超高压微型撞击流技术的理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颗粒细化技术作为支持高新技术工业最重要的技术之一受到学术界和企业界广泛的关注,但是目前对液体颗粒的细化研究无论在理论研究还是应用技术等方面都存在着不足。本文的研究正是以其为出发点,提出一种将超高压技术、微型通道流动技术、撞击流技术三者有机地结合起来的新技术、新方法,用以探讨液体颗粒的细化。
     超高压技术由于具有瞬间压力、作用均匀、操作安全和耗能低的特点被广泛应用酒类催陈、食品加工等重要领域,微型设备由于其体积小,保压效果好,所能达到的压力高,对超高压能量利用率高,同时由于线尺度小,使得一些物理量的梯度增加很快,传质推动力增加,从而具有混合效果好等特点。撞击流技术是通过两股高速射流的强烈撞击,使颗粒间相互的碰撞、互磨产生的剪切力和挤压力从而使液体颗粒细化。因此如何把三者技术优势进行有效整合并运用到颗粒细化中是本文研究的重点。
     本文通过对超高压下微型管道流动特性、超高压下微射流撞击壁面的流动特性以及超高压下微射流对撞的流动特性等理论分析研究,对相关理论进行进一步推导和证明,实现了对现有理论的完善和拓展,同时结合超高压技术、微型通道流动技术、撞击流技术的理论研究设计优化了两种超高压微型撞击流装置结构,并对该装置在食品和酒类等领域的应用进行了实验研究。
     (1)超高压微流道流动特性研究
     对超高压微流道流动特性、流场进行研究,从尺寸效应、边界层影响和质量和动量传递三方面阐述了微通道流动特性。详细分析了截面为方形时的边长和比表面积的对应关系和截面为圆形时直径和比表面积的对应关系,在圆管中边界层积分方程的基础上,-推导了宏观圆形管内湍流的速度边界层厚度方程和核心区速度方程,微尺寸圆形管内的速度边界层厚度方程和核心区速度方程,在此基础上结合比表面积的计算分析了微尺寸通道中流体的质量传递和动量传递特性。详细分析了在超高压状态下,微尺寸圆管的流动特性,建立了实验模型,进行数值计算,对其在不同介质下、不同压力下的速度分布、压力分布、壁面剪切应力分布的规律及变化趋势进行总结。对比分析了在同等条件下微尺寸圆管和宏观尺寸圆管内流动的差别,得出微尺寸圆管内流动的优势。
     (2)超高压约束微射流撞击壁面的特性研究
     总结、推导了超高压轴对称约束微射流轴心速度分布公式和半扩展厚度公式。对超高压微射流撞击壁面用不同的湍流模型进行数值模拟,找出最适合微射流撞击壁面湍动场的湍流模型,研究了总结了超高压微射流撞击壁面的流动行为及其流场结构特点。
     (3)超高压微型撞击流的特性研究
     研究了超高压微型撞击流(相撞)的流动特性,详细进行数值计算,分析了轴向方向的速度,径向方向的速度,动压,静压,总压以及湍动能分布曲线图,总结了超高压微型撞击流的流动特性,得出了超高压微型撞击流的流场特性分布的规律,并对其进行分析解释。
     (4)超高压微型撞击流装置结构的设计优化
     设计了两种超高压微型撞击流装置结构,阐述了撞击速度作为衡量撞击效果依据的理由,分别对超高压微型撞击流发生器两种结构的尺寸进行优化,比较两种结构的优点和缺点。
     (5)超高压微型撞击流技术的实验研究
     根据液体相溶的特性,分别选取油-水混合物、果汁、酒-三类物质,对设计的超高压微型撞击流装置的两种结构进行实验研究,确定最佳结构和适宜的运行参数,分析制备微乳液、处理苹果汁和酒类催陈的机理,提出了将动态和静态处理方式相结合来提高供给压力的新方法,总结经验,为工业化积累必要的原始资料。
As support for one of the most important high-tech industries technologies, Particle refining technology is widely concerned by the academic and business interests, however, the present research on liquid particles refining in both theoretical and applied technology etc.This article is starting point, proposing a new technology, new method combining ultra-high pressure technology, micro-channel flow technology and impinging stream technology for the refinement of liquid particles.
