高超声速钝锥边界层稳定性特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用一般正交曲线坐标系下的抛物化稳定性方程(PSE)和高精度激波装配法,开展了高超声速钝锥边界层稳定性特征的研究工作,主要研究成果及创新如下:
     (1)对高精度激波装配法提出了一种改进的并行算法,提高了该方法的并行求解效率,扩大了应用范围,同时构造了七阶紧致迎风有限差分格式用于逼近对流项,以提高方法的分辨率.通过对钝锥绕流问题的验证计算表明,本文的计算结果与他人结果[87,108]吻合的很好,因此,当前的数值方法有效、可靠,能够用于模拟来流中10-5-10-4量级的小扰动演化问题.
     (2)发展了基于一般正交曲线坐标系的抛物化稳定性方程及其计算软件,该软件包括线性PSE和非线性PSE两个求解器。与直接数值模拟(DNS)相比,该方法不仅便于对边界层内扰动波的演化特征进行分析,而且降低了至少一个数量级的计算时间。算例表明,该方法的结果与DNS以及线性稳定性理论(LST)的结果吻合甚好,验证了其可靠性.
     (3)细致地分析了壁温对球头半径为3.81×10-3米,半锥角为7°的高超声速钝锥边界层稳定性的影响,得到如下有意义的结果:
     ⅰ)DNS结果表明,壁温变化显著地影响高超声速钝锥边界层内广义速度拐点沿壁面法向的数量和位置;LST分析表明,降低壁温加速第二模态不稳定波的增长,同时抑制了第一模态扰动的增长.向下游推进中,当地最不稳定的第二模态扰动频率逐渐降低,且增长率持续增大;当地最不稳定的第一模态频率先升高,然后又有所降低,且增长率也持续增大.壁温越低中性曲线越靠后,且第一模态推后的比第二模态更严重.由此可见,壁温对高超声速边界层稳定性有显著的影响.
     ⅱ)当来流中加入10-4的小扰动时,DNS表明下游290头半径左右的壁面扰动幅值与壁温之间没有单调变化关系,对于冷却壁存一个临界温度Tc∈(280,375K),当壁温低于Tc后,冷却壁时的扰动幅值大于绝热壁的情况,反之,结论相反。这一结论与Stetson[79]的实验基本一致。
     ⅲ)在中性曲线下分支处,壁面压力扰动的感受性系数的分布表明,壁温越低,感受性系数也越小.低频扰动波的感受性系数大约在(0.1,0.2)之间,而高频扰动波的情况大约在(0.7,0.8)之间.
     ⅳ)用线性PSE分析了不同壁温情况下小扰动的演化特征,结果表明,壁温变化显著影响流向波数、扰动增长率和扰动幅值的变化特征.在壁面特定位置以前,壁温越低波数越小,当大于这个值以后,结论相反;降低壁温使第二模态增长率增大;且壁温越低最终扰动幅值越大.
     ⅴ)用非线性PSE模拟边界层中有限振幅扰动演化表明,边界层内扰动演化足够长时间后高次谐波得以快速增长,且降低壁温加速了高次谐波的增长,特别是三维高次谐波具有更大的增长率,高次谐波促进了边界层不稳定的发展.
This thesis investigates the stability characteristics of boundary layers in hypersonic flows around a blunt cone by using a kind of parabolized stability equations (PSE) in a general orthogonal curvilinear system of coordinates, to-gether with a shock-fitting method. The main contributions in this work are as follows:
     (1) The parallel algorithm of the original shock-fitting method is consider-ably improved, and hence the efficiency of solving problems in parallel with the method is appreciably raised and its applicability scope enlarged. Additionally, a seventh-order upwind compact finite difference scheme is developed for improving resolution of the present method. The numerical tests indicate that the presented numerical method and code are effective and reliable, and could be employed to simulate the receptivity in the boundary layer of super/hypersonic flows around blunt cones, even to reproduce the time evolution of the small disturbances of order 10-5 - 10-4 in free stream.
     (2) A new PSE (parabolized stability equation) software system is devel-oped in the general orthogonal curvilinear coordinates, consisting of two solvers respectively for linear and nonlinear PSEs. Compared to DNS, the PSE is not only convenient to analyze the evolution of disturbance in the boundary layer, but also reduce the computing time at least by one order of magnitude. The numerical examples show that the presented PSE solvers could give simulated results agreeing well with the DNS results and LST predictions, providing an efficient and reliable computing tool for analyzing the stability characteristics of super/hypersonic boundary layer.
