镇江金山湖及附近水体浮游生物群落结构及其与环境因子关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镇江金山湖是长江三角洲地区典型的平原小型湖泊,我们于2004年12月至2005年11月对镇江金山湖及附近水体进行了7次采样调查,共设置样点10个,其中5个位于金山湖,5个位于周边水体。我们对镇江金山湖及附近水体的浮游生物群落结构组成及变化规律作了较细致的调查研究,利用多样性指数分析了浮游生物的多样性,采用HCA和PCA等数量生态学分析方法分析了浮游生物群落结构的分布格局,利用回归和CCA分析了浮游生物与水环境因子间的相互关系,并对水体的富营养化进行了评价,为今后该水体的生态修复工作提供了本底资料,也为研究该水体的生态系统结构及能量流动打下基础。
     1.浮游植物共鉴定到302分类单位,包括253种45变种4变型,隶属于8门99属,年平均生物量为2989.32万个/升,绿藻种类及数量最多,隐藻和蓝藻数量也较多。优势种主要有尖尾蓝隐藻、小球藻及微小裂面藻等13种。在种类的季节变化上,春季最少,冬季最多,各个样点的年变化趋势基本同整体变化。数量生物量的季节变化总体趋势为夏季最高,春季最低。叶绿素a的年平均浓度是96.40mg/m~3,其水平及季节分布情况同浮游植物生物量一致。对浮游植物进行了4种生物多样性指数的分析,均为周边池塘的平均水平稍高于金山湖。
     利用HCA和PCA对浮游植物群落结构分布格局进行了分析,结果是将10个样点分为3组,组1包括样点Ⅰ、Ⅱ和Ⅵ,组2包括样点Ⅲ、Ⅳ和Ⅴ,组3包括样点Ⅶ、Ⅷ、Ⅸ和Ⅹ。
     2.浮游动物共鉴定到92种属,其中轮虫有68种属,枝角类有22种属,桡足类只发现2种,浮游动物的平均数量76100.95个/升,重量生物量平均为71.52mg/l,其中轮虫在种类、数量及重量生物量上均占有绝对优势,分别为73.91%、98.6%及62.49%,尤其是以富营养型湖泊出现较多的臂尾轮虫居多。种类组成的季节变化趋势同浮游植物,冬春季最低,秋季最高。
     优势种10种,包括一种裸腹溞及9种轮虫,其中也是常见种的是角突臂尾轮虫、裂足臂尾轮虫、裂痕龟纹轮虫、暗小异尾轮虫、长三肢轮虫及多肢轮虫等6种。
     我们对浮游动物群落结构分布格局进行了HCA和PCA分析,结果也是将10个样点分为3组,其中组1包括金山湖的5个样点,组2包括样点Ⅵ、Ⅸ及Ⅹ,
Jinshan Lake is a typical small plain lake of Yangtze River delta area in Zhenjing City. We investigated the plankton, physical and chemical factors in Jinshan Lake and its adjacent waters for 7 times from Des. 2004 to Nov. 2005. We set 10 sample sites, among which 5 ones were in Jinshan Lake and the other 5 ones were in the adjacent waters. A detailed research on the composition and the changing rule of community structure of the plankton was taken. 4 diversity indexes were used to analyze the diversity of phytoplankton. Hierarchical Cluster Analysis (HCA) and Principal Components Analysis (PCA) were used to analyze the distribution patterns of the plankton. Multiple regression and Canonical Correspondence Analysis (CCA) were used to analyze the correlation of plankton species with environment factors. The nutrition status of the water was also been evaluated. What we did could provide background data for the ecological restoration of the water and provide the foundation for studying the ecological system structure and energy flow in Jinshan Lake.
    1. 302 taxa of phytoplankton were identified, which belonged to 99 genera of 8 phyla and included 253 species, 45 variations, 4 forms. The year's average biomass was 2989.32 ×10~4 ind/1. The biomass and the number of species of Chlorophyta ranked the first. There were 13 dominant species which included Chroomonas acuta Uterm., Chlorella vulgaris Beij. and Merismopedia tenuissima Lemm. and so on. The amount of species was the most in winter and the fewest in spring, and the trend of each site was similar to the whole. The biomass of phytoplankton is the best in summer and the fewest in spring. The average concentration of the chlorophyll a of a year is 96.40mg/m~3 and the highest value was present in summer. We calculated 4 diversity indexes, and the result showed that the level of Jinshan Lake was a little lower than adjacent waters.