     Because of characteristics of transient pressure, uniform, safe operation and low power consumption is widely used alcohol on Aging, food processing and other important fields. Micro-devices make better use of the high pressure energy because of its small size, good packing effect, high pressure; Also, because line scale is small, the gradient of some physical quantity increase rapidly, the mass transfer driving force increase, thereby possessing characteristics of good mixed quality; and still the adaptability, micro-devices can be used in conjunction with other systems. Impinging Stream technology is the adoption of two shares of the strong high-speed jet collision, so that inter-particle collisions with each other, extrusion pressure and shear force generated by grinding make liquid particles refining. Therefore, how to effectively integrate the three technical superiority, and apply to the study of grain refinement is the focus of this paper.
     By the theoretical analysis and study of micro-flow characteristics under ultra-high pressure micro-flow characteristics of jet impact the wall under ultra-high pressure and characteristics of the micro-jet flow to crash under ultra-high pressure, this paper further derive and prove relevant theories, realized improvement and expansion of existing theory, Combined with its theoretical research combining ultra-high pressure technology, micro-channel flow technology and impact streaming technology and design optimization of two ultra-high pressure micro-collision flow structures, and carry on experimental research in food and wine fields.
     (1) Flow characteristics of micro-channel under ultra-high pressure
     Research on micr-channel flow properties and flow field under ultrahigh-pressure. micro-channel flow characteristics described from size effects, boundary layer effects and mass and momentum transfer detailed analysis of relationship of the side length and surface area when the square cross-section and when the corresponding circular cross-section relationship the diameter and surface area. based on the circular tube the boundary layer integral equations, derive turbulent thickness velocity boundary layer equation and velocity equation of the core area in macro-tube, thickness velocity boundary layer equation and velocity equation of the core area in micro-tube, on this basis, combination specific surface area calculation and analyze the quality of fluid transfer and momentum transfer characteristics in micro-size channel. A detailed analysis of the flow characteristics of micro-size pipe under ultra-high pressure state, establishment of an experimental model, numerical calculation, in different media, under different pressure, summary law of the velocity distribution, pressure distribution, wall shear stress distribution pattern and changing trends. Comparative analysis under the same conditions in the micro-tube and macro-size pipe flow differences, come to flow advantage of micro-size pipe.
     (2) Research of characteristics of the binding micro-jet impact the wall under ultra-high pressure
     Summary、derivation of symmetry constraints micro-jet ultra-high speed axis distribution formula and half the thickness extension formula. Make simulative analysis of ultra-high-pressure micro-jet impact on the wall with different turbulence models, identify the most suitable for micro-jet impact the wall turbulence model, Study, summarize the flow behavior and flow field of structural characteristics of the ultra-high pressure micro-jet impact the wall.
     (3) Research of characteristics of ultra-high pressure micro impinging stream
     Studied flow characteristics of ultra-high pressure micro-impinging flow (the collision), detailed numerical calculation and analysis of distribution curve of the velocity of the axial direction, radial direction velocity, dynamic pressure, static pressure, total pressure and the turbulent kinetic energy. Summed up characteristics of the ultra-high pressure micro impinging stream, reached the distribution law of the ultra-high pressure micro-impinging stream flow characteristics, and make analysis and explanation.
     (4) Design、optimization of ultra-high pressure micro-impact device structures
     Designed two kinds of ultra-high pressure micro-impinging device structures, presentation measure of knock-on effects based on impact velocity, Ultrahigh-pressure impinging stream, respectively optimize the size of two micro-generator structures to compare the advantages and disadvantages of the two structures.
