近地湍流风场的CFD模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近地的湍流风场是结构风工程的主要研究对象,CFD数值模拟方法具有费用少、周期短、结果丰富、便于参数分析的优势,是一种正处于成长期的风工程研究方法。现有下击暴流风场的经验模型精度不高且适用范围有限,而移动型下击暴流中的非平稳荷载也一直没有得到较好的模拟。山地地形风场研究对结构抗风设计荷载的确定,风机的微观选址和风资源评估都具有重要的意义。阵风的影响在行人风环境评估中不容忽略,而基于CFD评估行人风环境的研究还较少。局部脉动风压峰值数倍于平均风压,能够成倍的放大结构响应,而在CFD中实现脉动风压的模拟是目前的难点。针对风工程中存在以上问题,本文的工作主要包括以下几个部分:
     提出了新的三维稳态轴对称静止型下击暴流和壁面冲击射流风场中径向速度的竖向形状函数,并改进了现有径向速度的径向形状函数的可调节性和精度。基于流体力学质量守恒方程,提炼了由径向速度形状函数推导竖向速度的形状函数的通用方法。引入边界层厚度特征尺度相关的变量: z_m (r) (δ(r)),r_m (z), u_m (r)和u_m (z),使经验模型能够考虑下击暴流边界层的非线性发展。通过与CFD结果的对比分析,验证了改进模型的适用范围和精度。在CFD中引入大气边界层风场,再现了著名的AFB移动下击暴流事件,与实测数据在风速、风向两方面均有较好的吻合,并揭示了移动下击暴流中初始阶段,成熟阶段,及在FFD(Front Flank Downburst)和RFD(Rear Flank Downburst)中长度尺度Rc的差异。
     使用风洞试验方法研究了六种典型地形(15°,30°,45°的山坡和山脊)在草地和森林植被覆盖下的风场特征,得到了坡顶和背风坡的风速比分布,并归纳了坡度、山体形状和地表粗糙度对地形中风速比的影响,在与多国荷载规范对比后,对我国荷载规范的地形修正条文提出了5点修改建议。CFD模拟了某真实复杂山地地形在两次强风过程中的风场分布,通过与9个观测站上的实测数据的对比和误差分析,得到了CFD模拟复杂地形风场的最佳湍流模型和网格尺度。综合CFD模拟的风速比分布与当地常年气象资料,提出了复杂地形全风向风资源评估方法。
     提出了综合考虑平均风和阵风影响的评估标准。结合某半开敞式的大跨空间建筑,统计了该地区44个气象观测站点连续3年逐小时的平均风速观测资料,估计了不同风向的平均风速概率分布参数。使用CFD数值风洞技术,获得了8个风向行人高度的风场分布;基于行人风环境评估的超越阈值概率方法,给出了场地全风向超越不舒适风速阈值的概率分布图,结合评估标准评价了该建筑的行人风环境。
     采用大涡模拟结合一种新的湍流脉动流场产生方法DSRFG(discretizing and synthesizing random flow generation),实现了风洞入口实际的湍流边界输入。结合实际大跨度屋盖结构,通过大涡模拟能够获得的脉动风荷载特性与风洞试验结果的对比分析发现:大涡模拟在分离区的结果更合理,脉动风压系数比风洞试验稍大,较好的再现了屋盖前檐、中部和后部的风压力谱和概率分布特征,捕捉到了分离区压力脉动的非高斯特性及间歇现象,脉动压力横风向和顺风向的空间相关性也与试验一致。
The turbulence wind field near ground is the main subject of wind engineering. CFD simulation approach is economic both in time and expenses, able to provide comprehensive information or results, and convenient for parameter analysis. It also is a growing approach for wind engineering. The existing empirical models of downbursts is low accuracy and only applicable for limited region, furthermore, the non-stationary wind loads generated in moving downbursts are difficult to be reproduced. Studies on wind field in hilly terrain are meaningful for determining wind loads on structures, micro-siting wind turbines and evaluating wind resources. The gust effects on pedestrian comfort cannot be ignored, and researches on evaluation of pedestrian wind environment using CFD is scared. Peak local fluctuating pressure is several times larger than mean pressure and able to magnify responses of structures, however, it is hard to simulate fluctuating pressure in CFD for present. For the issues addressed above, the main contents of this dissertation including 4 parts:
     A simple and novel vertical shaping function of radial velocities and a revision to radial shaping function of radial velocities are proposed to improve the simplicity and accuracy of the existing model for 3-D axisymmetric steady-state flows of downbursts and impinging jets. From the mass conservation equation of fluid mechanics, a general method is refined to derive vertical velocities from radial velocities. By incorporating varying characteristic lengths related functions: z_m(r)(δ(r)), r_m (z), u_m (r)和u_m (z), the revised model is able to compute the nonlinear developments of downburst boundary layer. Through comparing with CFD simulation results, the applicable region and precision of revised model are validated and verified. By imposing an atmospheric boundary layer wind, the famous Andrews AFB moving downburst was reproduced in CFD simulation and the results is consistent in both wind velocities and directions with field data. The computational results also revealed that the length scale Rc which influences the horizontal profiles of radial velocity should take different values for the initial and mature stage, and for the location of FFD (Front Flank Downburst) and RFD (Rear Flank Downburst).