    10 sites were divided into 3 teams by analyzing phytoplankton community structure distribution patterns.
    2. 92 species and genera of zooplankton were identified, among which there were Rotifera 68 species and genera, Cladocera 22 species and genera and Copepoda only 2 species. The average biomass and weight of zooplankton were 76100.95 ind/l and 71.52mg/l, of which Rotifera had abosluted dominance, especially Brachionus sp. which offen appears in the trophic lakes. The seasonal changing trend of specific composition and the biomass of the zooplankton were similar to the phytoplankton, and the amount
引文
[1]马为民,孙莉,钱志萍,等.三种水生高等植物对铜绿微囊藻生长的影响[J].上海师范大学学报(自然科学版),2003,32(1):101-102
    [2]王全喜,何群,包文美.东北淡水藻类的研究Ⅱ黑龙江省水网藻科初报[J].哈尔滨师范大学自然科学学报,1990,6(3):71-81
    [3]王全喜,吕淑慧,包文美.东北淡水藻类的研究Ⅰ栅藻属Scenedesmus[J].哈尔滨师范大学自然科学学报,1991,(7生物专辑):99-112
    [4]王国祥,成小英,濮培民.湖泊藻型富锗养化控制技术、理论及应用[J].湖泊科学,2002,14(3):273-282
    [5]王明翠,刘雪芹,张建辉.湖泊富营养化评价方法及分级标准[J].中国环境监测,2005,18(5):47-49
    [6]王洪道,顾丁锡,刘雪芬,等.中国湖泊水资源[M].农业出版社,1987
    [7]王焕校.污染生态学[M].北京:高等教育出版社,2000
    [8]史丹.我国湖泊富营养化问题及防治对策[J].资源开发与市场,2005,21(1):17,18,27
    [9]卢亚芳,黄永春,黄世玉,等.厦门杏林湾水库浮游植物密度与生态因子的灰关联分析[J].台湾海峡.2002,21(2):209-216
    [10]李小平.美国湖泊富营养化的研究和治理[J].自然杂志,2002,24(2):63-68
    [11]李凡修,辛焰,陈武.集对分析用于湖泊富营养化评价研究[J].重庆环境科学,2000,22(6):10-11,16
    [12]刘冬燕,宋永昌,陈德辉.苏州河叶绿素a动态特征及其与环境因子的关联分析[J].上海环境科学,2003,22(4):261-265
    [13]刘红.水体富营养化和鱼药对浮游动物影响的研究(博士学位论文).中国科学院水生生物研究所,2003
    [14]刘连成.中国湖泊富营养化的现状分析[J].灾害学,1997,12(3):61-65
    [15]刘建康.东湖生态学研究(一)[M].北京:科学出版社,1990
    [16]刘建康.高级水生生物学[M].北京:科学出版社,1999
    [17]刘春光,王雯,庄源益.湖泊富营养化控制理论与技术[J].干旱环境监测,2004a,18(1):16-19
    [18]刘春光,金相灿,孙凌,等.城市小型人工湖围隔中生源要素和藻类的时空分布[J],环境科学学报,2004b,24(6):1039-1045
    [19]刘滨谊,张琰轶.景观规划设计中的城市湖泊保护[J],中国园林,2003,5:63-64,68
    [20]刘静.密云水库浮游生物与富营养化控制因子研究(硕士学位论文).首都师范大学,2004
    [21]毕列爵,胡征宇,凌元杰,等.中国淡水藻志 第八卷 绿球藻目(上)[M].北京:2004
    [22]齐孟文,刘凤娟.城市水体富营养化的生态危害及其防治措施[J].环境科学动态,2004(1):44-46
    [23]孙文浩,俞子文.凤眼莲无菌苗培养及其克藻效应[J].植物生理学报,1990,16(3):305-309
    [24]孙文浩,俞子文,郭克勤,等.凤眼莲克藻化合物的生物检测[J].植物生理学通讯,1991,27(6):433-436[25]孙文浩,余叔文.相生相克效应及其应用[J].植物生理通讯,1992,28(2):81-87
    [26]孙铁珩,周启星,李培军.污染生态学[M].北京:科学出版社,2001(11):194-198
    [27]杨广利.洪泽湖富营养化状态调查及防治技术研究初探(硕士学位论文).中国海洋大学,2003
    [28]杨东方,谭雪静.铁对浮游植物生长影响的研究进展[J].海洋科学,1999(3):48-49
    [29]何志辉,张建国,姜宏.海水盐度对大型潘存货和内禀增长率的影响[J].大连水产学院学报,1996,11(3):1-7
    [30]何池全,叶居新.石菖蒲克藻效应研究[J].生态学报,1999a,19(5):754-758
    [31]何池全,赵魁义,叶居新.石菖蒲净化富营养化水体的研究[J].南昌大学学报(理科版),1999b,23(1):73-76
    [32]华锦彪,宗志祥.洋河水库“水华”发生的实验研究[J].北京大学学报(自然科学版),1994,30(4):476-484
    [33]朱斌,陈飞星.利用水生植物净化富营养化水体的研究进展[J].上海环境科学,2002,21(9):564-567
    [34]苏秋克,蒋敬业,姜益善,等.武汉城市湖泊环境地球化学研究[J],安全与环境工程,2003,10(3):20-23
    [35]吴国良,钟泽璞,白克智,等.光质对满江红鱼腥藻生长和发育的影响[J].植物学报,1982,24(1):46-53
    [36]吴洁,虞左明.西湖浮游植物的演替及富营养化治理措施的生态效应[J].中国环境科学,2001,21(6):540-544
    [37]吴晓辉,刘家寿.浮桥河水库浮游植物的多样性及其演变[J].长江流域资源与环境,2003,12(3):218-222
