马桑湾采动滑坡稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在具有滑坡地形地质条件的山体下采矿而诱发的采动滑坡,是山区地表采动损害的主要形式之一。地下采矿诱发滑坡是一个复杂的力学过程,涉及多方面影响因素,具有多学科交叉性和复杂性。预防采动滑坡的研究涉及到采动坡体稳定性的主要影响因素、地表移动变形、覆岩的移动变化及应力应变关系、采动滑坡的形成机理、坡体稳定性预测、坡体的长期稳定性等一系列问题。
     本文以四川金刚煤矿马桑湾顺层滑坡为研究对象,调查了金刚煤矿的地形地貌、区域地质背景、地质构造、矿井生产技术条件、马桑湾滑坡的基本情况;分析了采动滑坡的影响因素,并通过理论分析了逆坡开采对坡体稳定性的影响,同时采用室内相似模拟试验研究逆坡开采过程覆岩及坡体的变形破坏规律;运用FLAC-2D软件对马桑湾采动滑坡进行数值模拟,得到采动后的应力位移变化规律;最后对马桑湾采动滑坡进行稳定性计算与评价,得出影响马桑湾滑坡的影响机理。
     本文主要取得了以下研究成果:
     (1)从理论上分析了逆坡开采对顺层坡体稳定性的影响,分析结果表明,随着开采不断推进滑体稳定性系数不断的减小,当滑体下缘开始达到充分采动下沉,滑体的稳定性系数最小,之后不再变化,此时坡体是最危险的。
     (2)相似模拟试验结果表明,缓倾斜煤层开采覆岩的水平移动值较水平煤层开采要大,在开采沉陷的影响下,岩体不断下沉并向煤层倾角方向移动,从而产生下坡方向的剪应力及水平拉应力,坡顶拉应力较大而形成地表裂缝,坡脚有轻微破坏。
     (3)马桑湾滑坡数值分析结果表明,随着煤层的开采,坡体的应力分布发生较大变化。在坡顶形成拉应力区,坡顶局部拉应力屈服。坡脚压应力及剪应力集中程度明显,并局部发生压剪屈服。
     (4)由开采强度的计算可知,煤层开采为轻微采动,地下采动对坡体的稳定性的影响较小。根据马桑湾地表移动变形资料可知,马桑湾滑坡区采矿影响程度等级为中等强烈。
     (5)马桑湾采动坡体的稳定性计算结果表明,在采动影响下坡体稳定性系数不断降低,当内连煤层开采完后处于基本稳定状态,在降雨的作用下稳定性系数进一步下降,导致了滑坡。
Landslide caused by mining under mountain with topography and geology condition of landslide is one of the main surface damage of underground mining in mountain area.With the interdisciplinary nature and complexity,landslide induced by underground mining is a complex mechanical process involving many factors.Study of landslide prevention induced by mining involves the slope stability of the main mining factors, ground movement and deformation, overburden movement and stress-strain relationship, the mechanism of mining landslide, slope stability prediction, the long-term slope stability and other issues.
     By MaSangWan landslide in sichuan JinGang coal mine as the research object, the topography, regional geology background, geological structure, mine production technology, MaSangWan landslide overview of JinGang coal mine were investigated; the impact factors of mining landslide and the slope stability influenced by inverse slope mining were analysised, the law of deformation and failure of overburden and slope by inverse slope mining based on similar simulation test were studyed;By numerical simulation of MaSangWan landslide,we obtained the displacement and the stress variation after mining; Finally, by stability calculation and evaluation of MaSangWan landslide, we obtained the influence mechanism MaSangWan landslide.
     There main search aehievements are as follows:
     (1) The analysis of slope stability influenced by inverse slope mining show that with the exploitation, slope stability factor continuously decreased, When the slope is beginning to reach full mining subsidence, landslide stability coefficient reach the minimum, after which no changes, at this point the slope is the most dangerous.
     (2) The results of similar simulation test shows that horizontal displacement of overburden in gently inclined seam was larger than in horizontal seam, rock sink and move to the seam dip angle influenced by Mining Subsidence,then produced shear stress and horizontal tensile stress, in slope top, the tensile stress is so large as to generating surface cracks, Slight damage in slope toe.