     The wind characteristics of 6 typical hills (15°, 30°, 45°escarpments and ridges) covered by grass and forest vegetation were investigated by wind tunnel test. The velocity ratio distribution on the crest and downwind slope were obtained, and the effects of slopes, hill shapes and ground roughness on the wind velocity ratios were summarized. Through comparison with Codes from several countries, 5 recommended revisions were proposed for the current Chinese loadings Codes. Two strong wind events over a real complex terrain were simulated using CFD. Based on the comparison with field data from 9 observation towers and error analysis, the best turbulence model and grid size for complex terrain simulation is obtained. Using wind velocity ratios from CFD simulation and longtime meteorology statistical data from ambient flat terrain, a composite full-direction wind resources evaluation method aim for complex hilly terrain was proposed.
     A criterion that takes into account both mean and gust wind effects on people was proposed. Combined with the wind environment problems emerged from a semi-open type large-span building, 3-years long hour by hour wind records from 44 meteorological stations around the site were collected, and the CDFs parameters of mean wind speeds in 8 directions were estimated. The distribution of wind velocity ratios at pedestrian level was obtained using CFD simulation. Using the approach of threshold exceedance probability, the map of wind discomfort threshold exceedance probabilities for full directions was present, and the pedestrian wind environment around this building is evaluated.
     The discretizing and synthesizing of random flow generation technique (DSRFG) incorporated with large eddy simulation was adopted to produce a spatially correlated turbulent inflow for the simulation study. With regard to the 486m-long roof of Shenzhen Citizens Centre, its mean, fluctuating and peak pressure coefficient distributions, and spectra, spatial correlation coefficients and probability characteristics of pressure fluctuations were simulated in CFD and wind tunnel. The comparative study demonstrated that the LES integrated with the DSRFG technique could provide satisfactory prediction of wind effects on the long-span roof with complex shape, especially on separation zones along leading eaves where the worst negative wind-induced pressures commonly occur. The probabilities and spectra of pressure at roof eave, middle and rear sections were well generated. The non-gaussian characteristics and intermittence phenomenon in flow separation region were also captured. The space correlation of fluctuating pressure for longitudinal and lateral directions is agreed well with experimental data.