    [38]张尧庭,方开泰.多元统计分析引论[M].科学出版社,1982
    [39]张金屯.植被数量生态学方法[M].北京:中国科学技术出版社,1995
    [40]张爱琴,姜泉,谢小军,等.不同光质对钝顶螺旋藻生长和放氧放氢活性的影响[J].植物生理学通讯,1989(4):23-26
    [41]张晟,李崇明,魏世强,等.三峡库区富营养化评价方法探讨[J].西南农业大学学报(自然科学版),2004,26(3):340-343
    [42]汪常青,吴永红,刘剑彤.武汉城市湖泊水环境现状及综合整治途径[J].长江流域资源与环境,2004,5:499-502
    [43]陈立侨,刘影,杨再福,等.太湖生态系统的演变与可持续发展[J].华东师范大学学报(自然科学版),2003,(4):99-106
    [44]陈雪梅.温度对武汉东湖近邻剑水蚤发育及繁殖的影响[J].水生生物学集刊,1984,8(4):419-426
    [45]沈银武,朱运芝,刘永定.不同光质对中华植生藻的影响[J].水生生物学报,1999,23(3):285-287
    [46]沈韫芬,章宗涉,龚循矩,等.微型生物监测新技术[M].中国建筑工业出版社,1990
    [47]林小苹,黄长江,陈旭明.粤东柘林湾浮游植物与生态因子的灰关联2回归分析[J].数学的实践与认识,2005,35(1):77-82
    [48]范成新,羊向东.江苏湖泊富营养化特征、成因及解决途径[J].长江流域资源与环境,2005,14(2):218-223
    [49]谷孝鸿,胡文英,李宽意.低湿洼地鱼类养殖对渔业水质调控的试验研究[J].自然资源??学报,2000,15(B06):91-101
    [50]金相灿,刘树坤,章宗涉,等.中国湖泊环境第一册[M].北京:海洋出版社,1995
    [51]金相灿,刘鸿亮,屠消瑛,等.中围湖泊富营养化[M].北京:中国环境科学出版社,1990
    [52]郑重著.浮游生物学概论[M].北京:科学出版社,1964
    [53]赵文,董双林,李德尚,等.氯化物水型盐碱池塘浮游植物的季节演替[J].中国水产科学,2000,7(2):43-50
    [54]赵文,董双林,郑伟刚,等.罗非鱼对盐碱池塘围隔浮游生物群落的影响[J].动物学研究,2000,21(2):108-114
    [55]赵文,董双林,任日达,等.鲢放养和施肥对盐碱池塘围隔生态系统浮游生物群落的影响[J].应用生态学报,2001,12(2):299-303
    [56]赵生才.我国湖泊富营养化的发生机制与控制对策[J].地球科学进展,2004,19(1):138-140
    [57]赵金香,王兆林,刘艳青.浅析水体富营养化[J].环境科学动态,2003,1:28-30
    [58]顾宗濂.中圈富营养化湖泊的生物修复[J].农村生态环境,2002,18(1):42-45
    [59]姚宜斌,陶本藻,施闯.稳健回归分析及其应用研究[J].大地测量与地球动力学,2002,22(2):16-19
    [60]洪楠,侯军.SAS for Windows统计分析系统教程[M].电子工业出版社,2001
    [61]胡国臣,张清敏.环境微生物学[M].天津科技翻译出版公司,2002
    [62]胡鸿钧,李尧英,魏印心,等.中国淡水藻类[M].上海:科学技术出版社,1980
    [63]施之新,王全喜,谢树莲,等.中国淡水藻志 第六卷 裸藻门[M].北京:科学出版社,1999
    [64]施成熙,汪宪柜,窦鸿身,等.中国湖泊概论[M].北京:科学出版社,1989
    [65]俞子文,孙文浩,郭克勤,等.几种水生高等植物的克藻效应[J].水生生物学报,1992,16(1):1-7
    [66]段焕丰,俞国平,俞海宁.湖泊富营养化评价方法的探讨[J].苏州科技学院学报(工程技术版),2005,18(2):53-57
    [67]饶群,丙孝芳.富营养化机理及数学模拟的研究进展[J].水文,2001,21(2):15-24
    [68]郭天印,李海良.主成分分析在湖泊富营养化污染程度综合评价中的应用[J].陕西工学院学报,2002,18(3):63-66
    [69]秦伯强.长江中下游浅水湖泊富营养化发生机制与控制途径初探[J].湖泊科学,2002,14(3):193-202
    [70]袁峻峰,章宗涉.金鱼藻对藻类的生化干预作用[J].生态学报,1993,13(1):45-50
    [71]耕耘.湖泊富营养化成因及防治对策[J].渔业致富指南,2005,16:11-13
    [72]黄玉瑶.内陆水域污染生态学—原理与应用[M].北京:科学出版社,2001
    [73]黄邦钦,洪华生,林学举,等.台湾海峡微微型浮游植物的生态研究Ⅰ.时空分布及其调节机制[J],海洋学报,2003,25(4):72-82
    [74]黄祥飞,胡春英,伍焯田.武汉东湖的轮虫[J].水生生物学报,1985,9(2):129-143
    [75]章宗涉,黄祥飞.淡水浮游生物研究方法[M].北京:科学出版社,1991
    [76]谢雄飞,肖锦.水体富营养化评述[J].四川环境,2000,19(2):22-25
    [77]彭俊杰,李传红,黄细花.城市湖泊富营养化成因和特征[J],生态科学,2004,23(4):370-373
    [78]蔡文贵,李纯厚.GIS支持下考洲洋养殖水域浮游植物数量的时空分布及其与营养盐的??相关性研究[J].生态学杂志,2005,24(5):513-517
    [79]魏印心.中国淡水藻志 第七卷 绿藻门 双星藻目中带鼓藻科 鼓藻目鼓藻科 第1册[M].北京:科学出版社,2003
    [80]Ahlgren G. Phosphorus as regulating factor relative to other environmental factors in cultured algae[J]. Hydrobiologia, 1988, 170:191-210
    [81]A Kadri ETUN, et al.. Seasonal Distribution of Phytoplankton in Orduzu Dam Lake (Malatya, Turkey)[J]. Turk J Bot, 2004, 28:279-285
