边坡与坝基抗滑稳定的矢量和分析法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
边坡与坝基抗滑稳定分析一直都是岩土力学的一个经典研究领域,研究成果很多,根据各种不同的假定形成了各类不同的分析方法,但现有方法的分析基础,即采用抗滑力代数和与下滑力代数和之比定义安全系数,在大部分工程条件下缺乏必要的物理意义。工程中真正需要的是既有明确的物理意义和坚实的理论基础,又简单实用而能较好地服务于工程实际需要的边坡与坝基抗滑稳定分析方法,本文在此方面做了一些尝试性的研究与探讨工作。主要研究内容及结论如下:
     (1)阐明了边坡与坝基抗滑稳定分析的研究意义,简要回顾和评述了现有边坡与坝基抗滑稳定分析法和考虑爆破地震影响的边坡稳定分析方法,针对现有分析方法中存在的问题,提出了本文的主要研究内容。
     (2)对现有边坡与坝基抗滑稳定分析中两类安全系数——超载安全系数与强度折减安全系数的定义进行了讨论。两类安全系数的定义式中,沿滑动面对力简单叠加的力学意义不明确;强度折减法通常对岩土体的两个强度参数按同一比例进行折减与岩土体的真实强度特性有差别;沿不同方向增大荷载所计算的超载安全系数之间也没有合理的可比性,因为总荷载的大小和方向都发生了变化;超载法和强度折减法计算安全系数所依赖的应力分布是人为假定条件下得到的,而不是真实荷载与物理条件下的应力分布;因此,这两类安全系数定义的物理或力学意义值得商榷。
     (3)依据滑动的矢量特征,提出了边坡与坝基抗滑稳定的矢量和分析法,定义了矢量和法安全系数。在运用有限元分析得到应力分布的基础上,根据摩擦理论和滑动面的受力情况确定边坡与坝基的整体滑动趋势方向,以此方向作为计算方向,将矢量和法安全系数定义为,滑动面上各处抗滑力投影的代数和与滑动力在计算方向上投影的代数和之比,此安全系数定义的物理力学意义明确,且安全系数通过一个显示方程求解,计算过程简单,便于工程应用。
     (4)通过理论分析表明,在圆弧型和单直线滑动面的特殊情况下,将滑体视为刚体时,矢量和法安全系数的定义式与传统的刚体极限平衡分析法中依据滑动面上的抗滑力与滑动力代数和之比定义的安全系数的定义式等价。
     (5)运用边坡与坝基抗滑稳定的矢量和分析法对几道简单的边坡算例进行了分析。计算结果表明:本方法计算的矢量和法安全系数,在单直线与圆弧滑动面情况下与传统的极限平衡法依据力的代数和计算的结果一致,在其它情况下有一定的差别,且各算例的矢量和法安全系数都比有限元强度折减法的安全系数要低。
     (6)运用边坡与坝基抗滑稳定的矢量和分析法,计算了三峡工程左厂3#坝段坝基的深层抗滑稳定的矢量和法安全系数。计算结果表明:滑移路径越陡,其矢量和法安全系数越小;凡包含ABCFH段结构面的潜在滑移路径的矢量和法安全系数值都较低,这与已有的有限元强度折减法的定性分析成果相吻合。通过在实际工程中的应用,验证了边坡与坝基抗滑稳定分析方法的可行性与实用性。
     (7)在分析天然地震与爆破地震对边坡动力影响差异的基础上,提出了考虑爆破地震动荷载影响的边坡稳定矢量和分析法。该分析法将时程分析法与拟静力法相结合,运用有限元法分析在爆破振动惯性力荷载与静荷载共同作用下坡体内各点各时刻的应力分布,根据边坡与坝基抗滑稳定的矢量和分析法计算边坡的安全系数;该分析法较好地体现了爆破振动对边坡动态影响的实际特点,求解的矢量和法安全系数具有更明确的物理力学意义,且求解过程简单。
     (8)应用考虑爆破地震动荷载的边坡稳定矢量和分析法,求解了黄麦岭磷矿底板最终边帮在不同工况条件下的矢量和法安全系数。计算表明,就黄麦岭磷矿的单次爆破而言,爆破振动下的矢量和法安全系数与静载时相比,降低率在10%以内,现有生产爆破振动影响下矢量和法安全系数的最小值为1.119,与该边坡基本稳定的实际情况相符;而拟静力极限平衡法计算的安全系数只有0.669,与工程实际相差甚远。
Stability analysis of slope and dam foundation against sliding is a classic research field in rock and soil mechanics. Although there are a lot of research results in this field, the analytical basis of commonly used methods, defining their safety factors with the ratio of the algebraic sum of forces against sliding to that of forces driving sliding, lacks physical meaning under most engineering conditions. the stability analysis method meeting engineering needs is the method that is of clear physical significance and solid theoretical foundation, as well as simple and practicable. This thesis attempts to do some studies and discussions on this issue. The main studies and conclusions of this thesis are as follows.
     (1) State the significance of stability analyses of slope and dam foundation against sliding. The stability analysis methods, available in the literature, are reviewed. Aiming at the problems of common analytical methods of stability analyses, the main studies in this thesis are presented.
     (2) Discuss the definitions of two kinds of safety factors, the overload safety factor and the strength reduction safety factor, in common analytical methods of stability analyses. The force integral of the two safety factor definitions along the slip surface is ambiguous in mechanics. It is different from the real strength properties of rock and soil masses reducing the two strength parameters with a same coefficient as applying the strength reduction method. The overload safety factors calculated by overloading at different directions are out of comparability. The stress state with which the safety factors of the two definitions are calculated is obtained in terms of arbitrary assumptions. Thus the significance of the two safety factor definitions is questionable.
     (3) Put forward the vector sum analysis method of slope and dam foundation stability against sliding (VAM), and define the vector sum method safety factor (VF), based on the vector characteristic of the sliding motion. After the stress distribution calculated with the finite element analysis, on the basis of the friction theory and the slip surface stress, the direction of the sliding tendency of slope and dam foundation as a whole can be determined. Taking the direction as the calculating direction, the VF is defined as the ratio of the algebraic sum of the projections of anti-sliding forces to that of sliding forces along the slip surface at the calculating direction. The significance of the VF is clear in physics. The calculating process of the VF is simple and that facilitates the application of this analysis method in engineering.