     (3) Numerical results showed that with coal mining, the slope of the stress distribution changed greatly.In the slope top had a tension stress zone and Local tensile stress yielded.In the slope Toe, stress and shear stress concentration was obvious, and local compression and shear yield.
     (4) From the calculation of the mining strength we can see, coal mining is a minor mining and underground mining on the stability of the slope was less affected.According to the MaSangWan ground deformation data shows that MaSangWan landslide area’s level of influence was medium strong.
     (5) MaSangWan slope stability calculation results show that The slope stability factor reduced by the influence of mining.The slope was in basically stable after the interconnect coal mining,and under the influence of rainfall the stability coefficient declined further that leading to landslide.
引文
[1]汪华斌,李江风,吴树仁.滑坡灾害系统非线性研究进展[J].地球科学进展,2000. 06,Vol.15, No.3:271~276.
    [2]宋振骐,蒋金泉.煤矿岩层控制的重点方向[J].岩土力学与工程学报,1996(15):134-178.
    [3] J.Kwiakek:Ochrona obiektow budowlanych na terenach gorniczych[J].Katowice GIG.1997.06:56~69.
    [4] Speck,R.C.:Large-scale slope movements and their affect on spoil-pile stability in Interior Alaska[J].International Journal of Surface Mining&Reclamation,v7.n4,1993;
    [5] Itiogen,P.S.:Mine access road slope failure:A case study from the Ok Tedi Mine[J].Symposia Series-Australasian Institute of Mining and Metallurgy Oct 1997 p 127-132;
    [6] Yoshida,R.T.:Stability of a flood diversion channel constructed through mine spoil[J].Canadian Geotechnical Soc.1993,:p503-504
    [7] Sidle,R.C.:Stream response to subsidence from underground coal mining in central Utah[J].Environmental Geology 39 3 Jan 2000 Springer-Verlag GmbH&Company KG p279-291
    [8]余学义,等.小宝鼎矿山体建筑物下开采研究报告.西安科技学院,1997。
    [9]田家琦.山体下采煤的地面保护研究报告.西安矿业学院,1993.05:12~33.
    [10]何万龙,等.山区地表移动变形规律研究[J].煤炭学报,1992.12,Vol.17,No.4:1~15.
    [11]余学义,等.柏林煤矿滑坡区高层建筑物下煤层控制开采研究报告,2002.11:32~39.
    [12]许强,黄润秋,殷跃平,等.2009年“6·5”重庆武隆鸡尾山崩滑灾害基本特征与成因机制初步研究[J].工程地质学报,2009,17(4):432–444.
    [13]谢康和,周健.岩土工程有限元分析理论与应用[M].北京:科学出版社,2002
    [14]王泳嘉.离散单元法同拉格郎日元法及其在岩土工程中的应用[J].岩土力学,1995,16(2):1-14
    [15]黄润秋,许强.显式拉格朗日差分分析在岩石边坡工程中的应用[J].岩石力学与工程学报,1995,14(4):346-354
    [16]石根华.数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997
    [17] Shi G H.Simplex integration for manifold method,fem and dda.discontinuous deformation analysis(DDA)and simulations of discontinuous media[J].TSI Press,1996:205-262
    [18]王泳嘉等.离散元法及其在岩土力学中的应用[M].辽宁:东北大学出版社,1991
    [19]魏群.散体单元法的基本理论,数值方法及程序[M].北京:科学出版社,1991
    [20] Cundall P A.A computer model for simulating progressive large scale movements in blocky rock system[J].In:Proc.of the Symposium of the International Society of RockyMechanics[C],Nancy,France,1997:Ⅱ3 8
    [21]卓家寿,赵宁.不连续介质静动力分析的刚体-弹簧元法[J].河海大学学报,1993,21(5):34-43
    [22]殷有泉.固体力学非线性有限元引论[M].北京:北京大学出版社,1987
    [23]董龙雷,闰桂荣.岩土工程中动态离心模型试验技术的应用[J].岩石力学与工程学报,2000,19(6):789-793
    [24]油新华,李晓国.外离心模型试验技术在边坡工程中的应用现状与展望[J].工程地质学报,2000,8(4):442-445
    [25] Goodman R E.Introduction to Rock mechanics[M].New York:John Wiley and Sons,1980
    [26]刘沐宇,冯夏庭.基于神经网络范例推理的边坡稳定性评价方法[J].岩土力学,2005.26(02):193-197
    [27]高永利,张振文,代凤红等.基于人工神经网络的井泉滑坡稳定性[J].辽宁工程技术大学学报,2006.(S2)
    [28]谢全敏,夏元友.危岩块体稳定性的综合评价方法分析力学[J].岩土力学,2002.23(6):775-778
    [29]林立相,徐汉斌.边坡稳定性分析的可靠度方法[J].山地学报,1999.17(3):235~239
    [30]张永荣.岩质高边坡稳定性的可靠性研究[J].勘察科学技术,2001.(3):23~27
    [31]李树森,任光明,左三胜.层状结构岩体顺层斜坡失稳机理的力学分析[J].地质灾害与环境保护,1995,6(2),24-29.