     (5) Experimental study of ultra-high pressure micro-impinging stream technology
     According to the compatibility characteristics of the liquid, respectively select the oil-water mixture, fruit juice, wine three substances, make experimental research on two kinds of designed structures, To determine the best structure and the appropriate operating parameters, make analysis of mechanism of micro-emulsion, apple juice and alcohol mechanism of Aging, put forward a new way combining dynamic and static approach to increase the supply pressure,sum up experience, in order to accumulate the necessary industrial the original data.
引文
[1]Ehfreld W, Hessel V, L6we H. Microreactors:New Technology for Modern Chemistry [M]. Weinheim:Wily-VCH,2000
    [2]陈启武,熊湘君,邓福铭.超高压技术研究[J].矿冶工程.2001,21(1):62-65
    [3]周家春,翁新楚.食品工业新技术[M].北京:化学工业出版社,2005
    [4]二十一世纪的技术革命.天津市华泰森淼生物工程技术有限公司,http://www.tjhtsm.com/21.htm
    [5]http://www.qgjg.cn/support_info.asp?p=390.石材加工的新武器“水刀”
    [6]佟铮,李振声,马万珍等.复合金属球形压力容器无模爆炸成形[J].内蒙古工业大学学报(自然科学版).2000,19(2):71-75
    [7]杨巧绒,陈迎春.高压设备及其在食品加工中的应用.江苏理工大学学报.1999,20(6):13-17
    [8]王志敏,董庆华.新研制的高压水切割机[J].产品与技术,2002,5(9):85-92
    [9]B. V. Voitsekhovskiy. Device for buiding up high pulse liquid pressure. U.S. Patent 3,412,554, Nov.26,1968
    [10]薛胜雄.高压水射流技术与应用[M].机械工业出版社.1998
    [11]http://www.27cnc.com/news/index.asp?id=28
    [12]Goles S. Inactivation of bacterial spores in phosphate buffer and in vegetable cream treated with high pressures. High Pressure Bioscience and Biotechnology. 1996,22(8):253-261
    [13]林向阳,陈金海,郑丹丹,何承云,阮榕生.超高压杀菌技术在食品中的应用[J].农产品加工,2005,4(1):9-12
    [14]潘科,孙远明.超高加工对食品品质酶的影响[J].食品科学,2001,24(3):142-146
    [15]肖庆生,朱勉学.国内外食品超高压加工技术[J].食品研究与开发,2004,25(1):22-28
    [16]梁淑如,赵国建,吉慧明等.超高压技术在食品工业中的最新研究进展[J].食品研究与开发.2006,27(8):1-4
    [17]林淑英,孔保华.超高压对食品中的酶的影响.食品与机械.1999,73(5):30-31
    [18]许钟,杨宪时.超高压技术在水产加工中的研究和应用现状[J].渔业现代化,1998,9(1):22-24
    [19]励建荣,傅月华,顾振宇.高压技术在食品工业中的应用研究[J].食品与发酵工业,1997,23(6):9-15
    [20]Shigehiss. T. Inactivation of HIV in blood plasma by high hydrostatic pressure. High Pressure Bopscience and Biotechnology.1996,228-273
    [21]汤燮铭.超高压病毒灭活装置.中国专利.200420028023.5.2005.08.17
    [22]姜继海,李尚义.超高压技术的应用和发展[J].机床与液压.1998,20(5):3-4
    [23]励建荣,傅月华,顾振宇.高压催陈黄酒的研究[J].食品与发酵工业,1999,25(3):36-38,42
    [24]W.埃尔费尔德,V.黑塞尔,H.勒韦.微反应器-现代化学中的新技术[M].北京:化学工业出版社,2004
    [25]Nam-Trung Nguyen, Zhigang Wu. Micromixers-a review[J]. Journal of micro-Mechanics and microengineering,2005,15(4):1317-1333
    [26]Branebjerg, J., Gravesen, P., Krog, J. P., Nielsen, C.R.; "Fast mixing by lamination", in Proceedings of the "IEEE-MEMS 96",1996,12(2):441-446