     (4) Theoretical analysis shows: under the special condition of the circular or single line slip surface, the formula of VF and that of the safety factor defined with the ratio of the algebraic sum of anti-sliding forces to that of sliding forces in rigid body limit equilibrium methods are equivalent, as taking the slope as the rigid body sliding.
     (5) Apply the VAM to analyzing the stability of several simple slope cases. The results indicate: the calculated values of the safety factors applying VAM are close to that applying the limit equilibrium method under the circular slip surface or the single line surface condition, but there is some difference between them under other slip surface conditions, and the value of each case’s VF is less than that of the strength reduction method of FEM.
     (6) Apply the VAM to calculating the VF of the deep sliding stability of 3# dam foundation of the left power house of the Three Gorges Project. The results show: the more steep and deep the potential slip surface is, the less the VF value is; the VF value of the potential slip surface that contains joints ABCFH is less than that of others, and it is coincident with the qualitative analysis results with finite element strength reduction method available in literature. The application of the VAM to the practical engineering verifies its feasibility and practicability.
     (7) Propose the vector sum analysis method of the slope stability taking the dynamic loads induced by blasting seism into account (BVAM), based on analyzing the dynamic effect differences between the natural seism and the blasting seism. The BVAM calculates the VF with VAM, combining the time history method and the pseudo-static method, and analyzing the state stress inside the slope at any point and at any time by FEM with the coaction of inertia forces due to blasting vibration and static loads on the slope. The BVAM well reflects the time history characteristic of the slope under blasting vibration.
     (8) Solve the VF of the bottom final wall slope of Huangmailing Phosphrite Mine with the BVAM on different work conditions. The results show: in terms of an individual blasting, the VF influenced by the blasting vibration decreases within 10 percent compared with that of the static loads; that the minimum of the VF under the blasting conditions of the Mine is 1.119 is coincident with the real state of the slope that the slope is generally stable now; but that the safety factor value calculated with the pseudo-static limit equilibrium method is merely 0.669 is too far away from the real state of the slope.
引文
[1] 贾金生. 以可持续、更加绿色的方式发展水电 [EB/OL]. http://www. waterinfo.com.cn/ssyj-1/shuiliyuxiaokang/200702020008.htm,2007-2-9.
    [2] 米舒克著,王 什译. 独联体各国 21 世纪水电的发展和任务(上)[EB/OL]. http://www.hwcc.com.cn/newsdisplay/newsdisplay.asp?Id=131921,2005-7-20.
    [3] 齐中熙. 我国发电装机总容量已居世界第二[N]. 经济日报,2007-4-6(5).
    [4] 中国科学院武汉岩体土力学研究所. 岩质边坡稳定性的试验研究与计算方法[M]. 北京:科学出版社,1981.
    [5] Mencl V. Mechanics of landslides with non-circular slip surfaces with special reference to the Vaiont slide[J]. Géotechnique,1966,16(4):329–337.
    [6] 周维垣. 高等岩石力学[M]. 水利水电出版社,1989.
    [7] 黄润秋. 20 世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报,2007,26(3):433–454.
    [8] 傅冰骏. 岩石力学研究的现状和未来[EB/OL]. http://www.sciei.com/Article/ write/civil/ 200512/Article_2948_2.html,2005-12-7.
    [9] 陶颂霖. 爆破工程[M]. 北京:冶金工业出版社,1979.
    [10] 陈祖煜,汪小刚,杨 健,等. 岩质边坡稳定分析[M]. 北京:中国水利水电出版社,2005.
    [11] 孙玉科,古 迅. 赤平极射投影在岩体工程地质力学中的应用[M]. 北京:科学出版社,1980.
    [12] 孙玉科,牟会宠,姚宝魁. 边坡岩体稳定性分析[M]. 北京:科学出版社,1988.
    [13] 杨志法,尚彦军,刘 英. 关于岩土工程类比法的研究[J]. 工程地质学报,1997,5(4):299–305.
    [14] 张金山,袁绍国,雷化南. 露天矿边坡稳定性分析专家系统[J]. 中国矿业,1995,4(3):57–62.
    [15] 夏元友,朱瑞赓. 边坡稳定性分析专家系统研制[J]. 灾害学,1997,12(4):10–14.
    [16] Hassan Ahmed Mohamed. A practical approach to combined probabilistic analysis of slope stability and seepage problems[PhD thesis][D]. East Lansing:Michigan State University,1998.
    [17] Alonso E E. Risk analysis of slopes and its application to slopes in Canadian sensitive clays[J]. Géotechnique,1976,26(3):453–472.
    [18] Chowdhury R N,Tang W H,Sidi I. Reliabilistic model of progressive failure of slopes[J]. Géotechnique,1987,37(4):467–481.
    [19] 谭晓慧. 边坡稳定分析的模糊概率法[J]. 合肥工业大学学报(自然科学版),2001,24(3):442–446.
    [20] 谢全敏,夏元友. 岩体边坡治理决策的模糊层次分析方法研究[J]. 岩石力学与工程学报,2003,22(7):1117–1120.
    [21] 夏元友. 系统加权聚类法及其在滑坡稳定性预测中的应用[J]. 自然灾害学报,1997,6(3):85–91.
    [22] Xie Quanmin,Zhu Ruigeng. Grey classification for evaluating the stability of dangerous rock—block masses[J]. Journal of Wuhan University of Technology (Materials Science),2000,15(1):73–77.
    [23] 夏元友. 滑坡灰色系统预测模型及其应用[J]. 自然灾害学报,1995,4(1):74–78.
    [24] 林跃忠,王铁成,王 来,等. 三峡工程高边坡的稳定性分析[J]. 天津大学学报,2005,38(10):936–940.
    [25] 夏元友,熊海丰. 边坡稳定性影响因素敏感性人工神经网络分析[J]. 岩石力学与工程学报,2004,23(16):2703–2707.
    [26] 夏元友,朱瑞赓. 边坡工程集成式智能辅助决策系统研究[J]. 自然灾害学报,1995,4(1):88–91.
    [27] 夏元友,朱瑞赓,李新平. 基于神经网络的岩质边坡稳定性评估系统研究[J]. 自然灾害学报,1996,5(2):98–104.
    [28] 谢全敏,夏元友. 基于遗传算法的边坡稳定性评价的动态聚类法[J]. 岩土力学,2002,23(2):170–173.
    [29] 冯夏庭,王泳嘉,卢世宗. 边坡稳定性的神经网络估计[J]. 工程地质学报,1995,3(4):54–61.