    [32]李新坡,何思明,徐骏.层状岩质边坡临界高度极限分析上限解[J].四川大学学报(工程科学版),2007,39(1),44-47.
    [33]王玉平,曹平.基于弹性理论的顺层边坡溃屈失稳分析[J].西南科技大学学报,2007,22(3),29-32.
    [34]孙强,李厚恩,李雄.基于拱效应的顺层边坡失稳突变模型[J].人民黄河,2007,29(9),79-80.
    [35]赵青,黄质宏,唐晓玲.顺层状岩质边坡的数值模拟分析[J].贵州工业大学学报2007.36(5):59-64
    [36]李维光,楼建国.降雨条件下顺层滑坡影响因素和稳定性分析[J].采矿与安全工程学报,2006.23(4):498-501
    [37]李维光,张继春.地震作用下顺层岩质边坡稳定性的拟静力分析[J].山地学报,2007.25(2):184-199
    [38]郭学彬,张继春,刘泉等.爆破振动对顺层岩质边坡稳定性的影响[J].矿业研究与开发,2006.26(2):77-80
    [39]王佳权.缓倾状顺层岩石边坡冰胀作用失稳初探地震[J].贵州省岩石力学与工程学,2008.年学术年会论文集,2008.46-50
    [40]孙书伟,朱本珍,张忠平.顺层高边坡开挖松动区的数值模拟研究[J].铁道学报,2008.30(5):74-79
    [41]石豫川,冯文凯等.国道108线某段缓倾角顺层边坡变形破坏机制物理模拟研究[J].成都理工大学学报,2003.30(4):35-40
    [42]冯文凯,石豫川等.缓倾角层状高边坡变形破坏机制物理模拟研究[J].中国公路学报,2004.17(2):32-36
    [43]孙书伟,朱本珍,马惠民等.典型顺层高边坡工程病害的地质力学模型试验研究[J].岩土工程学报,2008.30(9):1349一1355
    [44]孙国富,刘维林,陶连金.陡倾外层状岩石边坡的破坏机制与开挖模拟[J].岩土工程学报,2003,25(6),697-701.
    [45]夏熙伦,徐平,丁秀丽.岩石流变特性及高边坡稳定性流变分析[J].岩石力学与工程学报,1996,15(4),312-322.
    [46]肖克强,周德培.软岩高边坡施工变形的实验研究[J].四川建筑,2003,23(5),57-60.
    [47]陈月娥,吴芝兰,张连弟.金川露天矿边坡岩体移动和变形的光弹性软材料模拟实验研究[J].工程地质学报,1997,5(1),91-96.
    [48]冯君,周德培,李安洪.顺层岩体边坡开挖稳定性研究[J].岩石力学与工程学报,2005,24(9),1474-1748.
    [49]冯文凯,石豫川,柴贺军.缓倾角层状高边坡变形破坏机制物理模拟研究[J].中国公路学报,2004,17(2),32-36.
    [50]肖世国,周德培.开挖边坡松弛区的确定与数值分析方法[J].西南交通大学学报,2003,38(3),318-321.