     (3)The effects of wall temperature on the boundary layer stability for the case of a spherical nose with the radius of 3.81 x 10-3m and a half cone angle of 7°at the Mach number of 7.99 are meticulously analyzed and the following meaningful results are obtained.
     i) The DNS results indicate that the wall temperature remakably impact the number and positions of GIPs (general inflection points) along the wall normal direction in the boundary layer of hypersonic flow around the blunt cone. The LST results show that decreasing the wall temperature accelerates the growth of the second-mode disturbance and restrains the growth of the first-mode dis-turbance. The frequency of the most unstable second-mode local disturbance decreases monotonically along the streamwise direction. However, the frequency of the most unstable first-mode local disturbance does not monotonically change, which first increases and then decreases. The growth rates of the first mode and second mode keep increasing along the streamwise direction. But the growth rate of the second mode is much larger than that of the first mode. The neutral curve moves toward downstream with decreasing wall temperature. Therefore, the wall temperature has significant effects on the stability of hypersonic boundary layers.
     ii) When the free-stream disturbances are of the order 10-4, the DNS re-sults imply that the amplitude of disturbance at about 290 times of nose radius downstream along the surface does not change monotonically with the wall tem-perature. There exists a critical wall temperature Tc∈(280,375K) for cold wall. If the wall temperature is lower than Tc, then the amplitude of disturbance for the cold wall is larger than that for the adiabatic wall, and vice versa. Such a conclusion agrees with that drawn by Stetson [79].
     iii) The receptivity analysis shows that the receptivity coefficient decreases with decreasing wall temperature. The receptivity of lower frequency disturbance waves falls into the interval (0.1,0.2), and that of higher ones into the interval (0.7,0.8). Hence the strength of the receptivity for the second modes is larger than that of the first ones.
     iv) The results of linear PSE show that decreasing the wall temperature ap-preciably affects the streamwise wave number, growth rate, and amplitude of 2D and 3D small disturbances. The streamwise wavenumber decreases with decreas-ing wall temperature at the front of a given point on the wall surface, but the situation is in contrast behind this point, which depends on the wall temperature. The amplitude of disturbance increases with decreasing wall temperature.
     v) The nonlinear PSE simulations indicate that lots of high harmonics are enhanced quickly after sufficiently long time evolution of finite amplitude distur-bances. Moreover, decreasing the surface temperature promotes the growth of the higher harmonics, and the 3D harmonic modes have larger growth rate than the 2D ones.
引文
[1]Cebeci T and Stewartson K. On stability and Transition in three-dimensional flows. AIAA J.,1979,18(4):398-405.
    [2]Reed HL, Saric WS. Linear stability theory applied to boundary layers. Annu. Rev. Fluid. Mech.,1996,28:389-428.
    [3]Saric WS. Boundary-layer receptivity to freestream disturbance. Annu. Rev. Fluid Mech.,2002,34:291-319.
    [4]Saric WS, Reed HL, and White EB. Stability and transition of three-dimensional boundary layers. Annu. Rev. Fluid. Mech.,2003,35:413-440.
    [5]Saric WS. Boundary-layer stability and transition. The proceedings:Fifth International Conference on Numerical Ship Hydrodynamics,1990,23-33.
    [6]Mack LM. Linear Stability theory and the problem of supersonic boundary-layer transition. AIAA J.,1975,13(3):278-89.
    [7]Mack LM. Boundary layer linear stability theory. AGARD Rep 709 1984, 3-1-3-81.
    [8]Morkovin MV. Critical evaluation of transition from laminar to turbulent shear layers with emphasis on hypersonically traveling boundaries. US Air Force Flight Dynamics Laboratory, Wright Patterson Air Force Base, Ohio, AFFDL-TR:68-149.
    [9]Kachanov YS. Physical Mechanisms of laminar-boundary-layer transition. Annu. Rev. Fluid. Mech.,1994,26:411-82.
    [10]Landahl MT. A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech.,1980,98:243-251.
    [11]Hultgren LS. Gustavsson LH. Algebraic growth of disturbances in a laminar boundary layer. Phys. Fluids,1981,24:1000-1004.
    [12]Fedorov AV, Khohklov AP. Prehistory of instability in a hypersonic bound-ary layer. Theoret. Comput. Fluid. Dynamics,2001,14:359-75.