    [30] 冯夏庭,王泳嘉. 人工智能在矿山岩体边坡工程中应用[J]. 化工矿山技术,1995,24(1):1–3,12.
    [31] 冯夏庭,张治强. 三峡永久船闸高边坡开挖变形智能预测[J]. 辽宁工程技术大学学报(自然科学版),1999,18(5):463–465.
    [32] 冯夏庭,王泳嘉,丁恩保. 智能化的边坡稳定性分析方法[J]. 东北大学学报(自然科学版),1995,16(5):453–457.
    [33] 郭映忠. 节理边坡的稳定性评价[J]. 地球与环境,2005,33(增):1–6.
    [34] 姚 环,郑 振,简文彬,等. 公路岩质高边坡稳定性的综合评价研究[J]. 岩土工程学报,2006,28(5):558–563.
    [35] 黄志全,李华晔,马 莎,等. 岩石边坡块状结构岩体稳定性分析和可靠性评价[J]. 岩石力学与工程学报,2004,23(24):4200–4205.
    [36] 周应华,周德培,邵 江. 双坡面临空岩质边坡滑动破坏模式下的稳定性分析[J]. 山地学报,2006,24(4):446–449.
    [37] 刘金龙. 边坡稳定性及路堤变形与破坏机理研究[博士学位论文][D]. 武汉:中国科学院武汉岩土力学研究所,2006.
    [38] Ducan J M. State of the art: Limit equilibrium and finite-element analysis of slopes[J]. Journal of Geotechnical Engineering,ASCE,1996,122(7):577–596.
    [39] 陈祖煜. 土质边坡稳定分析[M]. 北京:中国水利水电出版社,2003.
    [40] Janbu N. Application of composite slip surface for stability analysis[A]. In:European Conference on Stability of Earth Slopes[C]. Stockholm:[s. n.],1954,43–49.
    [41] Janbu N. Slope stability computations[A]. In:Hirschfield R C,Poulos S J. ed. Embankment-Dam Engineering[C]. New York:John Wiley & Sons,1973,Casagrande Volume,47–86.
    [42] Bishop A W. The use of the slip circle in the stability analysis of slopes[J]. Géotechnique,1955,5(1):7–17.
    [43] Lowe J,Karafiath L. Stability of earth dams upon drawdown[A]. Proceedings of the 1st Pan-American Conference on Soil Mechanics and Foundation Engineering[C]. Mexico City:[s. n.],1960,537–552.
    [44] U. S. Army Corps of Engineers. Stability of slopes and foundations,Engineering Manual[R]. Vicksburg , Mississipi : U. S. Army Corps of Engineers,1967.
    [45] Morgenstern N R,Price V E. The analysis of the stability of general slip surfaces[J]. Géotechnique,1965,15(1):79–93.
    [46] Spencer E. A method of analysis of the stability of embankments assuming parallel inter-slice forces[J]. Géotechnique,1967,17(1):11–26.
    [47] Spencer E. Thrust line criterion in embankment stability analysis[J]. Géotechnique,1973,23(1):85–100.
    [48] Sarma S K. Stability analysis of embankments and slopes[J]. Géotechnique,1973,23(3):423–433.
    [49] Sarma S K. Stability analysis of embankments and slopes[J]. Journal of the Geotechnical Engineering Division,ASCE,1979,105(12):1511–1524.
    [50] 中华人民共和国国家标准编写组. 建筑边坡工程技术规范(GB50330–2002)[S]. 北京:中国建筑工业出版社,2002.
    [51] 中华人民共和国行业标准编写组. 铁路路基支挡结构设计规范(TB10025–2001)[S]. 北京:中国铁道出版社,2001.
    [52] Chen Zuyu,Morgenstern N R. Extensions to the generalized method of slices for stability analysis[J]. Candian Geotechnical Journal,1983,20(1):104–119.
    [53] 陈祖煜. 土坡稳定分析通用条分法及其改进[J]. 1983,5(4):11-27.
    [54] Zhu D Y,Lee C F,Qian Q H,Zou Z S and Sun F. A new procedure for computing the factor of safety using Morgenstern-Price method[J]. Candian Geotechnical Journal,2001,38(4):882–888.
    [55] Zhu D Y,Lee C F,Qian Q H,Chen G R. A concise algorithm for computing the factor of safety using the Morgenstern-Price method[J]. Candian Geotechnical Journal,2005,42(1):272–278.
    [56] Zhu D Y,Lee C F,Jiang H D. Generalised framework of limit equilibrium methods for slope stability analysis[J]. Géotechnique,2003,53(4):377–395.
    [57] 朱大勇,李焯芬,姜弘道,等. 基于滑面正应力修正的边坡安全系数解答[J]. 岩石力学与工程学报,2004,23(16):2788–2791.
    [58] 朱大勇,李焯芬,黄茂松,等. 对 3 种著名边坡稳定性计算方法的改进[J]. 岩石力学与工程学报,2005,24(2):183–194.
    [59] 朱大勇,邓建辉,台佳佳. 简化 Bishop 法严格性的论证[J]. 岩石力学与工程学报,2007,26(3):455–458.
    [60] 郑颖人,杨明成. 边坡稳定安全系数求解格式的分类统一[J]. 岩石力学与工程学报,2004,23(16):2836–2841.
    [61] 杨明成. 基于力平衡求解安全系数的一般条分法[J]. 岩石力学与工程学报,2005,24(7):1216–1221.
    [62] 林 丽,杨明成,郑颖人. 基于力平衡的安全系数统一求解格式[J]. 岩土力学,2005,26(增):279–281.
    [63] 戴自航,沈蒲生. 土坡稳定分析普遍极限平衡法的数值解研究[J]. 岩土工程学报,2002,24(3):327–331.
    [64] 邹广电,魏汝龙. 土坡稳定分析普遍极限平衡法数值解的理论及方法研究[J]. 岩石力学与工程学报,2006,25(2):363–370.
    [65] Ching R K,Fredlund D G. Some difficulties associated with the limit equilibrirm method of slices[J]. Candian Geotechnical Journal,1983,20(4):661–672.
    [66] Fredlund D G,Krahn J. Comparison of slope stability methods of analysis[J]. Candian Geotechnical Journal,1977,14(3):429–439.
    [67] Espinoza R D. Bourdeau P L P C,Muhunthan B. Unified formulation for analysis of slopes with general slip surface[J]. Journal of Geotechnical Engineering,ASCE,1994,120(7):1185–1204.