    [82]Aleya L, Desmolles F, Michard M, et al.. The deterministic factors of the Microcysitis aeruginosa blooms over a biyearly survey in the hypereutrophie reservoir of Villerest (Roanne, France)[J]. Arch Hydrobiol (Suppl), 1994, 4:489-515
    [83]Anderson G, Berggern G, Cronberget H, et al.. Effects of planktivorous and benthivorous fish on organisms and water chemistry in eutrophic lakes[J]. Hydrobiologia, 1978, 59:9-15
    [84]Andronilova I N. zooplankton characteristics in monitoring of Lake Ladoga[J]. Hydrobiologia, 1996, 322:173-179
    [85]Anna-Liisa Holopainen, Riitta Niinioja, Anita Ramo. Seasonal succession, vertical distribution and long term variation of phytoplankton communities in two shallow forest lakes in eastern Finland[J]. Hydrobiologia, 2003:237-245
    [86]Bern L. Particle selection over a broad size range by crustacean zooplankton[J]. Freshwat. Biol., 1994, 32:105-112
    [87]Bern L. Postcapture particle size selection by Daphnia cucullata (Cladoeera)[J]. Limno-Oceanogr., 1990, 35(4): 923-926
    [88]Blindow I, Andersson G, Haregy A, et al. Long-term pattern of alternative stable states in two shallow eutrophic lakes[J]. Freshw Biol, 1993, 30 (1): 159-167
    [89]Brettum P. Changes in the volume and composition of phytoplankton after experimental acidification of a humic lake[J]. Environment Internaional, 1996,22:619-628
    [90]Bulgakov N G, Levich A P. The nitrogen: phosphorus ratio as a factor regulating phytoplankton community structure[J]. Arch. Hydrobiol., 1999, 146, 1:3-22
    [91]Chen F C, Xie P. The effects of fresh and decomposed Microcystis aeruginosa on cladocerans from a subtropic Chinese lake[J]. J. Freshwat. Ecol., 2003, 18(1): 97-104
    [92]Dodson S I, Silva-Briano S. Crustacean zooplankton species richness and associations in reservoirs and ponds of Aguascalientes State, Mexico[J]. Hydrobiologia, 1996, 325:163-172
    [93]Falkowski P G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO sub (2) in the ocean[J]. Nature, 1997, 387:272-275
    [94]Findlay D L, Kasian S E M. Response of a phytoplankton community to controlled partial recovery from experimental acidification[J]. Can. J. Fish. aquat. Sci., 1991, 48:1022-1029
    [95]Giliwcz Z. M., Pijanowska, J. The role of predation in zooplankton succession[J]. In Sommer U. (ed.): Plankton Ecology. Springer-Verlag. 1989:253-296
    [96]Haertel L. Nutrient limitation of algal standing crops in shallow prairie lakes[J]. Ecology, 1976, 57:664-678
    [97]Hanazato T. Interrelations between Microcystis and cladocera in the highly eutrophic Lake Kasumigaura, Japan[J]. Int. Revue ges. Hydrobiol., 1991, 76(1): 21-36
    [98]Harper D. Eutrophication of freshwaters: principles, problems and restoration[M]. Chapaman??and Hall, London, 1992:120-127
    [99]Hecky R E, Kilham P. Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment[J]. Limnol. Oceanogr., 1988, 33(4): 796-822