    [13]Borodulin VL, Gaponenko VR, Kachanov YS, et al.. Late-stage transitional boundary-layer structures. Direct Numerical Simulation and Experiment. Theoret. Comput. Fluid. Dynamics,2002,15:317-37.
    [14]Kachanov SK. On the resonant nature of the breakdown of a laminar bound-ary layer. J. Fluid. Mech.,1987,184:43-74.
    [15]Lam SH and Rott N. Theory of linearized time-dependent boundary layers. Cornell Univ. Grad. School of Aero. Engng Repl.,1960, AFOSE TN-60-1100.
    [16]Morkovin MV. Transition at hypersonic speeds. NASA Contractor Report No. NAS1-18107 1987,5.
    [17]Reshotko E. Boundary layer instability, transition and control. AIAA pap., 94-0001 1994.
    [18]Kendall JM. Boundary-layer receptivity to freestream turbulence. AIAA Pap.,1990,90-1504.
    [19]Kendall JM. Experiments on boundary-layer receptivity to freestream tur-bulence. AIAA Pap.,1998,98-0530.
    [20]Buter TA. Boundary-layer receptivity to freestream vorticity. Phy. Fluids, 1994,6:3368-3379.
    [21]Bertolotti FP. Response of the Blasius boundary-layer to free-stream vortic-ity. Phys. Fluids,1997,9:2286-2299.
    [22]Kosorygin VS. Experiments on receptivity, stability, and transition of two-dimensional laminar boundary layers with stramwise pressure gradients. Laminar Turbulent Transition V.,2000,Berlin:Spinger:686.
    [23]Lin N, Reed HL, Saric WS. Effect of leading-edge geometry on boundary-layer receptivity to freestream sound. Instability, Transition and Turbu-lence.,1992, Berlin:620.
    [24]Parekh DE, Pulvin P, Wlezien RW. Boundary-layer receptivity to convected gusts and sound. American Society of Mechanical Engineers, New York, 1991, p.69-76.
    [25]Goldstein ME. The evolution of Tollmien-Schlichting waves near a leading edge. J. Fluid Mech.,1983,127:59-81.
    [26]Goldstein ME. Scattering of acoustic waves into Tollmien-Schlichting waves by small streamwise variations in surface geometry. J. Fluid Mech.,1985, 154:509-529.
    [27]Heinrich RA, Kerschen EJ. Leading-edge boundary-layer receptivity to freestream disturbance structures. ZAMM,1989,69:T596.
    [28]Kerschen EJ. Boundary-layer receptivity. AIAA PaP.,1989,89-1109.
    [29]Kerschen EJ, Choudhari M, Heinrich RA. Generation of boundary instability waves by acoustic and vortical freestream disturbances. Laminar-Turbulent Transition,1990(3), New York:Springer:710.
    [30]Kerschen EJ. Linear and nonlinear receptivity to vortical freestream distur-bances. Boundary layer Stability and Transition to Turbulence FED-114, 1991, New York:ASME,225.
    [31]Wanderly JBR, Corke TC. Boundary-layer receptivity to freestream sound on elliptic leading edges of flat plates. J. fluid Mech.,2001,429:1-29.
    [32]Fuciarelli DA, Reed HL, Lyttle I. Direct numerical simulation of leading-edges receptivity to sound. AIAA J.,2000,38:1159-1165.
    [33]Saric WS, White EB. Influence of high amplitude noise on boundary-layer transition to turbulence. AIAA Pap.,1998,98-2645.
    [34]Hammerton PW, Kerschen EJ. Boundary-layer receptivity for a parabolic leading edge. J. Fluid Mech.,1996,310:243-267.
    [35]Hammerton PW, Kerschen EJ. Boundary-layer receptivity for a parabolic leading edge. Part2. The small Strouhal number limit. J. Fluid Mech.,1997, 353:205-220.
    [36]Nishioka M, Morkovin MV. Boundary-layer receptivity to unsteady pressure gradients. J. Fluid Mech.,1986,171:219-261.
    [37]Choudhari M, Streett C. A finite Reynolds number approach for the predic-tion of boundary-layer receptivity in localized regions. Phys. Fluids A,1992, 4:2595-2514.
    [38]Choudhari M, Streett C. Theoretical predictions of boundary-layer recep-tivity. AIAA Pap.,1994,94-2223.
    [39]Crouch JD. Localized receptivity of boundary layers. Phys. Fluids A,1992, 4:1408-1414.