    [68] 丁 桦,张均锋,郑哲敏. 关于边坡稳定分析的通用条分法的探讨(理论分析部分)[J]. 岩石力学与工程学报,2004,23(21):3684–3688.
    [69] 郑 宏,谭国焕,刘德富. 边坡稳定性分析的无条分法[J]. 岩土力学,2007,27(7):1285–1291.
    [70] Hungr O. An extension of Bishop’s simplified method of slope stability analysis to three dimensions[J]. Géotechnique,1987,37(1):113–117.
    [71] Hungr O,Salgado F M,Byrne P M. Evaluation of a three-dimensional method of slope stability analysis[J]. Candian Geotechnical Journal,1989,26:679–686.
    [72] Chen R H,Chameau J L. Three-dimensional limit equilibrium analysis of slopes[J]. Géotechnique,1983,33(1):31–40.
    [73] Xing Zhang. Three dimensional stability analysis of concave slopes in plan view[J]. Journal of Geotechnical Engineering,ASCE,1988,114(6):658–671.
    [74] Hutchison J N,Sarma S K. Discussion on three-dimensional limit equilibrium analysis of slopes[J]. Géotechnique,1985,35(2):215–216.
    [75] Lam L,Fredlund D G. A general limit equilibrium model for three-dimensional slope stability analysis[J]. Candian Geotechnical Journal,1993,30:905–919.
    [76] Huang C C,Tsai C C. New method for 3D and asymmetrical slope stability analysis[J]. Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2000,126(10):917–927.
    [77] Huang C C,Tsai C C,Chen Y H. Generalized method for three-dimensional slope stability analysis[J]. Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2002,128(10):836–848.
    [78] 冯树仁,丰定祥,葛修润,等. 边坡稳定性的三维极限平衡分析方法及应用[J]. 岩土工程学报,1999,21(6):657–661.
    [79] 陈祖煜,弥宏亮,汪小刚. 边坡稳定三维分析的极限平衡方法[J]. 岩土工程学报,2001,23(5):525–529.
    [80] 张均锋,丁 桦. 边坡稳定性分析的三维极限平衡法及应用[J]. 岩石力学与工程学报,2005,24(3):365–370.
    [81] 张均锋,王思莹,祈 涛. 边坡稳定分析的三维 Spencer 法[J]. 岩石力学与工程学报,2005,24(19):3434–3439.
    [82] 曾进群,刘东燕,严春风. 边坡稳定性三维极限平衡分析的新探讨及其应用[J]. 地下空间,2001,21(4):332–336.
    [83] 李同录,王艳霞,邓宏科. 一种改进的三维边坡稳定性分析方法[J]. 岩土工程学报,2003,25(5):611–614.
    [84] 杜建成,黄大寿,胡 定. 边坡稳定的三维极限平衡分析法[J]. 四川大学学报(工程科学版),2001,33(4):9–12.
    [85] Stark T D,Eid H T. Performance of three-dimensional slope stability methods in practice[J]. Journal of Geotechnical and Geoenvironmental Engineering,ASCE,1998,124(11):1049–1060.
    [86] Chen Z Y,Yin J H,Wang Y J. The three-dimensional slope stability analysis: recent advances and a forward look[A]. In: Advances in Earth Structures: Research to Practice (GSP 151),Proceedings of Sessions of GeoShanghai 2006[C]. Shanghai:ASCE,2006,195(1):1–42.
    [87] 王成华,夏绪勇. 边坡稳定分析中的临界滑动面搜索方法述评[J]. 四川建筑科学研究,2002,28(3):34–39.
    [88] Revilla J,Gastillo E. The calculus of variations applied to stability of slopes[J]. Géotechnique,1977,27(1):1–11.
    [89] 罗文强,张倬元,黄润秋,等. 滑动面确定的变分法模型[J]. 长江科学院院报,2000,17(3):35–37.
    [90] 莫海鸿,唐超宏,刘少跃. 应用模式搜索法寻找最危险滑动圆弧[J]. 岩土工程学报,1999,21(6):696–699.
    [91] 马忠政,祁红卫,侯学渊. 边坡稳定验算中全面搜索的一种新方法[J]. 岩土力学,2000,21(3):256–259.
    [92] 丰定祥,吴家秀,葛修润. 边坡稳定性分析中几个问题的探讨[J]. 岩土工程学报,1990,12(3):1–9.
    [93] Nguyen V U. Determination of critical slope failure surface[J]. Journal of Geotechnical Engineering,ASCE,1985,111(2):238–250.
    [94] De Natale J S. Rapid identification of critical slip surface: structure[J]. Journal of Geotechnical Engineering,ASCE,1991,117(10):1568–1589.
    [95] Li K S,White W. Rapid evaluation of the critical slip surface in slope stability problems[J]. International Journal for Numerical and analytical methods in geomechanics,1987,11(5):449–473.
    [96] 孙君实. 条分法的数值分析[J]. 岩土工程学报,1984,6(2):1–12.
    [97] Chen Zuyu,Shao Changming. Evaluation of minimum factor of safety in slope stability analysis[J]. Candian Geotechnical Journal,1988,25(4):735–748.
    [98] 陈祖煜,邵长明. 最优化方法在确定边坡安全系数方面的应用[J]. 岩土工程学报,1988,10(4):1–13.
    [99] 曹文贵,颜荣贵. 边坡非圆临界滑面确定之动态规划法研究[J]. 岩石力学与工程学报,1995,14(4):320–328.
    [100] Jiang J C,Yamagami T. Three-dimensional slope stability analysis using an extended spencer method[J]. Soils and Foundations,2004,44(4):127–135.
    [101] Yamagami T,Jiang J C. A search for the critical slip surface in three- dimensional slope stability analysis[J]. Soils and Foundations,1997,37(3):1–16.
    [102] Siegel R A,Kovacs W D,Lowell C W. Random surface generation in stability analysis[J]. Journal of Geotechnical Engineering,ASCE,1981,107(7):996–1002.
    [103] Greco V R. Efficient Monte Carlo technique for locating critical slip surface[J]. Journal of Geotechnical Engineering,ASCE,1996,122(7):517–525.
    [104] Abdallah I H,Waleed F H,Sarada K S. Global search method for locating general slip surface using Monte Carlo techniques[J]. Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2001,127(8):688–698.
    [105] Chen Z. Random trials used in determining global minimum factors of safety of slopes[J]. Candian Geotechnical Journal,1992,29(2):225–233.
    [106] 邹广电. 边坡稳定分析条分法的一个全局优化算法[J]. 岩土工程学报,2002,24(3):309–312.