引文
1 C. W. Letchford, C. Mans, M. T. Chay. Thunderstorms--Their Importance in Wind Engineering (a Case for the Next Generation Wind Tunnel). Journal of Wind Engineering and Industrial Aerodynamics. 2002, 90(12-15):1415-1433
    2 J. D. Holmes, S. E. Oliver. An Empirical Model of a Downburst. Engineering Structures. 2000, 22(9):1167-1172
    3秦丽,李耀东,高守亭.北京地区雷暴大风的天气-气候学特征研究.气候与环境研究. 2006, 11(6):754-762
    4 L. Qin, Y. Li, S. Gao. The Synoptic and Climatic Characteristic Studies of Thunderstorm Winds in Beijing. Climatic and Environmental Research. 2006, 11(6):754-762
    5 E. C. C. Choi, H. Y. B. Mok, T. C. Lee. Occurrence and Significance of Thunderstorms in Hong Kong. The twelfth International Conference on Wind Engineering, Cairns, Australia, 2007:663-670
    6 E. C. Choi. Extreme Wind Characteristics Over Singapore - An Area in the Equatorial Belt. Journal of Wind Engineering and Industrial Aerodynamics. 1999, 83(1-3):61-69
    7 C. Y. Jim, H. H. Liu. Storm Damage on Urban Trees in Guangzhou, China. Landscape and Urban Planning. 1997, 38(1-2):45-59
    8中华人民共和国建设部. GB 50009 2001.建筑结构荷载规范.
    9 T. T. Fujita. Tornadoes and Downbursts in the Context of Generalized Planetary Scales. Journal of the Atmospheric Sciences. 1981, 38(8):1511-1534
    10 M. R. Hjelmfelt. Structure and Life Cycle of Microburst Outflows Observed in Colorado. Journal of Applied Meteorology. 1988, 27(8):900-927
    11 L. Chen, C. W. Letchford. A Deterministic-Stochastic Hybrid Model of Downbursts and its Impact on a Cantilevered Structure. Engineering Structures. 2004, 26(5):619-629
    12 T. T. Fujita. The Downburst, Report of Projects NIMROD and JAWS.University of Chicago. 1985
    13 J. McCarthy, J. W. Wilson, T. T. Fujita. The Joint Airport Weather Studies Project. Bulletin of the American Meteorological Society. 1982, 63(1):15-22
    14 D. J. Sherman. The Passage of a Weak Thunderstorm Downburst Over an Instrumented Tower. Monthly Weather Review. 1987, 115(6):1193-1205
    15 L. Jarvi, A. Punkka, D. M. Schultz, T. Petaja, H. Hohti, J. Rinne, T. Pohja, M. Kulmala, P. Hari, T. Vesala. Micrometeorological Observations of a Microburst in Southern Finland. Boundary-Layer Meteorology. 2007, 125(2):343-359
    16 K. D. Orwig, J. L. Schroeder. Near-Surface Wind Characteristics of Extreme Thunderstorm Outflows. Journal of Wind Engineering and Industrial Aerodynamics. 2007, 95(7):565-584
    17 E. C. Choi. Field Measurement and Experimental Study of Wind Speed Profile During Thunderstorms. Journal of Wind Engineering and Industrial Aerodynamics. 2004, 92(3-4):275-290
    18 G. S. Wood, K. C. Kwok, N. A. Motteram, D. F. Fletcher. Physical and Numerical Modelling of Thunderstorm Downbursts. Journal of Wind Engineering and Industrial Aerodynamics. 2001, 89(6):535-552
    19 M. T. Chay, C. W. Letchford. Pressure Distributions on a Cube in a Simulated Thunderstorm Downburst--Part a: Stationary Downburst Observations. Journal of Wind Engineering and Industrial Aerodynamics. 2002, 90(7):711-732