    [51]龚文惠,王平.顺层岩体路堑边坡稳定性的弹塑性有限元模拟分析[J].岩土力学,2006,27(7),1114-1118.
    [52]江学良,曹平,杨惠.层状岩质边坡开挖过程的有限元模拟[J].岩土力学,2006,27(11),1935-1940.
    [53]夏熙伦,周火明,盛谦.三峡工程船闸高边坡岩体松动区及其性状[J].长江科学院院报,1999,16(4),1-5.
    [54]邓建辉,李悼芬,葛修润.岩石边坡松动区与位移反分析[J].岩石力学与工程学报,2001,20(2),171-174.
    [55]何万龙,等.山区地表移动变形规律研究[J].煤炭学报,1992.12,Vol.17,No.4:1~15.
    [56]颜容贵.地基开采沉陷及其地表建筑[M].北京:冶金工业出版社,1995:126~135.
    [57]田家琦.山体下采煤的地面保护研究报告[J].西安矿业学院,1993.05:12~33.
    [58] X.L.Yao,D.J.Reddish,B.N.Whittaker:No-linear finear finite element analys of surface subsidence arisingfrom inclined seam extraction,Int.J.Rock Mech[J].Min Sci&Geomech.Abstr. 1993,Vol.30,No.4:193-197
    [59]于广明.矿山开采沉陷的非线性理论与实践[M].煤炭工业出版社,1998,3.
    [60]李文秀,杨少冲,陈二忠等.高陡山区开采自然坡失稳分析的神经网络方法[J].岩土力学,2006,27(9),1563-1566.
    [61]陈仕阔,杨天鸿,张华兴.平朔安家岭露天矿地下采动条件下的边坡稳定性[J].煤炭学报,2008,33(2),148-152.
    [62]王泰书.陕西矿区滑坡特性的研究[J].陕西煤炭,1992, (2).
    [63]汤伏全.采动滑坡的机理分析[J].西安矿业学院学报,1998(3):32-36.
    [64]汤伏全,梁明.地下开采影响下山体的稳定性分析与评价[J].年矿山测量,1995,23(1):23-26.
    [65]房定旺.采空区上覆山体的滑坡机理及其工程中的应用[J].中国矿业,1994,3(2):32-37.
    [66]于根.阳泉矿区采动地表滑移对重大工业设施的危害及其治理[J].岩石力学与工程学报,1988(2):127-136.
    [67]汤伏全.采动滑坡的机理分析[J].西安矿业学院学报,1988 (2).
    [68]田家琦,汤伏全等.山体下采煤的地面保护研究报告[J].西安矿业学院,1993(5).
    [69]田家琦,梁明.开采滑坡的特点分析[J].西安矿业学院,1993 (10).
    [70]李俊,刘汉超.地下采煤的缓倾边坡变形机制[J].地质灾害与环境保护, 1998,9(3):17-24.
    [71]孙世国,王思敬.地下与露天复合采动效应下边坡破坏机制的数值分析[J].有色金属设计, 1999,26(1):11-14.
    [72] Chau,K.T.:Onset of natural terrain landslides modelled by linear stability analysis of creeping slopes with a two-state variable friction law[J].International Journal for Numerical and Analytical Methods in Geomechanics 23 15 1999 John Wiley&Sons Ltd p 1835-1855.
    [73] Cundari,Thomas R:Modeling lanthanide coordination complexes.Comparison of semiempirical and classical methods[J].Journal of Chemical Information and Computer Sciences 38 3 May-Jun 1998 p 523-528.
    [74] Drucker H,Cun Y.L:Improving generalization using double back propagation[J].IEEE Truns,no Neural Network,1992,3(6):991~997.
    [75] Martynyuk,A..A. : A new trend in the analysis of nonlinear systems[J].Sverhtverdye Materialy,1994,n,5-6:Mezhdunarodnaya Kniga p 3-17.
    [76]胡海峰,康建荣.基于有限元的采动坡体稳定性计算[J].太原理工大学学报, 2000,31(4).
    [77]康建荣,何万龙,胡海峰.山区采动地表变形及坡体稳定性分析[M].中国科学技术出版社, 2002 .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700