    [40]Crouch JD. Non-localized receptivity of boundary layers. J. Fluid Mech., 1992,244:567-681.
    [41]Giannetti F, Luchini P. Leading-edge receptivity by adjoint methods. J. Fluid Mech.,2006,547:21-53.
    [42]Maslow AA, Shiplyuk AA, Sidorenko AA, Arnal D. Leading-edge receptivity of a hypersonic boundary layer on a flat plate. J. Fluid Mech.,2001,426:73-94.
    [43]Tumin A. Three-dimensional spatial normal nodes in compressible boundary layers. J. Fluid Mech.,2007,586:295-322.
    [44]Fedorov AV. Receptivity of a high-speed boundary layer to acoustic distur-bances. J. Fluid Mech.,2003,491:101-129.
    [45]HaddadO, Corke TC. Boundary-layer receptivity to freestream sound on parabolic bodies. J. Fluid Mech.,1998,368:1-26.
    [46]Ma YB, Zhong XL. Receptivity to free-stream disturbances of Mach 4.5 flow over a flat plate. AIAa Pap.,2002,2002-0140.
    [47]Schlichting H. Boundary layer theory.1979, ew York:McGraw-Hill.
    [48]Schubauer GB, Skramstad HK. Laminar boundary layer oscillations and transition on a flat plate. J. Res. Nat. Bur. Stand.,1947,38:251-292.
    [49]Lin CC. The theory of hydrodynamic stability.1955, Cambridge:Cambridge Univ. Press.
    [50]Ross JA, Barnes FH, Burns JG, Ross MAS. The flat plate boundary layer. part 3. comparison of theory with experiment. J. Fluid Mech.,1970, 43(4):819-832.
    [51]Saric WS, Nayfeh AH. Nonparallel stability of boundary layers with press gradients and suction. AGARD Symp. Laminar-Turbulent Transition, AGARD-CP-224, Pap. No.6 Copenhagen.
    [52]Strazisar AJ, Reshotko, E, Prahl JM. Experimental study of the heated laminar boundary layer in water. J. Fluid Mech.,1977,83(2):225-247.
    [53]Lees L, Lin CC. Investigation of the stability of the laminar boundary layer in compressible fluid. NACA TN 1946,1115
    [54]Fasel H, Konzelmann U. Nonparallel stability of a flat-plate boundary layer using the complete NAvier-Stokes equations. J. Fluid Mech.,1990,221:3111-347.
    [55]Bertolotti FP, Herbert T, Spatlart PR. Linear and nonlinear stability of the Blasius boundary layer. J. Fluid Mech.,1992,242:441-474.
    [56]Squire HB. On the stability for three dimensional disturbances of viscous fluid flow between parallel walls. Proc. R. Soc. London Scr. A,1933,142:621-628.
    [57]Gilyov VM, Dovgal AV, Kachanov YS, Kozlov VV. Development of spatial disturbances in a boundary layer with pressure gradient. Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza,1988:3:85-91
    [58]Reed HL, Saric WS. Stability of three-dimensional boundary layers. Annu. Rev. Fluid mech.,1989,21:235-284.
    [59]Arnal D, Michel R. Laminar Turbulent Transition.1990, Heidelberg: Springer-Verlag.
    [60]Malik MR. Numerical methods for hypersonic boundary layer stability. J. Computat. Phys.,1990,86:376-413.
    [61]Malik MR, Spall RE, Chang CL. Effect of nose bluntness on boundary layer stability and transition. AIAA Pap.,1990,90-0112.
    [62]Li XL, Fu DX, Ma YW. Direct numerical simulation of boundary layer transition over a blunt cone. AIAA J.,2008,46(11):2899-2913.
    [63]Li XL, Fu DX, Ma YW. DNS of compressible turbulent boundary layer around a sharp cone. Science in China G,2008,51(6):699-714.
    [64]王新军,罗纪生,周恒.平面槽道流中层流-湍流转捩的breakdown过程的内在机理.中国科学,G辑,2005,35(1):71-78.
    [65]HuangZhang-feng, Cao Wei, Zhou Heng. The mechanism of breakdown in laminar-turbulent transition of supersonic boundary layer on a flat plate temporal mode. Science in China, G,2005,48(5):537-547.
    [66]Kendall JM. Experiments on boundary-layer receptivity to freestream tur-bulence. AIAA Pap.,1997,1-13.
    [67]Klebanoff PS. Effect of freestream turbulence on the laminar boundary layer. Bull. Amer. Phys. Soc.,1971,10(11):1323.