    20 A. Sengupta, P. P. Sarkar. Experimental Measurement and Numerical Simulation of an Impinging Jet with Application to Thunderstorm Microburst Winds. Journal of Wind Engineering and Industrial Aerodynamics. 2008, 96(3):345-365
    21 Z. Xu, H. Hangan. Scale, Boundary and Inlet Condition Effects on Impinging Jets. Journal of Wind Engineering and Industrial Aerodynamics. 2008, 96(12):2383-2402
    22 M. S. Mason. Pulsed Jet Simulation of Thunderstorm Downbursts. Master thesis of Texas Tech University. 2003
    23 A. C. McConville, M. Sterling, C. J. Baker. The Physical Simulation of Thunderstorm Downbursts Using an Impinging Jet. Wind and Structures.2009, 12(2):133-149
    24 S. Cao, A. Nishi, H. Kikugawa, Y. Matsuda. Reproduction of Wind Velocity History in a Multiple Fan Wind Tunnel. Journal of Wind Engineering and Industrial Aerodynamics. 2002, 90(12-15):1719-1729
    25 Y. Zhao, S. Cao, Y. Tamura, Z. Duan, S. Ozono. Simulation of Downburst and its Loads with Wind Tunnel Test. Journal of Vibration and Shock. 2009, 28(04):1-3
    26 M. T. Chay, F. Albermani, R. Wilson. Numerical and Analytical Simulation of Downburst Wind Loads. Engineering Structures. 2006, 28(2):240-254
    27 J. Kim, H. Hangan. Numerical Simulations of Impinging Jets with Application to Downbursts. Journal of Wind Engineering and Industrial Aerodynamics. 2007, 95(4):279-298
    28 M. S. Mason, G. S. Wood, D. F. Fletcher. Numerical Simulation of Downburst Winds. Journal of Wind Engineering and Industrial Aerodynamics. 2009, 97(11-12):523-539
    29 T. T. Fujita, H. R. Byers. Spearhead Echo and Downburst in the Crash of an Airliner. Monthly Weather Review. 1977, 105(2):129-146
    30 J. D. Holmes. Modelling of Extreme Thunderstorm Winds for Wind Loading of Structures and Risk Assesment. Wind Engineering in the 21st Century, Proceedings of the Tenth International Conference on Wind Engineering, Rotterdam, 1999:1409-1416
    31 L. Chen, C. W. Letchford. Numerical Simulation of Extreme Winds From Thunderstorm Downbursts. Journal of Wind Engineering and Industrial Aerodynamics. 2007, 95(9-11):977-990
    32 C. W. Letchford, M. T. Chay. Pressure Distributions on a Cube in a Simulated Thunderstorm Downburst. Part B: Moving Downburst Observations. Journal of Wind Engineering and Industrial Aerodynamics. 2002, 90(7):733-753
    33 A. Sengupta, F. L. Haan, P. P. Sarkar, V. Balaramudu. Transient Loads on Buildings in Microburst and Tornado Winds. Journal of Wind Engineering and Industrial Aerodynamics. 2008, 96(10-11):2173-2187
    34 M. S. Mason, G. S. Wood, D. F. Fletcher. A Simple Atmospheric Downburst Model for Wind Engineering Application. Cairns, Australia, 2007:1447-1454
    35 T. Ishihara, K. Hibi, S. Oikawa. A Wind Tunnel Study of Turbulent Flow Over a Three-Dimensional Steep Hill. Journal of Wind Engineering andIndustrial Aerodynamics. 1999, 83(1-3):95-107
    36 K. Kondo, M. Tsuchiya, S. Sanada. Evaluation of Effect of Micro-Topography on Design Wind Velocity. Journal of Wind Engineering and Industrial Aerodynamics. 2002, 90(12-15):1707-1718