    [100] Holm N P, Ganf G G, Shapiro J. Feeding and assimilation rates of Daphnia pulex fed Aphanizomenon flos-aquae[J]. Limnol. Oceanogr., 1983, 28(4): 677-687
    [101] Homstrom E. Phytoplartkton in 63 limed lakes in comparison with the distribution in 500 untreated lakes with varying pH[J]. Hydrobiologia, 2002, 470:115-126
    [102] Homstrom E, Ekstrom C, Froberg E, et al.. Plankton and Chemical-Physical Development in six Swedish West Coast Lakes under Acidic and Limed Conditions[J]. Can. J. Fish. aquat. Scj., 1993, 50:688-702
    [103] Huszar V L, Caraco N F. The relationship between phytoplankton composition and physical-chemical variables: a comparison of taxonomic and morphological-functional descriptors in six temperate lakes[J]. Freshwat. Biol., 1998, 40:679-696
    [104] Izaguirre I, OOFarrell I, Tell G. Variation in phytoplankton composition and limnological features in a water-water ecotone of Lower Parana Basin (Argentina)[J]. Freshwater Biology, 2001, 46:63-74
    [105] James M R, Forsyth D J. Zooplankton-phytoplankton interactions in a eutrophic lake[J]. J. Plankton Res., 1990, 12(3): 455-472
    [106] JΦ gensen S E. Applieatioin of Ecology in Environmental Management[M]. New York: Elsevier Scientitic Publishing, 1983:227-279
    [107] Kangro K, Laugaste R, Noges P, et al.. Long-term Changes and Seasonal Development of Phytoplankton in a Strongly Stratified, Hypertrophic Lake[J]. Hydrobiologia, 2005, 547 (1-3): 91-103
    [108] Kormarek. J. & Fott, B. Chlorococcales, In Huber-Pestalozzi, G.(ed.), Das phytoplankton des Susswassers 7/1[M]. Stuttgart: E. Schweizerbart' sche Vedagsbuchhandlung, 1983
    [109] Kotut K, Krienitz L, Muthuri F M. Temporal changes in phytoplankton structure and composition at the Turkwel Gorge Reservoir, Kenya[J]. Hydrobiologia, 1998, 368:41-59
    [110] Lathrop R C. Evaluation of whole-lake nitrogen fertilization for controlling blue-green algal bloom in a hypereutrophic lake[J]. Can. J. Fish. Aqua Sci. 1988, 45:2061-2075
    [111] Levine S N, Schindler D W. Influence of nitrogen to phosphorus supply ratios-and physicochemical conditions on cyanobacteria and phytoplankton species composition in the experimental lakes Area, Canada[J]. Can. J. Fish. Aquat. Sci., 1999, 56:451-466
    [112] Lin C K. Phytoplankton succession in a Eutrophic lake with special reference to blue-green algal blooms[J]. Hydrobiologia, 1972, 39(3): 321-334
    [113] Lund JWG. The Ecology of the Freshwater Phytoplankton[J]. Biological Reviews, 1965, 40:231-293
    [114] Lynch M, Shapiro J. Predation, enrichment, and phytoplankton community structure[J]. Limnol. Oceanogr., 1981, 26(1): 86-102