    [68]Arnal D, Juillen JC. Contribution experimentale al'etude de la receptivite d'une couche limite laminaire, a la turbulence de l'ecoulement general. ON-ERA Tech.,1978,1/5018 AYD.
    [69]Westin KJA, Boiko BGB et al.. Experiments in a boundary layer subjected to free stream turbulence. Part1. boundary layer structure and receptivity. J. Fluid Mech.,1994,281:193-218.
    [70]Boiko BGB, Klingmann AV, et al.. Experiments in a boundary layer sub-jected to free stream turbulence. Part2. The role of TS waves in the transition process. J. Fluid Mech.,1994,281:193-218.
    [71]Bakchinov AA, Westin KJA, et al.. Experiments on localized disturbances in a flat plate boundary layer. Part1. The receptivity and evolution of a localized freestream disturbance.1997, In doctoral thesis of KJA Westin. royal institute of Technology, Stockholm.
    [72]Bakchinov AA, Westin KJA, et al.. Experiments on localized disturbances in a flat plate boundary layer. Part2. Interaction between localized disturbances and TS waves.1997, In doctoral thesis of KJA Westin. royal institute of Technology, Stockholm.
    [73]Dietz AJ. Boundary layer receptivity to transient convected disturbances. AIAA Pap.,1997,97-1962.
    [74]Potter JL. Review of the influence of cooled walls on boundary-layer transi-tion. AIAA J.,1979,18(8):1010-1012.
    [75]Potter JL. Review of the influence of cooled walls on boundary layer transi-tion. AIAA J.,1980,18(8):1010-1012.
    [76]Stetson KF, Kimmel RL. Laminar boundary layer stability experiments on a cone at Mach 8. Part 1:Blunt cone. AIAA Pap.,1983,83-1761.
    [77]Stetson KF, Kimmel RL. Laminar boundary layer stability experiments on a cone at Mach 8. Part 2:Blunt cone. AIAA Pap.,1984,84-0006.
    [78]Stetson KF, Kimmel RL. A comparison of planar and conical boundary layer stability and transition at a mach number of 8. AIAA Pap.,1991,91-1639.
    [79]Stetson KF, Kimmel RL. On hypersonic boundary layer stability. AIAA Pap.,1992,92-0737.
    [80]Stetson KF, Kimmel RL. On the breakdown of a hypersonic laminar bound-ary layer. AIAA Pap.,1993,93-0896.
    [81]Zhong XL. High-order finite-difference schemes for numerical simulation of hypersonic boundary-layer transition. J. Computat. Phys.,1998,144:662-709.
    [82]Zhang YD, Fu DX, Ma YW, Li XL. Receptivity to free-stream disturbance waves for hypersonic flow over a blunt cone. Sci. China Ser G-Phys Mech. Astron.,2008,51(11):1682-1690.
    [83]Zhong XL. Leading-edge receptivity to free stream disturbance waves for hypersonic flow over a parabola. J. Fluid. Mech.,2001,441:315-67.
    [84]Ma YB, Zhong XL. Receptivity of a supersonic boundary layer over a flat plate. part 1. Wave structures and interactions. J. Fluid. Mech.,2003,488:31-78.
    [85]Ma YB, Zhong XL. Receptivity of a supersonic boundary layer over a flat plate. part 2. Receptivity to free-stream sound. J. Fluid. Mech.,2003,488:79-121.
    [86]Ma YB, Zhong XL. Receptivity of a supersonic boundary layer over a flat plate. part 2. Effects of different types of free-stream disturbances. J. Fluid. Mech.,2005,532:63-109.
    [87]Ma YB, Zhong XL. Boundary-layer receptivity of Mach 7.99 flow over a blunt cone to free-stream acoustic waves. J. Fluid. Mech.,2006,556:55-103.
    [88]Kara K, Balakumar P and Kandil OA. Effects of nose bluntness on stability of hypersonic boundary layers over a blunt cone. AIAA Fluid Dynamics Conference and Exhibit,25-28 June 2007, Miani, FL.
    [89]Kara K, Balakumar P and Kandil OA. Receptivity of hypersonic bound-ary layers due to acoustic disturbances over blunt cone. AIAA Aerospace Sciences Meeting and Exhiit,8-11 June 2007, Reno, Nevada.
    [90]Chang CL, Malik MR. Compressible stability of growing boundary layers using parabolized stability equations. AIAA Pap.,1991,91-1636.
