, 2001, Vol. 80, No. 3.
    80 J. Vaupotic, I. Csige, et, al. Methodology of radon monitoring and dose estimates in POSTOJNA cave, Slovenia. Health Physics, 2001, Vol. 80, No. 2.
    81 毛亚虹,林理彬,刘怡刚,室内饰材放射性的检测和评价方法初探,中华放射医学与防护杂志,2003,Vol.23,No.3.
    82 毛亚虹,林理彬,刘怡刚,装饰建材放射性无损检测及评价方法研究,核技术,已录用
    
    
    83 Wei-Li Chen, Jing-Shiang Hwang, et, al. Lenticular opacities in population exposed to exposed to chronic low-dose-rate gamma radiation from radiocontaminated buildings in Taiwan. Radiation Reserch, 2001, Vol. 156
    84 陈兴安,人类环境中的氡—IAEA科研协作总结会概况,辐射防护,1996,Vol.16,No.5.
    85 贾文懿,方方,周蓉生等,氡及其子体运移规律与机理研究,核技术,2000,Vol.23,No.3
    86 D. Nikezic and K.N. Yu, Alpha hit frequency due to radon decay products in human lung cells. Int. J. Radiat. Biol. 2001, Vol.77, No.5.
    87 郭秋菊,孙建兴,氡暴露的剂量评价方法,中华放射医学与防护杂志,2001,Vol.21.No.5.
    88 Carl Distenfeld, Jacquelyn Distenfeld, and Lois Distenfeld, Radon measurememnts and analysis for central Pennsylvania counties having elevated radon levels. Health Physics, 2001, Vol. 80, suppel 2.
    89 尚兵,池边幸正,饭田孝夫等,~(220)Rn对固体径迹探测器测量~(222)Rn影响的研究,辐射防护,1997,Vol.17,No.5.
    90 T.D. Utteridge, D.E. Charlton and B.J. Allen, Monte carlo modeling of the effects injected short-,mediu- and long-range alpha-partical emitters on human marrow at various ages, Radiation Research 156, 2001.
    91 万国庆,李湘葆,田中青等,建筑材料放射性的检测,中国计量,2001,Vol.49,No.8.
    92 H. Muramatsu, N. Hasegawa, et, al. Survey of ~(222)Rn concentrations in the air of a tunnel located in Nagano city using the soil-state nuclear track detector method, Health Physics, 1999, Vol.77, No.1.
    93 陈凌,固体径迹探测器测量氡子体平衡因子,辐射防护,1997,Vol.17,No.6.
    94 M. Lenzen and H.J. Neugebauer, Measurements of radon concentration and the role of earth tides in a gypsum mine in Walferdange. Health Physics, 1999, Vol.77, No.2.
    95 W.H. van der Spoel, E. R. van der Graaf and R.J. de Meijer. Diffusive transport of radon in a coluumn of moisturized sand. Health Physics, 1999, Vol. 77, No. 2.
    
    
    96 王南萍,王玉和,程业勋等,建筑材料矿床放射性评价的应用研究,核技术,1998。Vol.21,No.6.
    97 K. Garbesi, A.L. Robinson, R.G. Sextro, and W.W. Nazaroff, Radon entry into houses:the importance of scale-dependent permeability. Health Physics, 1999, Vol. 77, No. 2.
    98 R.D. Hopper, F. Steinhausler, and M. Ronca-Battista. IAEA/EPT international climatic test Programe integrating radon detectors. Health Physics, 1999, Vol. 77, No. 3.
    99 中华人民共和国卫生部第18号令,放射防护器材与含放射性产品卫生管理办法。2001.10
    100 Harry Friedmann, Limits and uncertainties—with special regard to radon measurements. Health Physics, 1999, Vol. 77, No. 3.
    101 Ying Wang, Carole Ju, et, al. Radon Mitigation survey among New York state residents living in high radon homes. Health Physics, 1999, Vol.77, No.4.
    102 K. Fujimoto and T. Sanada, Dependence of indoor radon concentration on the year of house construction. Health Physics, 1999, Vol. 77, No. 4.
    103 关祖杰,余军岳,杨健明,环境~(222)Rn和~(220)Rn子体所支气管支气管剂量的模拟测量,辐射防护,1998,Vol.18,No.1.
    104 D. Beninson, Risk of radiation at low doses. 辐射防护,1998, Vol. 18, No. 3
    105 Dan Beninson, Bo Lindell, The linear relationshipe. 辐射防护, 1998, Vol. 18, No. 5
    106 吴德昌,辐射防护的生物学基础。辐射防护,1998,Vol.18,No.5-6.
    107 J.K.C. leung, M.Y.W. Tso, and L.C. Hung, Radon mitigation by depressurization of concrete walls and slabs. Health Physics, 1999, Vol. 77, No. 4.
    108 Lennart Friis, Ned Carter, Olof Nordman, et, al. Validation of a geologically based radon risk map:are the indoor radon concentration higher in high-risk areas? Health Physics, 1999, Vol. 77, No. 5.
    109 潘自强,中国国民剂量初步评价,辐射防护,1997,Vol.17,No.2.
    110 潘自强,人为活动引起的天然辐射职业性照射的控制。中国辐射卫生,Vol.11,No.3.
    