    [27]Krummradt, H.,Kopp, U., Stoldt,J.;"Experiences with the use of microreactors in organic synthesis", inEhrfeld,W.(Ed.) Microreaction Technology,3rd International Conference on Microreaction Technology,2000,21 (3):181-186
    [28]D. H. Wolf, F. P. Incropera and R. Viskanta. Jet Impingement Boiling[J]. In Advances in HeatTransfer.1993,23(3):1-126
    [29]Timothy JJohnson, RossDavid, LocascioLaurieE. Rapid Microfluidic Mixing[J]. Analytical chemistry,2002,74(1):45-51
    [30]刘素芬,傅新杨,华勇.三维交叉导流式微型静态混合器的研究[J].机械工程学报,2005,41(4):132-136
    [31]Timothy JJohnson, RossDavid, LocascioLaurieE. Rapid Microfluidic Mixing[J]. Analytical chemistry,2002,74(1):45-51
    [32]Joshua DTice,Song.H, LyonAD, IsmagilovRF. Formation of Droplets and Mixing in Multiphase Microfluidics at Low Values of the Reynolds and the Capillary Numbers Langmuir[J]. Langmuir,2003,19(22):9127-9134
    [33]杨卫华,程惠尔,张志军.水在小高宽比微小高度矩形弯道中的流动特性的试验研究[J].水动力学研究与进展,2003,18(3):365-371
    [34]Peiyi Wu, Little W.A., Measurement of friction factors for the flow of gases in very fine channels used for microminsture joule-thomson refriger-actors[J], Cryogenics, May 1983,23(5):273-277
    [35]Pfahler J., Harley J., Bau H. H., et al., Liquid and gas transport in small channels[J], ASME,1990, DSC-19:149-157
    [36]Pfahler J., Harley J., Bau H. H., et al.. Gas and liquid flow in small charnnels[J], ASME,1991, DSC-32:49-60
    [37]李志信,杜东兴,过增元,微细光滑圆管内气体流动阻力特性的研究[J],工程热物理学报,1998,19(4):459-463
    [38]杜东兴.谭立彦.李志信,et al.,微细圆管内气体流动阻力特性的进一步研究[J],工程热物理学报,1999,20(5):603-607
    [39]G. M. Mala, D. Li, Flow characteristics of water in mierotubes[J], Int. J. Heat and Fluid Flow 20,1999:142-148
    [40]Tamir, A, Kitron, A., Applications of impinging streams in chemical engineering process-Review[J]. Chem. Engng. Commun..1987,50(4):241-330
    [41]Abraham Tamir.Impinging-stream reactors-fundamentals and Application[M].1996
    [42]伍沅,撞击流-原理性质应用,化学工业出版社,2005,前言
    [43]杨伟东,王玫双股互击式喷嘴凝胶水雾化特性试验[J].推进技术。2008,29(1):21-24
    [44]张小宁,王卫民,徐更光.高速撞击流技术制备炸药超细微粉的研究[J].火炸药学报,1999,(3):1-3
    [45]张小宁粉体颗粒超细化粉碎及分散的新方法[J],涂料工业,1999(9):14-16
    [46]张小宁,徐更光.撞击流粉碎法制备超细二氧化钛粉的研究[J].化工进展,1999,(5):43-45
    [47]鄢青,张小宁.撞击流技术在炭黑超微粒化中的应用[J].涂料工业,2000,(10):14-16
    [48]刘雪东,李凤生,张智宏.粉体撞击流超细粉碎与表面改性研究[J].化学工程,2002,30(4):41-44
    [49]李凤生等编著.超细粉体技术[M].北京:国防工业出版社,2000
    [50]段红珍,李巧玲,蔺向阳等.钴铁氧体纳米粒子制备及其镧掺杂的磁性能研究[J].材料科学与工艺,2009,17(1):88-91
    [51]屈一新,车耀坤.对置撞击流速度分布的模拟研究[J].计算机与应用化学,2003,20(4):423-426
    [52]伍沅,陈煜.撞击流反应制取“超细”白炭黑[J].化工学报,2003,54(10):1381-1386