    [91]Herbert T. Parabolized stability equations, Annu. Rev. Fluid Mech.,1997, 29:245-283.
    [92]Herbert T and Bertollotti FP. Stability analysisi of non-parallel boundary layers. the 40th Annual Meeting of the American Physics Society, Division of Fluid Dynamics, Eugene, Oregon, Nov. (1987),22-24.
    [93]Esfahanian V, Hejranfar K, Sabetghadam F. Linear and nonlinear PSE for stability analysis of the Blasius boundary layer using compact scheme. J. Fluids Engineering,2001,123:545-50.
    [94]张永明,周恒,PSE在超音速边界层二次失稳问题中的应用.应用数学和力学,2008,29(1):1-7
    [95]Herbert T. Boundary layer transition analysis and prediction revisited. AIAA Pap.,1991,91-0737.
    [96]Hu SH and Zhong XL. Nonparallel stability analysis of compressible bound-ary layer using 3D PSE. AIAA Pap.,1999,99-0813.
    [97]Langlois M, Casalis G, Arnal D. On the practical application of the PSE ap-proach to linear stability analysis. Aerospace Science and Technology,1998, 3:167-176.
    [98]Stetson KF, Rushton GH. Shock tunnel investigation of boundary layer tran-sition at M=5.5. AIAA J.,1967,5(3):899-906.
    [99]Xian Liang, Xinliang Li, De xun Fu, Yanwen Ma. Effects of wall temperature on boundary layer stability over a blunt cone at Mach 7.99. Computer & Fluids,2010,39:359-371(已刊电子版)
    [100]傅德薰主编,流体力学数值模拟,国防工业出版社,1993,179-187.
    [101]周恒,流动稳定性,国防工业出版社,2004.
    [102]Lele SK. Compact finite difference schemes with spectral-like resoution. J. Comput. Phys.,1992,103:16-42.
    [103]Xian Liang, Xinliang Li, De xun Fu, Yanwen Ma. Complex transition of double-diffusive convection in a rectangular enclosure with height-to-length ratio equal to 4:part Ⅰ. Commun. Comput. Phys.,2009, Vol6,(2):247-268.
    [104]Vigneron YC, Rakich JV, Tannehill JC. Calculation of supersonic viscous flow over delta wings with sharp subsonic leading edges. AIAA Pap.,1978, 78-1337.
    [105]Fei Li and Malik MR. On the nature of PSE approximation. Theoret. Com-put. Fluid Dynamics,1996,8:253-273.
    [106]Fedorov AV. Excitation of unstable modes in a supersonic boundary layer by acoustic waves. Fluid Dyn.,1991,4:67-74.
    [107]Su CH, Zhou H. Stability analysisi and transition prediction of hypersonic boundary layer over a blunt cone with small nose bluntness at zero angle of attack. Applied Mathematics and Mechanics,2006,5:505-513.
    [108]Herbert T, Esfahanian V. Stability of hypersonic flow over a blunt body. AGARD CP 514 1993,28-1-28-12.
    [109]Kovasznay LSG. Turbulence in supersonic flow. J. Aero. Sci.,1953,20: 657-682.
    [110]Malik MR. Prediction and control of transition in supersonic and hyper-sonic boundary layers. AIAA J.,1998,27(11):1487-1493.
    [111]cohen J, Breuer KS, haritonidis JH. On the evolution of a wave-packet in a laminar boundary layer. J. Fluid Mech.,1991,225:575-606.
    [112]Truesdell C. On the curved shocks in steady plane flow of an ideal fluid. J. Aero. Sci.,1952,19:826-828.
    [113]Reed HL. Direct numerical simulation of transition:the spatial approach. AIAA Pap.,1994,94-2222.
    [114]Morkovin MV. Bypass transition to turbulence and research desiderata. In Transition in Turbines, NASA Conf. Publ.2386,161-204.
    [115]Bodonyi RJ, Duck PW. Boundary-layer receptivity due to a wall suction and control of Tollmlen-Schllchting waves. Phys. Fluids A,1992,4(6):1206-1214.
    [116]Esfahanian V, Hejranfar K. Accuracy of parabolized Navier-Stokes schemes for stability analysis of hypersonic axisymmetric flows. AIAA J.,2002, 40(7):1311-1322.
    [117]傅德薰主编.计算空气动力学.宇航工业出版社,1994,487-592.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700