    [107] 肖专文,张奇志,梁 力,等. 遗传进化算法在边坡稳定性分析中的应用[J]. 岩土工程学报,1998,20(1):44–46.
    [108] Gon A T C. Genetic algorithm search for critical slip surface in multiple-wedge stability analysis[J]. Candian Geotechnical Journal,1999,36(2):382–391.
    [109] 王成华,夏绪勇,李广信. 基于应力场的土坡临界滑动面的遗传算法搜索[J]. 清华大学学报(自然科学版),2004,44(3):425–428.
    [110] 朱大勇. 边坡临界滑动场及其数值模拟[J]. 岩土工程学报,1997,19(1):63–69.
    [111] 朱大勇,周早生. 边坡全局临界滑动场(GCSF)理论及工程应用[J]. 土木工程学报,1999,32(3):66–72.
    [112] 朱大勇,钱七虎. 严格极限平衡条分法框架下的边坡临界滑动场[J]. 土木工程学报,2000,33(5):68–74.
    [113] 孙 平. 基于非相关联流动法则的三维边坡稳定极限分析[博士学位论文][D]. 北京:中国水利水电科学研究院,2005.
    [114] Chen W F. Limit Analysis and Soil Plasticity[M]. Amsterdam:Elsevier Science,1975.
    [115] Chen W F,Liu X L. Limit Analysis in Soil Mechanics[M]. Amsterdam:Elsevier Science,1990.
    [116] Karal K. Application of energy method[J]. Journal of Geotechnical Engineering,ASCE,1977,103(5):381–391.
    [117] Karal K. Energy Method for Soil Stability Analyses[J]. Journal of GeotechnicalEngineering,ASCE,1977,103(5):431–445.
    [118] Izbicki R J. Limit plasticity approach to slope stability problems[J]. Journal of Geotechnical Engineering,ASCE,1981,107(2):228–233.
    [119] Michalowski R L. Slope stability analysis: a kinematical approach[J]. Géotechnique,1995,45(2):283–293.
    [120] Donald I B,Chen Z. Slope stability analysis by the upper bound approach: fundamentals and methods[J]. Candian Geotechnical Journal,1997,34(11):853–862.
    [121] 陈祖煜. 土力学经典问题的极限分析上、下限解[J]. 岩土工程学报,2002,24(1):1–11.
    [122] 陈祖煜. 建筑物抗滑稳定分析中“潘家铮最大最小原理”的证明[J]. 清华大学学报(自然科学版),1998,38(1):1–4.
    [123] 潘家铮. 建筑物的抗滑稳定和滑坡分析[M]. 北京:水利出版社,1980.
    [124] Michalowski R L. Three-dimensional analysis of locally loaded slopes[J]. Géotechnique,1989,39(1):27–38.
    [125] Soubra A H,Regenass P. Three-dimensional passive earth pressures by kinematical approach[J]. Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2000,126(11):969–978.
    [126] Farzaneh O,Askari F. Three-dimensional analysis of nonhomogeneous slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2003,129(2):137–145.
    [127] Chen Z,Wang X,Haberfield C,et al. A three-dimensional slope stability analysis method using the upper bound theorem—Part I: theory and methods[J]. International Journal of Rock Mechanics and Mining Sciences,2001,38(3):369–378.
    [128] Chen Z,Wang J,Wang Y,et al. A three-dimensional slope stability analysis method using the upper bound theorem—Part II: numerical approaches, applications and extensions[J]. International Journal of Rock Mechanics and Mining Sciences,2001,38(3):379–397.
    [129] Chen Z,Mi H,Zhang F,et al. A simplified method for 3D slope stability analysis[J]. Candian Geotechnical Journal,2003,40:675–683.
    [130] Chen Z. A generalized solution for tetrahedral rock wedge stability analysis[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(4):613–628.
    [131] 陈祖煜,汪小刚,邢义川,等. 边坡稳定分析最大原理的理论分析和试验验证[J]. 岩土工程学报,2005,27(5):495–499.
    [132] 吴春秋. 非线性有限单元法在土体稳定分析中的理论及应用研究[博士学位论文][D]. 武汉:武汉大学,2004.
    [133] 郑 宏,田 斌,刘德富,等. 关于有限元边坡稳定分析中安全系数的定义问题[J]. 岩石力学与工程学报,2005,24(13):2225–2230.
    [134] Donald I B,Tan C P,Goh T C A. Stability of geomechanical structures assessed by finite element method[A]. In:Procceedings of the 2nd International Conference in Civil Engineering(in Hangzhou)[C]. Beijing:Science Press,1985. 845–856.
    [135] Wright S G,Kulhawy F G,Duncan J M. Accuracy of equilibrium slope stability analysis[J]. Journal of the Soil Mechanics and Foundations Division,ASCE,1973,99(10):783–791.
    [136] Yamagami T,Ueta Y. Search for critical slip lines in finite element stress fields by dynamic programming[A]. In:Swoboda G ed. Proceedings of The 6th International Conference on Numerical Methods in Geomechanics(in Innsbruck)[C]. Rotterdam:A A BALKEMA,1988,1347–1352.
    [137]. 邵龙潭,唐洪祥,韩国城. 有限元边坡稳定分析方法及其应用[J]. 计算力学学报,2001,18(1):81–87.
    [138] 邵龙潭,韩国城. 堆石坝边坡稳定分析的一种方法[J]. 大连理工大学学报,1994,31(3):365–369.
    [139] Giam S K,Donald I B. Determination of critical slip surfaces for slopes via stress-strain calculations[A]. In:Proceedings of the 5th Australia-New Zealand Conference on Geomechanics[C]. [s, n],1988. 461–464.
    [140] Zou J Z,Williams D J,Xiong W L. Search for critical slip surfaces based on finite element method[J]. Candian Geotechnical Journal,1995,32:233–246.
    [141] 葛修润. 用 PC 型微机对岩体工程课题进行有限元分析[A]. 见:第一届全国计算岩土力学研讨会论文集[C]. 峨嵋:西南交通大学出版社,1987. 74–85.
    [142] Ge Xiurun,Feng Dingxiang,Gu Xianrong,et al. Stability and deformation analysis of complex rock foundations of several large dams and hydropower stations in China[A]. In:Yoshinaka R,Kikuchi K ed. Rock Foundation:Proceedings of International Workshop on Rock Foundation[C]. Tokyo:A A BALKEMA,1995. 243–248.