    [115] McCarthy J J, Wynne D, Berman T. The uptake of dissolved nitrogenous nutrients by Lake Kinnert (Israel) microplankton[J]. Limnol. Oceanog., 1982, 27:673-680[116] Melack J M., Kilham P, Fisher T R. Response of phytoplankton to experimental fertilization with ammonium and phosphate in an African soda lake[J]. Oecologia, 1982, 52: 321-326
    [117] Mitsch W J, Reeder B C, Klarer D M. The role of wetlands in the control of mutrients with a case study of western lake Erie[M]. In: Mitah W J, Jorgensen S E, eds. Ecological Engineering, New York: J. Wiley & Sons, 1989:129-157
    [118] Moisan J R, Moisan T A, Abbot M R. Modelling the effect of temperature on the maximum growth rates of phytoplankton populations[J]. Ecological Modelling, 2002, 153: 197-215
    [119] Mosisch TD, Bunn SE, Davies PM & Marshall CJ. Effects of Shade and Nutrient Manipulation on Periphyton Growth in a Subtropical Stream[J]. Aquatic Botany, 1999, 64: 167-177
    [120] Muscutt A D, Harris G L, Baily S W, et al. Bufferzones to improve water quality: a review of their potential use in UK agriculture[J]. Ecosystem and Environment, 1993, 45: 59-77
    [121] Nalewajko C, Murphy T P. Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan: an experimental approach[J]. Limnology, 2001, 2:45-48
    [122] Nelson N B, Prezelin B B. Chromatic light efects and physiological modeling of absorption properties of Heterocapsa pygmaea (=Clenodinnan sp.)[J]. Mar. Ecol. Prog. Ser., 1990, 63:37
    [123] Nilssen J P. Tropical lake-functional ecology and future development: the need for a process-orientated approach[J]. Hydrobiologia, 1984,113: 231-242
    [124] Norberg J, DeAngelis D L. Temperature effects on stocks and stability of a phytoplankton-zooplankton model and the dependence on light and nutrients[J]. Ecol Modelling, 1997, 95:75-86
    [125] Oliver R, Ganf G G. Freshwater blooms[M]. In whitton, B. A. and Pott, M (eds), The Ecology of Cyanobacteria, 2000:149-194
    [126] Pace M L. Zooplankton community structure, but not biomass, influences the phosphorus-chlorophyll-a relationship[J]. Can. J. Fish. Aquat. Sci, 1984, 41:1089-1096
    [127] Paterson M J, Findlay D L, Salki A G, et al.. The effects of Daphnia on nutrient stoichiometry and flamentous cyanobacteria: a mesocosm experiment in a eutrophic lake[J]. Freshwat. Biol., 2002,47:1217-1233
    [128] Pearl H W, Fulton R S, Moisander P H. Harmful freshwater algal blooms, with an emphasis on cyanobacteria[J]. The Scientific World, 2001, 1:76-113
    [129] Péter B. Management of pond ecosystems and trophic webs. Aquaculture, 1995, 129: 373-386
    [130] Smith V H. Nutrient dependence of primary productivity in lakes[J]. Limnol. Oceanogr., 1979, (24): 1051-1064
    [131] Philips E J, Badylak S, Lynch T C. Blooms of the picoplanktonic cyanobacterium Synechococcus in Florida Bay, a subtropical inner-shelf lagoon[J]. Limnol. Oceanogr, 1999, 44:1166-1175[132] Phillips G L, Eminson D, Moss B. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters[J]. A quat Bot, 1978, 4 (2): 103-126