    [53]http://www.sh-sovy.cn/d an/fsjls.html
    [54]http://www.hzyxb.cn/Upload/PaperUpLoad
    [55]The UP John Co. Improved Reaction Method[P]. GB1238669.1971-07-07
    [56]Van Horn I B. Venturi Mixer[P]. US 3507626,1970-04-21
    [57]王星明,段华英,张碧田等.撞击流管式反应制备超细氧化锆粉体[J].稀有金属,2003,27:148-150
    [58]伍沅,杨阿三,程榕等.撞击流及其在干燥中的应用[J].化学工程,1998,26(4):14-23
    [59]代元忠,赵永强,张素芝.冲击式胶体磨在乙醇工业中的应用[J].粮油加工与食品机械,2004,20(4):62-63
    [60]http://vip.cheminfo.gov.cn/zxzx/page_info.aspx?id=129303&Tname=hgyw&c=1
    [61]http://vip.cheminfo.gov.cn/zxzx/page_info.aspx?id=129303&Tname=hgyw&c=1
    [62]裘子剑,张裕中.基于超高压对撞式均质技术的物料粉碎机理的研究[J].食品机械,2006,27(5):185-187
    [63]秦选文.高剪切混合乳化机在分子筛细化中的应用[J].化工机械,2004,31(4):226-227
    [64]SHAH R K. Advances in heat exchanger design[J]. American So-ciety of Mechanical Engineers,1986,66(2):112
    [65]KANDLIKAR S G. Fundamental issues related to flow boiling in minchannels and microchannels[J]. Exp Therm Fluid Sci,2002(26):38-47
    [66]TRIPLETY K A, GHIAASIAAN S M, ABDEI-KHALIK S I, et al. Gas-liquid two-phase flow in micro-channels, Part,1:twophase flow patterns[J]. Int J Muhiphase Flow.,1999(25):377-394
    [67]KEW P A, CORNWELL K. Correlations for the prediction of boiling heat transfer in small diameter channels[J]. Appl Thermal Eng,1997(17):705-715
    [68]陶然,权晓波,徐建中.微尺度流动研究中的几个问题[J].工程热物理学报,2001,22(5):575-577
    [69]STEMME G, KITTLSLAND G, NORDEN B. A sub micron patticle filtor in silicon channels[J]. Sensors and Actuators,1990,431(4):21-23
    [70]钟映春,谭湘强,杨宜民.微流体力学几个问题的探讨明.广东工业大学学报,2001,18(2):46-48
    [71]张凯.微器件中流体的流动与混合研究.浙江大学航空航天学院,博士论文.2007.4
    [72]HOCM, TAIY C. Micro-electro-mechanical-systems(MEMS) and fluid flows[J]. Annu Rev Fluid Mech,1998,30:579-612
    [73]王玮,李志信,过增元.粗糙表面对微尺度流动影响的数值分析[J].工程热物理学报,2003,24(1):85-87
    [74]杨晋,分子间斥力与引力的差别探究[J].物理教学探讨,2005,23(10):49-51
    [75]Tuckerman D B,Pease R F W.High Performance Heat Sinking for VLSI. IEEE Electron Device Letters,EDL2,1981:126-129
    [76]CHOU L H,The Effect of Intermolecular Forces on the Preparation of the Organic Waster-Cement Pastes[J]. ACTA SCIENTIARUM NATURALIUM UNIVERSITATIS SUNYATSENI.2005,44(2):66-70
    [77]刘燕,张廷安,王强等.因次分析法在水模型实验中的应用[J].工业炉,2007,29(6):65-66
    [78]Van Dyke M. Perturbation Methods in Fluid Mechanics[M]. Stanford:Parabolic Press, 1975.76-88
    [79]郭永怀,边界层理论讲义中国科学技术大学出版社,2008
    [80]唐晓寅,张赞牢,王建华等.管流速度边界层解析[J],后勤工程学院学报,2008,24(2):37-40
    [81]吴玉林,刘继红.粘性流体力学[M].中国水利水电出版社。
    [82]唐晓寅.工程流体力学[M].重庆:重庆大学出版社,2007
    [83]Potter, M.C. Mechanics of Fluids[M].3rd ed.北京:机械工业出版社,2003
    [84]郑慧凡,秦贵棉,范晓伟.微通道内单相流流动特性的实验研究进展[J].节能技术,2008,26(247):32-35