    [143] Gu X R,Li J,Ge X R. Analysis of statility against sliding of a gravity dam by means of microcomputer[A]. In:Oliveria E R ed. Proceedings of International Conference on Education, Practice and Promotion of Computational Methods in Engineering Using Small Computers[C]. Guangzhou,1987,Vol 3,474–477.
    [144] Zienkiewicz O C,Humpheson C,Lewis R W. Associated and non-associated visco-plasticity and plasticity in soil mechanics[J]. Géotechnique,1975,25(4):671–689.
    [145] Griffiths D V. Finite element analyses of walls, footings and slopes[A]. In:Randolph M F. ed. Proceedings of Symposium on Computer Applications to Geotechnical Problems in Highway Engineering[A]. Cambridge : PM Geotechnical Analysts Ltd.,1980,122–146.
    [146] Griffiths D V,Lane P A. Slope stability analysis by finite elements[J]. Géotechnique,1999,49 (3):387–403.
    [147] Matsui T,San K C. Finite element slope stability analysis by shear strength reduction technique[J]. Soils and Foundations,1992,32(1):59–70.
    [148] Manzari M T,Nour M A. Significance of soil dilatancy in slope stability analysis[J]. Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2000,126(1):75–80.
    [149] 宋二祥. 土工结构安全系数的有限元计算[J]. 岩土工程学报,1997,19(2):1–7.
    [150] 连镇营,韩国城,孔宪京. 强度折减有限元法研究开挖边坡的稳定性[J]. 岩土工程学报,2001,23(4):407–411.
    [151] 刘金龙,栾茂田,赵少飞,等. 关于强度折减有限元方法中边坡失稳判据的讨论[J]. 岩土力学,2005,26(8):1345–1348.
    [152] 栾茂田,武亚军,年廷凯. 强度折减有限元法中边坡失稳的塑性区判据及其应用[J]. 防灾减灾工程学报,2003,23(3):1–8.
    [153] 郑 宏,李春光,李焯芬,等. 求解安全系数的有限元法[J]. 岩土工程学报,2002,24(5):626–628.
    [154] 郑颖人,赵尚毅,张鲁渝. 用有限元强度折减法进行边坡稳定分析[J]. 中国工程科学,2002,4(10):57–61,78.
    [155] 郑颖人,赵尚毅. 有限元强度折减法在土坡与岩坡中的应用[J]. 岩石力学与工程学报,2004,23(19):3381–3388.
    [156] 赵尚毅,郑颖人,时卫民,等. 用有限元强度折减法求边坡稳定安全系数[J]. 岩土工程学报,2002,24(3):343–346.
    [157] 张鲁渝,时卫民,郑颖人. 平面应变条件下土坡稳定有限元分析[J]. 岩土工程学报,2002,24(4):487–490.
    [158] 徐千成,郑颖人. 岩石工程中屈服准则应用的研究[J]. 岩土工程学报,1990,12(2):93–99.
    [159] 郑颖人,赵尚毅. 岩土工程极限分析有限元法及其应用[J]. 土木工程学报,2005,38(1):91–98,104.
    [160] 郑颖人,赵尚毅,孔位学. 极限分析有限元法讲座——I 岩土工程极限分析有限元法[J]. 岩土力学,2005,26(1):163–168.
    [161] 赵尚毅,郑颖人,张玉芳. 极限分析有限元法讲座——Ⅱ有限元强度折减法中边坡失稳的判据探讨[J]. 岩土力学,2005,26(2):332–336.
    [162] 任青文,余天堂,马良筠. 三峡大坝左厂 3 号坝段稳定性的数值分析和试验研究,中国工程科学,1999,1(3):41–45.
    [163] 何江达,范景伟,张建海. 百色 RCC 重力坝坝基稳定性数值模拟研究[J]. 四川联合大学学报(工程科学版),1999,3(6):1–7,12.
    [164] 卢文波,赖世骧,朱传云. 岩石高边坡爆破震动动力稳定分析[J]. 矿冶工程,1996,16(3):3–7.
    [165] 许红涛,卢文波,周创兵,等. 基于时程分析的岩质高边坡开挖爆破动力稳定性计算方法[J]. 岩石力学与工程学报,2006,25(11):2213–2219.
    [166] 张 林,林从谋. 爆破震动对土质边坡动力稳定性影响研究[J]. 岩土力学,2005,26(9):1499–1501.
    [167] 阎 坤,张 云. 岩质高边坡爆破动力稳定分析方法研究[J]. 水力发电,1996,(8):27–29, 62.
    [168] 张永哲,甄胜利. 漫湾电站开挖爆破对高边坡动力稳定影响的分析研究[J]. 工程爆破,1996,2(1):1–6, 11.
    [169] 何蕴龙. 岩质边坡施工爆破振动加速度近似计算方法[J]. 岩石力学与工程学报,1996,15(1):19–25.
    [170] 何蕴龙,舒大强,陆述远,等. 施工爆破震动激励下岩质边坡震动响应加速度场的计算方法[J]. 武汉水利电力大学学报,1997,30(3):39–42.
    [171] 吴兆营,薄景山,刘红帅,等. 岩体边坡地震稳定性动安全系数分析方法[J]. 防灾减灾工程学报,2004,24(3):237–241.
    [172] 刘汉龙,费 康,高玉峰. 边坡地震稳定性时程分析方法[J]. 岩土力学,2003,24(4):553–556, 560.
    [173] 薄景山,徐国栋,景立平. 土边坡地震反应及其动力稳定性分析[J]. 地震工程与工程振动,2001,21(2):116–119.
    [174] 唐洪祥,邵龙潭. 地震动力作用下有限元土石坝边坡稳定性分析[J]. 岩石力学与工程学报,2004,23(8):1318–1324.
    [175] 邵龙潭,唐洪祥,孔宪京,等. 随机地震作用下土石坝边坡的稳定性分析[J]. 水利学报,1999,30(11):66–71.
    [176] Newmark N M. Effects of earthquakes on dams and embankments[J]. Géotechnique,1965,15 (2):139–160.
    [177] Romeo R. Seismically induced landslide displacements: a predictive model[J]. Engineering Geology,2000,58(3):337–351.
    [178] 薛守义,王思敬,刘建中. 块状岩体边坡地震滑动位移分析[J]. 工程地质学报,1997,5(2):131–136.
    [179] Ambraseys N,Srbulov M. Earthquake induced displacements of slopes[J]. Soil Dynamics and Earthquake Engineering,1995,14(1):59–71.