    37 P. Carpenter, N. Locke. Investigation of Wind Speeds Over Multiple Two-Dimensional Hills. Journal of Wind Engineering and Industrial Aerodynamics. 1999, 83(1-3):109-120
    38 T. Takahashi, S. Kato, S. Murakami, R. Ooka, Y. M. Fassy, R. Kono. Wind Tunnel Tests of Effects of Atmospheric Stability on Turbulent Flow Over a Three-Dimensional Hill. Journal of Wind Engineering and Industrial Aerodynamics. 2005, 93(2):155-169
    39 S. Cao, T. Tamura. Experimental Study on Roughness Effects on Turbulent Boundary Layer Flow Over a Two-Dimensional Steep Hill. Journal of Wind Engineering and Industrial Aerodynamics. 2006, 94(1):1-19
    40 S. Cao, T. Tamura. Effects of Roughness Blocks on Atmospheric Boundary Layer Flow Over a Two-Dimensional Low Hill with/without Sudden Roughness Change. Journal of Wind Engineering and Industrial Aerodynamics. 2007, 95(8):679-695
    41 J. J. Finnigan, M. R. Raupach, E. F. Bradley, G. K. Aldis. A Wind Tunnel Study of Turbulent Flow Over a Two-Dimensional Ridge. Boundary-Layer Meteorology. 1990, 50(1):277-317
    42 D. E. Neff, R. N. Meroney. Wind-Tunnel Modeling of Hill and Vegetation Influence on Wind Power Availability. Journal of Wind Engineering and Industrial Aerodynamics. 1998, 74-76:335-343
    43 T. Takahashi, T. Ohtsu, M. F. Yassin, S. Kato, S. Murakami. Turbulence Characteristics of Wind Over a Hill with a Rough Surface. Journal of Wind Engineering and Industrial Aerodynamics. 2002, 90(12-15):1697-1706
    44 T. T. Ngo, C. W. Letchford. Experimental Study of Topographic Effects on Gust Wind Speed. Journal of Wind Engineering and Industrial Aerodynamics. 2009, 97(9-10):426-438
    45中华人民共和国国家质量监督检验检疫总局. GB/T 18710-2002.风电场风能资源评估方法.
    46刘旭,卢晓东.风力发电场可行性研究阶段的风资源评价.山东气象.2002, 22(1):31-32
    47 W. D. Lubitz, B. R. White. Wind-Tunnel and Field Investigation of the Effect of Local Wind Direction on Speed-Up Over Hills. Journal of Wind Engineering and Industrial Aerodynamics. 2007, 95(8):639-661
    48 S. Murakami, A. Mochida, S. Kato. Development of Local Area Wind Prediction System for Selecting Suitable Site for Windmill. Journal of Wind Engineering and Industrial Aerodynamics. 2003, 91(12-15):1759-1776
    49杨振斌,薛桁,桑建国.复杂地形风能资源评估研究初探.太阳能学报. 2004, 25(6):744-749
    50龚强,袁国恩,张云秋,汪宏宇,于华深,蔺娜,白乐生. MM5模式在风能资源普查中的应用试验.资源科学. 2006, 28(1):145-150
    51 O. Undheim, H. I. Andersson, E. Berge. Non-Linear, Microscale Modelling of the Flow Over Askervein Hill. Boundary-Layer Meteorology. 2006, 120(3):477-495
    52 F. A. Castro, J. M. Palma, L. A. Silva. Simulation of the Askervein Flow. Part 1: Reynolds Averaged Navier-Stokes Equations (K-E Turbulence Model). Boundary-Layer Meteorology. 2003, 107(3):501-530
    53 Y. Q. Xiao, C. Li, Q. S. Li, J. P. Ou, L. L. Song. Numerical Simulation of Wind Speed Distributions Over Complex Terrains. The Twelfth International Conference on Wind Engineering, Cairns, Australia, 2007:1119-1126
    54 A. G. DAVENPORT. An Approach to Human Comfort Criteria for Environmental Wind Conditions. Stockholm, 1972:
    55王宝民,刘辉志,桑建国,吴国昌,张伯寅,梁彬,庞彬,朱凤荣,钮珍南.北京商务中心风环境风洞实验研究.气候与环境研究. 2004(04):631-640