    
    111 F. Tondeur, I. Gerardy. et, al. Indoor radon in the region of Brussels. Health Physics, 1999, Vol. 77, No. 6.
    112 王作元,氡的防护和氡照射流行病学研究。辐射防护,1998,Vol.18,No.5-6.
    113 Shoaib Usman, Henry Spitz, and Shan lee, Analysis of electret ion chamber radon detector response to 222Rn and interference from background gamma radiation. Health Physics, 1999, Vol. 76, No. 1.
    114 James E. Watson, Jr.,and Rebekkanh A. Cote. Use of 222Rn-resistant techniques in new home construction. Health Physics, 1999, Vol. 76, No. 1.
    115 Alfred Cavallo, Adam Hurter, and Peter Shebell, Radon Progeny unattached fraction in an atmosphere far from radioactive equilibrium. Health Physics, 1999, Vol. 76, No. 5.
    116 J.K.C. Leung,M.Y.W. Tso, and C.W. Ho. Radon action level for high-rise buildings. Health Physics, 1999, Vol. 76, No. 5.
    117 Christopher Y.H, Chao and Thomas C.W. Tung, Radon emanation of building material—impact of back diffusion and difference between one-dimensional and three-dimensional tests. Health Physics, 1999, Vol. 76, No. 6.
    118 Mao yahong, Lin libin, Liu yigang, Measuring Method of Undamaged Samples for the Radiation levels of Decorative Building Materials. Health physics, 已录用.
    119 郑公望,朱忠礼,唐适礼等,热释光方法在环境剂量监测中的应用,核技术,2003,Vol.26.No.1.
    120 陈兴安,从三次国际会议看放射卫生工作的前景,辐射防护通讯,2002,Vol.22,No.6.
    121 张继勉,建筑材料放射性水平研究现状及进展。中国辐射卫生,2002,Vol.11,No.1.
    122 Farai I P et al. Population dose due to building materials in Ibadan, Nigeria. Radiation protection dosimetry, 2001: 95(1)
    123 Amrani D et al. Natural radioactivity in Algerian building materials. Applied radiation and isotopes: including data, instrumentation and methods for Apt 2001: 54(4).
    124 Khan K et al. Radiological significance of building bricks in Pakistan.
    
    Radiation protection dosimetry,2001: 95(3) .
    125 Sam A K et al. Assessment of radioactivity and the associated hazards in local and imported cement types used in Sudan. Radiation protection dosimetry, 2001: 93(3)
    126 Abu-Jarad F et al. Effect of internal wall covers on radon emanation inside houses. Health Phys,Mar 1983: 44(3)
    127 Pantelica A et al. Thorium determination in intercomparison samples and in some Romanian building materials by gamma ray spectrometry. Radiation protection dosimetry, 2001: 97(2)
    128 Sciocchetti G et al. The Italian national survey of indoor radon exposure. Sci Total Environ. Oct 1985: 45
    129 Sciocchetti G et al.Results of a survey on radioactivity of building materials in Italy. Health Phys, Aug 1983:45(2)
    130 Endo S et al. DS86 neutron dose: Monte Carlo analysis for depth profile of 152Eu activity in a large stone sample. Journal of radiation research, Jun 1999: 40(2)
    131 Risica S et al. Radioactivity in building materials: room model analysis and experimental methods.Science of the total environment, May 14 2001: 272(1-3) .
    132 Swedjemark GA Swedish limitation schemes to decrease Rn daughters in indoor air. Health Phys,Nov 1986: 51 (5) .
    133 Janssens A et al. A framework for a limitation policy of the population exposure to natural radiation in Belgium. Sci Total Environ, Oct 1985: 45
    134 van der Heijde HB et al. Standards for the radioactivity content of building materials, as recommended by a committee of the Health Council. Sci Total Environ, Oct 1985: 45
    135 Keller G et al. Radiation exposure in German dwellings, some results and a proposed formula for dose limitation. Sci Total Environ, Oct 1985: 45
    136 The specific activities in these materials, having a radium equivalent
    
    activity, health Phys, Aug 1983: 45(2)
    137 Abu-Jarad F et al. A study of radon emitted from building materials using plastic alpha-track detectors. Phys Med Biol, Jul 1980: 25(4)
    138 Lively R S et al. Long-term radon concentrations estimated from 210Po embedded in glass. Health physics, May 1993: 64(5)
    139 庞巨丰,γ能谱数据分析,西安:陕西科学技术出版社,1990.
    140 中华人民共和国国家标准《电离辐射防护与辐射源安全基本标准》GB18871-2002
    141 姜涛,早田勇,王春燕,等,高本底辐射诱发居民外周淋巴细胞染色体畸变的剂量效应关系。中华放射医学与防护杂志,1999,Vol.19,No.2
    142 周舜元,建筑材料放射性核素限量标准。中国辐射卫生,2003,Vol.12,No.1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700