    [180] 祁生林,祁生文,伍法权,等. 基于剩余推力法的地震滑坡永久位移研究[J]. 工程地质学报,2004,12(1):63–68.
    [181] 沈珠江. 当前土力学研究中的几个问题[J]. 岩土工程学报,1986,8(5):1–8.
    [182] Tavenas F,Trak B,Leroueil S. Remarks on the validity of stability analyses[J]. Canadian Geotechnical Journal,1980,17(1):61–73.
    [183] Chugh A K. Variable factor of safety in slope stability analysis[J]. Géotechnique,1986,36 (1):57–64.
    [184] 郑颖人,赵尚毅. 边(滑)坡工程设计中安全系数的讨论[J]. 岩石力学与工程学报,2006,25(9):1937–1940.
    [185] 王 仁,黄文彬,黄筑平. 塑性力学引论(修订版)[M]. 北京:北京大学出版社,1992.
    [186] 葛修润,任建喜,李春光等. 三峡左厂 3#坝段深层抗滑稳定三维非线性有限元分析[J]. 岩土工程学报,2003,25(4):389–394.
    [187] Dawson E M,Roth W H,Drescher A. Slope stability analysis by strength reduction[J]. Géotechnique,1999,49(6):835–840.
    [188] 周维垣,杨 强. 岩石力学数值计算方法[M]. 北京:中国水利水电出版社,2005.
    [189] 邵国建,卓家寿,章 青. 岩体稳定性分析与评价准则研究[J]. 岩石力学与工程学报,2003,22(5):691–696.)
    [190] 叶金汉,郗绮霞,夏万仁. 岩石力学参数手册[M]. 北京:水利电力出版社,1991.
    [191] 刘艳章,王水林,葛修润,等. 高密度电法在三峡库区滑坡勘察中的应用[J]. 岩土力学,2006,27(增刊):519–523.
    [192] 段 进,倪 栋,王国业. ANSYS10.0 结构分析从入门到精通[M]. 北京:兵器工业出版社 北京科海电子出版社,2006.
    [193] Seo Y K. Computational methods for elasto-plastic slope stability analysis with seepage[Ph.D.Thesis][D]. Iowa:The University of Iowa,1998.
    [194] Swan C C, Seo Y K. Limit state analysis of earthen slopes using dual continuum/FEM approaches[J]. International Journal. for Numerical and Analytical Methods in Geomechanics,1999,23(12):1359–1371.
    [195] 张超然,戴会超. 三峡工程建设中若干重大技术问题的突破[J]. 中国工程科学,2003,5(2):20–25.
    [196] 王家柱. 三峡工程及其几个岩石力学问题[J]. 岩石力学与工程学报,2001,20(5):597–602.
    [197] Dai Huichao. Some rock and soil mechanical issues in TGP construction[J]. Engineering Scineces,2004,2(3):65–73.
    [198] 长江水利委员会. 三峡工程地质研究[M]. 武汉:湖北科学技术出版社,1997.
    [199] 任自民,马代馨. 三峡工程坝基岩体工程研究[M]. 武汉:中国地质大学出版社,1998.
    [200] 水利部长江水利委员会. 三峡大坝左厂 1#~5#坝段抗滑稳定深化设计专题报告[R]. 武汉:水利部长江水利委员会,1996.
    [201] 水利部长江水利委员会. 三峡大坝左厂 1#~5#坝段深层抗滑稳定综合分析报告[R]. 武汉:水利部长江水利委员会,1997.
    [202] 长江委三峡勘测研究院. 1#~5#机组坝段抗滑稳定地质专题研究[R],宜昌:长江委三峡勘测研究院,1997.
    [203] 清华大学. 三峡水电站左岸 1~5 号厂房坝段二维及三维应力分析[R]. 北京:清华大学,1997.
    [204] 清华大学. 三峡左岸 3#坝段基岩深层抗滑稳定分析[R]. 北京:清华大学,1996.
    [205] 河海大学. 三峡工程左岸厂房坝段稳定性及厂坝联结问题的研究——(四)三维非线性有限元分析[R],南京:河海大学,1997.
    [206] 清华大学. 三峡左岸厂房坝段深层抗滑稳定分析小结[R]. 北京:北京:清华大学,1998.
    [207] 中国水利水电科学研究院. 三峡工程 3 号坝段 3 种滑移模式的稳定分析[R]. 北京:中国水利水电科学研究院,2000.
    [208] 龚召熊,陈 进. 岩石力学模型试验及其在三峡工程中的应用与发展[M]. 北京:中国水利水电出版社,1996.
    [209] 长江委三峡勘测研究院. 三峡工程施工阶段左厂 1~5#机坝段抗滑稳定条件深化研究[R]. 宜昌:长江委三峡勘测研究院,2000.
    [210] 上海交通大学岩土力学与工程研究所,中国科学院武汉岩土力学研究所. 三峡工程左厂 1#~5#坝段深层抗滑稳定有限元分析研究[R]. 上海:上海交通大学岩土力学与工程研究所,中国科学院武汉岩土力学研究所,2002.
    [211] 任建喜,李春光,葛修润. 结构面按薄层单元模拟的三峡左厂 3#坝段安全系数研究[J]. 岩石力学与工程学报,2004,23(7):1066–1072.)
    [212] 丁秀丽,盛谦,徐平. 三峡大坝左厂 2#、3#、4#坝段坝基稳定性数值分析[A].见:陆培炎,史永胜编,岩土力学数值分析与解析方法——第六届全国岩土力学数值分析与解析方法讨论会论文集[C],广州:广东科技出版社,1998.
    [213] 马良筠. 用试验验证抗滑稳定计算新方法[J]. 河海大学学报,2002,30(3):113–115.
    [214] 刘 建,冯夏庭,张 杰,等. 三峡工程左岸厂房深层抗滑稳定的物理模拟[J]. 岩石力学与工程学报,2002,21(7):993–998.
    [215] 戴会超,李 军. 三峡工程左岸岸边厂房坝段抗滑稳定研究[J]. 三峡大学学报(自然科学版),2002,24(4),289–292.
    [216] 弥宏亮,陈祖煜,汪小刚. 三峡左岸坝段三维抗滑稳定分析[J]. 岩石力学与工程学报,2003,23(12):1960–1965.
    [217] 戴会超,苏怀智. 三峡大坝深层抗滑稳定研究[J]. 岩土力学,2006,27(4):643–647.