    56 T. V. Lawson, A. D. Penwarden. The Effects of Wind on People in the Vicinity of Buildings. Proceedings 4th International Conference on Wind Effects on Buildings and Structures, Heathrow, 1975:605-622
    57 M. Bottema. A Method for Optimisation of Wind Discomfort Criteria. Building and Environment. 2000, 35(1):1-18
    58 M. Bottema. Wind Climate and Urban Geometry. Ph.D. dissertation of Technical University Eindhoven. 1993
    59 A. Sanz-Andres, A. Cuerva. Pedestrian Wind Comfort: Feasibility Study of Criteria Homogenisation. Journal of Wind Engineering and Industrial Aerodynamics. 2006, 94(11):799-813
    60 E. Willemsen, J. A. Wisse. Design for Wind Comfort in the Netherlands: Procedures, Criteria and Open Research Issues. Journal of Wind Engineering and Industrial Aerodynamics. 2007, 95(9-11):1541-1550
    61 R. Yoshie, A. Mochida, Y. Tominaga, H. Kataoka, K. Harimoto, T. Nozu, T. Shirasawa. Cooperative Project for CFD Prediction of Pedestrian Wind Environment in the Architectural Institute of Japan. Journal of Wind Engineering and Industrial Aerodynamics. 2007, 95(9-11):1551-1578
    62符龙彪,夏育颖,肖从真.北京当代MOMA风载及风环境数值模拟研究.土木工程学报. 2008, 41(3):71-74
    63刘辉志,姜瑜君,梁彬,朱凤荣,张伯寅,桑建国.城市高大建筑群周围风环境研究.中国科学D辑. 2005(S1):84-96
    64陈德江,石碧青,谢壮宁.某高层建筑风环境风洞试验研究.汕头大学学报(自然科学版). 2002(01):74-80
    65 J. D. Holmes. Wind Loading of Structures. London; New York: Spon Press. 2001
    66 Y. Tamura, H. Kikuchi, K. Hibi. Quasi-Static Wind Load Combinations for Low- And Middle-Rise Buildings. Journal of Wind Engineering and Industrial Aerodynamics. 2003, 91(12-15):1613-1625
    67 P. J. Richards, R. P. Hoxey. Quasi-Steady Theory and Point Pressures on a Cubic Building. Journal of Wind Engineering and Industrial Aerodynamics. 2004, 92(14-15):1173-1190
    68 D. C. Wilcox. Turbulence Modelling for CFD. DCW Industries, Inc. 1994
    69 J. Y. Fu, Q. S. Li, Z. N. Xie. Prediction of Wind Loads on a Large Flat Roof Using Fuzzy Neural Networks. Engineering Structures. 2006, 28(1):153-161
    70 S. Huang, Q. S. Li, S. Xu. Numerical Evaluation of Wind Effects on a Tall Steel Building by CFD. Journal of Constructional Steel Research. 2007, 63(5):612-627
    71 Y. Cheng, F. S. Lien, E. Yee, R. Sinclair. A Comparison of Large Eddy Simulations with a Standard K-Epsilon Reynolds-Averaged Navier-Stokes Model for the Prediction of a Fully Developed Turbulent Flow Over a Matrix of Cubes. Journal of Wind Engineering and Industrial Aerodynamics. 2003, 91(11):1301-1328
    72 S. Kim. Large Eddy Simulation Using an Unstrcutured Mesh Based Finite-Volume Solver. Portland, Oregon, 2004:
    73 S. Murakami. Overview of Turbulence Models Applied in CWE-1997. Journal of Wind Engineering and Industrial Aerodynamics. 1998, 74-76:1-24
    74 D. Vicroy. A Simple, Analytical, Axisymmetric Microburst Model for Downdraft Estimation. NASA Technical Memorandum 104053. 1991
    75 R. Oseguera, R. Bowles. A Simple, Analytic 3-Dimensional Downburst Model Based on Boundary Layer Stagnation Flow. NASA Technical Memorandum 100632. 1988