    [85]吴望一,流体力学[M],北京,北京大学出版社,1983
    [86]E. John Finnemore, Fluid Mechanics with Enginnering Applications [M].10rd ed.北京:清华大学出版社。2003
    [87]王利文.博士论文.华东理工大学.2009
    [88]李宝玉等.高压磨料射流在防治煤与瓦斯突出方面的研究与应用.煤矿机械.2007,9:43-45
    [89]刘沛清编著自由紊动射流理论[M].北京航空航天大学出版社
    [90]H. Martin. Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces.In Advances in Heat Transfer.Edited by J.P.Hartnett and T.F.Irvine.Academic Press,New York.1977,13:1-60
    [91]P. Hrycak. Heat Transfer from Impinging Jets - a Literature Review. AFWALTR-81-3054,Flight dynamics Laboratory.W right-Paterson AFB,Ohio,1981
    [92]刘明侯 狭缝射流撞击圆柱表面的湍流特性实验研究力学学报2005,37(2):135-137
    [93]Beskok A, Kamiadakis G E.Simulation of Slip-slow in Complex Micro-Geometries.ASME,1992,. DSC-40:355-370
    [94]张志森;唐书泽;汪勇,微孔射流高压均质过程动量及流场结构分析
    [95]K. Suga, T.J. Craft, H. Iacovides.An analytical wall-function for turbulent flows and heat transfer over rough walls[J], International Journal of Heat and Fluid Flow, Volume 27, Issue 5, October 2006, Pages 852-866
    [96]T.J. Craft, S.E. Gant, A.V. Gerasimov, H. Iacovides, B.E. Launder.Development and application of wall-function treatments for turbulent forced and mixed convection flows[J],Fluid Dynamics Research, Volume 38, Issues 2-3, February-March 2006, Pages 127-144
    [97]Powell A. Aerodynamic noise and the plane boundary. J Acoustical Society of America, 1960,32:982-990
    [98]Nosseir N, Pelet U, Hildebrand G Pressure field generated by jet on jet impingement. AIChE J,1968,25:78-84
    [99]Denshchikov V A, Kontratev, V N, Romashov A V. Interaction between two oppesed jets. Fluid Dynamics,1978,6:924-926
    [100]王福军.计算流体动力学分析[M].北京:清华大学出版社.2004
    [101]韩占忠.Fluent流体工程仿真计算[M].北京:北京理工大学出版社.2004
    [102]M. Champion, P. A. Libby.Reynolds stress description of opposed and impinging turbulent jets.Part I:Closely spaced opposed jets. Phys. Fluids A, Vol.5, No.1, 1993:203-208
    [103]Wu Yuan, Xiao Yang, Zhou Yuxin. Micromixing in the submerged circulative impinging stream reactor. Chinese J Chem Eng,2003,11 (4):420-425
    [104]肖杨.浸没循环撞击流反应器中的流动与混合。武汉:武汉化工学院,2002
    [105]Elperin IT. Transport Processes in Opposing Jets (Gas Suspension). Minsk:Science and Technol Press,1972
    [106]北京大学数学力学系概率统计组正交设计法[M].化学工业出版社1976
    [107]http://www.coema.org.cn/study/li/20071226/144354.html
    [108]http://www2.tju.edu.cn/colleges/precision/cn/upfiles/2005/4.doc,2004
    [109]LSA型激光粒度仪.天津大学现代光学仪器研究所.
    [110]程敬丽,朱金文.机械能与界面张力在农药水乳剂制备中的作用机理研究.农药学学报,2004,6(2):62-67

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700