    [218] 任建喜,李春光,葛修润. 三峡左厂抗滑稳定性影响的有限元分析[J]. 岩土力学,2006,27(6):895–898,902.
    [219] SDJ21-1978,混凝土重力坝设计规范[S].
    [220] SL266-2001,水电站厂房设计规范[S]
    [221] 李海波,蒋会军,赵 坚,等. 动荷载作用下岩体工程安全的几个问题[J]. 岩石力学与工程学报,2003,22(11):1887–1891.
    [222] 黄理兴,陈奕柏. 我国岩石动力学研究状况与发展[J]. 岩石力学与工程学报,2003,22(11):1881–1886.
    [223] Sarma S K,Bhave M V. Critical acceleration versus static factor of safety in stability analysis of earth dams and embankments[J]. Géotechnique,1974,24(4):661–665.
    [224] 杨桂桐. 爆破震动效应及边坡动态分析[J]. 爆破,1989,6(4):9–14.
    [225] GB50330—2002,建筑边坡工程技术规范[S].
    [226] 黄显贵,陈植华,郭英丽. 基于地震力的滑坡稳定分析[J]. 安全与环境工程,2005,12(1):82–84.
    [227] 彭德红. 露天矿边坡开挖爆破震动动力响应分析[J]. 煤炭学报,2005,30(6):705–709.
    [228] 陈玲玲,陈敏中,钱胜国. 岩质陡高边坡地震动力稳定分析[J]. 长江科学院院报,2004,21(1):33–35.
    [229] 刘春玲,祁生文,童立强,等. 利用 FLAC3D 分析某边坡地震稳定性[J]. 岩石力学与工程学报,2004,23(16):2730–2733.
    [230] 毛彦龙,胡广韬,毛新虎,等. 地震滑坡启程剧动的机理及离散元模拟[J]. 工程地质学报,2001,9(1):74–80.
    [231] 刘汉东. 考虑地震历时影响的岩质边坡楔体稳定性分析与计算[J]. 华北水利水电学院学报,1991,(4):35–40.
    [232] 刘红帅,薄景山,刘德东. 岩土边坡地震稳定性分析研究评述[J]. 地震工程与工程振动,2005,25(1):164–171.
    [233] 霍永基,王湘钧,费骥鸣. 爆破地震效应及安全评定方法探讨[A]. 见:土岩爆破文集——全国土岩爆破经验交流会议论文选(第二辑)[C]. 北京:冶金工业出版社,1985,260–270.
    [234] 徐芝纶. 弹性力学(第三版,上册)[M]. 北京:高等教育出版社,1990.
    [235] 李翼祺,马素贞. 爆炸力学[M]. 北京:科学出版社,1992.
    [236] 徐艳杰,张楚汉,王光纶,等. 三峡高边坡的爆破荷载确定及动力稳定分析[J]. 水利水电技术,1999,30(5):29–31.
    [237] 郭学彬,肖正学,张志呈. 爆破振动作用的坡面效应[J]. 岩石力学与工程学报,2001,20(1):83–87.
    [238] 黎剑华,张 龙,颜荣贵. 爆破地震波作用下的边坡失稳机理与临界振速[J].矿冶,2001,10(1):11–15.
    [239] 李彰明. 层状结构岩体边坡滑坡分析[J]. 化工矿山技术,1996,25(5):6–8.
    [240] 李彰明,冯 强. 岩质边坡中应力波衰减规律探讨[J]. 岩石力学与工程学报,1996,15(增刊):460–463.
    [241] 中国科学院武汉岩土力学研究所. 黄麦岭磷矿爆破振动监测、声波检测及爆破设计优化报告[R]. 武汉:中国科学院武汉岩土力学研究所,2000.
    [242] 中国科学院武汉岩土力学研究所. 黄麦岭磷化工集团公司采场边坡临时处理措施[R]. 武汉:中国科学院武汉岩土力学研究所,2000.
    [243] 刘艳章. 掏槽法在黄麦岭掘双壁沟爆破中的应用[J]. 化工矿物与加工,2002,31(11):18–20.
    [244] 李俊如,李海波,高建光,等. 黄麦岭采场爆破振动响应研究[J]. 岩石力学与工程学报,2004,23(17):2954–2958.
    [245] 刘亚群,李海波,李俊如,等. 爆破荷载作用下黄麦岭磷矿岩质边坡动态响应的 UDEC 模拟研究[J]. 岩石力学与工程学报,2004,23(21):3659–3663.
    [246] 刘 春. 黄麦岭磷矿边坡岩体抗剪强度参数的随机—模糊取值法研究[J]. 岩石力学与工程学报,2005,24(4):653–656.
    [247] 刘 春,任悦萍. 黄麦岭磷矿采场边坡岩体力学参数的确定[J]. 勘察科学技术,2005,(5):32–34,61.
    [248] 刘亚群,李海波,赵 坚,等. 确定岩质边坡安全阈值的新方法[J]. 爆炸与冲击,2004,24(5):448–452.
    [249] Liu Y Q,Li H B,Zhao J,Li J R,et al. UDEC simulation for the dynamicresponse of a rock slope subject to explosions[J]. International Journal of Rock Mechanics and Mining Science,2004,41(3):474.
    [250] 刘 春,白世伟,王 刚. 黄麦岭磷矿采场边坡稳定性模糊综合评判[J]. 矿冶工程,2002,22(4):21–23.
    [251] 陈占军,朱传云,周小恒. 爆破荷载作用下岩石边坡动态响应的 FLAC3D模拟研究[J]. 爆破,2005,22(4):8–13.
    [252] Liu Y Q,Li H B,Li J R. et al. Study on the dynamic response and progressive failure of a rock slope subjected to explosions[A]. In:Leung C F,Zhou Y X. ed. Rock Mechanics in Underground Construction, Proceedings of the 4th Asian Rock Mechanics Symposium[C]. Singapore:World Scientific,2006,427.
    [253] Zhao J,Li H B,Wu M B,et al. Dynamic uniaxial compression tests on granite[J]. International Journal of Rock Mechanics and Mining Science,1999,36(2):273–277.
    [254] Li H B,Zhao J,Li T J. Triaxial compression tests of a granite at different strain rates and confining pressures[J]. International Journal of Rock Mechanics and Mining Science,1999,36(8):1057–1063.
    [255] Liu Y Q,Li H B. Experimental determination of dynamic tensile properties of a granite[J]. International Journal of Rock Mechanics and Mining Science,2000,37(5):861–866.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700