    [133] Pinel-Alloul B, Verrault G, Vigneault Y. Phytoplankton in Quebec Lakes: Variation with Lake Morphon and with Natural and Anthropogenic Acidification[J]. Can. J Fish. aquat. Sci.,1990, 47:1047-1057
    [134] Pollingher U, Kaplan B, Berman T. The impact of iron and chelators on Lake Kinneret phytoplankton[J]. Plankton-Res., 1995, 17:1977-1992
    [135] Porter K G. Selective grazing and differential digestion of algae by zooplankton[J]. Nature, 1973, 244:179-180
    [136] Reynolds C S. Phytoplankton periodicity: the interactions of form, function and environmental variability[J]. Freshwat. Biol., 1984, 14:111-142
    [137] Reyolds C S. The ecology of freshwater[M]. Cambridge: Cambridge University Press, 1984
    [138] Rhew K, Ochs C. Spatial patterns in autotrophic picoplankton abundance in a reservoir examined using microcosm experiments[J]. Internat: Rev. Hydrobiol, 2000, 85:395-412
    [139] Richardson TL, Gibson CE, Heaney SI. Temperature, Growth and Seasonal Succession of Phytoplankton in Lake Baikal, Siberia[J]. Freshwater Biology, 2000, 44:43-440
    [140] Schefer M S, Rinaldi A, Gragnani L R, et al.. On the dominance of filamentous cyanobacteria in shallow, turbid lakes[J]. Ecology, 1997, 78:272-282
    [141] Schindler D. Evolution of phosphorus limitation in lakes[J]. Science, 1977, 195: 260-262
    [142] Semina H J. The size of phytoplankton cells in the Pacific Ocean. Int. Revue. Ges. Hydrobiol., 1972, 57:177-205
    [143] Shapiro J. Blue-green dominance in Lakes: The Role and Management significance of pH and CO_2[J]. Int. Rev. ges. Hydrobiologia, 1984, 69:765-780
    [144] Shefer M, Rinaldi S, Gragnani A, et al. On the dominance of filamentous cyanobacteria in shallow, turbid lakes[J]. Ecology, 1997, 78:72-282
    [145] Siegfried C A. Dominance by blue-green algae in an oligotrophic lake: Theinteraction between nutrient availability and trophic relations in structuring phytoplankton community[M]. In: Lake and reservoir management: Practical implications. N. Amer. Lake Managem. Soc., Merrifield, Va, 1985:108-112
    [146] Simon SCH, Hildrev AG. Patterns in the Epilithic Community of a Lake Littoral[J]. Freshwater Biology, 1998, 39:477-492
    [147] Smith D W, Cooper S D. Competition among cladocera[J]. Ecology, 1982, 63: 1004-1015
    [148] Smith V H. Nutrient dependence of primary productivity in lakes[J]. Limnol. Oceanogr., 1979, 24:1051-1064
    [149] Smith V H. Low nitrogen to phosphorus ratio favors dominance by blue green algae in lake phytoplankton[J]. Science, 1983, 22:669-670
    [150] Sommer U, Gliwicz Z M, Lampert W, et al.. The PEG-model of seasonal succession of planktonic events in fresh waters[J]. Arch. Hydrobiol., 1986,106(4): 433-471
    [151] Takamura N, Otsuki A, Aizaki M, et al.. Phytoplankton species shift accompanied by??transition from nitrogen dependence to phosphorus dependence of primary production in Lake Kasumiguara, Japan[J]. Arch. Hydrobiol., 1992, 124:129-148
    [152] Takeda S. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters[J]. Nature, 1998, 393:774-777
    [153] Temponeras M, Kristiansen J, Moustaka-Gouni M. Seasonal variation in phytoplankton composition and physical-chemical features of the shallow Lake Doirani, Macedonia, Greece[J]. Hydrobiologia, 2000, 424:109-122
    [154] Tilman D, Kiesling, R L. Freshwater algal ecology: taxonomic tradeoffs in the temperature dependence of nutrient competitive abilities.-In: M. J. Klug & C. A. Reddy, eds, Current Perspective in Microbial Ecology, proceedings of the 3rd International Symposium on Microbial Ecology, 1984
    [155] Tilman D, Kiesling R, Sterner R, et al.. Green, blue-green and diatom algae: Taxonomic differences in competitive ability for phosphorus, silicon and nitrogen[J]. Arch. Hydrobiol., 1986, 106:473-485
    [156] Vanni M J, Temte J. Seasonal patterns of grazing and nutrient limitation of phytoplankton in a eutrophic lake[J]. Limnol. Oceanogr., 1990, 35:697-709
    [157] Vincent W F, Wurtsbaugh W, Vincent C L, et al.. Seasonal dynamics of nutrient limitation in a tropical high-altitude lake (Lake Titicaca. Peru-Bolivia): Application of physiological bioassays[J]. Limnol. Oceanogr., 1984, 29:540-552
    [158] Watson S B, MeCauley E, Downing J A. Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status[J]. Limnol. Oceanogr., 1997, 42:487-495
    [159] Work K A, Havens K. E. Zooplankton grazing on bacteria and cyanobacteria in a eutrophic lake[J]. J. Plankton Res., 2003, 25(10): 1301-1306
    [160] Wu JT, Chou JW. Dinoflagellate Associations in Feitsui Reservoir, Taiwan[J]. Botanical Bulletin of Academica Sinica, 1998, 39:137-145
    [161] Xie L Q, Xie P, Tang H J. Enhancement of dissolved phosphorus release from sediment to lake water by Microcystis blooms-an enclosure experiment in a hyper-eutrophic, subtropical Chinese lake[J]. Enviromental Pollution, 2003, 122:391-399
    [162] Yan N. Phytoplankton community of an acidified, heavy metal-contaminated lake near Sudbury, Ontario: 1973-1977[J]. Wat. Air Soil Polut., 1979, 11: 43-55
    [163] Yoshiyama Konel, Nakajima Hisao. Catastrophic Transition in Vertical Distributions of Phytoplankton: Alternative Equilibria in a Water Column[J]. Journal of Theoretical Biology; 2002, 216(4): 397-408
    [164] Yu L, Tang S, Chen X, et al.. Impact of dissolveable Fe on multiplication of red tide diatom in enclosed water colum[J]. Mar. Sci. Bull., 1994, 13 (5): 14-18
    [165] Ryding S O,Rast W.湖泊与水库寓营养化控制M.朱萱等译.北京:中国环境科学出版社,1992
    [166] 宝月欣二,等.植物大形水生植物拮抗的关系[J].陆水学杂志,1960,21:124-130

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700