    76 Q. Chen. Comparison of Different K-E Models for Indoor Air Flow Computations. Numerical Heat Transfer, Part B: Fundamentals. 1995, 28(3):353-369
    77 H. K. Versteeg, W. Malalasekera. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Prentice Hall. 2007
    78 F. R. Menter. CFD Best Practice Guidelines for CFD Code Validation for Reactor-Safety Applications. EC Project ECORA, Report EVOL-ECORA-D01 2002: 1-47
    79 C. Li, Q. S. Li, Y. Q. Xiao, J. P. Ou. A Revised Empirical Model for the 3-D Axisymmetric Steady-State Flow of Downbursts and Impinging Jets. 2010
    80 H. C. Chen, V. C. Patel. Near-Wall Turbulence Models for Complex Flows Including Separation. AIAA JOURNAL. 1988, 26(6):641-648
    81 B. A. Kader. Temperature and Concentration Profiles in Fully Turbulent Boundary Layers. Int. J. Heat Mass Transfer. 1981, 24(9):1541-1544
    82 L. R. Lemon, C. A. Doswell III. Severe Thunderstorm Evolution and Mesocyclone Structure as Related to Tornadogenesis. Monthly Weather Review. 1979, 107(9):1184-1197
    83 C. Li, Y. Q. Xiao, Q. S. Li, J. P. Ou. CFD Simulation of Impinging Jet with Application to Stationary Downburst. Symposium of the 14th Structural Wind Engineering Conference, Beijing, China, 2009:
    84 T. T. Fujita. Downburst: Microburst and Macroburst. Chicago, Illinois: University of Chicago Press. 1985:122
    85廖富林,杨期和.广东阴那山森林植被及其垂直分布特征.西北植物学报. 2006, 26(02):393-401
    86刘小平,董治宝.空气动力学粗糙度的物理与实践意义.中国沙漠. 2003, 23(4):337-346
    87岳天祥,王薇,于强,朱治林,王英安,张时煌,杜正平,张仁华,孙晓敏.中性条件下垂直风速廓线及其参数模拟分析.资源科学. 2006, 28(1):136-144
    88 D. M. Deaves. Computations of Wind Flow Over Changes in Surface Roughness. Journal of Wind Engineering and Industrial Aerodynamics. 1981, 7(1):65-94
    89 D. H. Wood. Internal Boundary Layer Growth Following a Step Change in Surface Roughness. Boundary-Layer Meteorology. 1982, 22(2):241-244
    90 C. Letchford, A. Gardner, R. Howard, J. Schroeder. A Comparison of Wind Prediction Models for Transitional Flow Regimes Using Full-Scale Hurricane Data. Journal of Wind Engineering and Industrial Aerodynamics. 2001, 89(10):925-945
    91 American Society Of Civil Engineers. Minimum Design Loads for Buildings and Other Structures, ASCE Standard, ASCE/SEI 7-05. American Society of Civil Engineers, 2005. New York.
    92 Architectural Institute Of Japan. AIJ Recommendations for Loads on Buildings , 2004.
    93 European Commission. Eurocode 1: Actions on Structures—Part 1-4: General Actions—Wind Actions. , European Standard, CEN TC 250. 2005.
    94 Canadian Commission On Building And Fire Codes, National Research Council Of Canada. National Building Code of Canada, 2005.
    95 Standards Association Of Australia. Structural Design Actions Part2: Wind Actions, Australian Standard, AS 1170.2. 2002.
    96陈懋章编著.粘性流体动力学基础.高等教育出版社, 2002: 515
    97 H. A. R. Bruin, C. J. Moore. Zero-Plane Displacement and Roughness Length for Tall Vegetation, Derived From a Simple Mass Conservation Hypothesis. Boundary-Layer Meteorology. 1985, 31(1):39-49
    98李倩,刘辉志,胡非,洪钟祥,李爱国.城市下垫面空气动力学参数的确定.气候与环境研究. 2003, 8(4):443-450
    99 M. B. Parlange, W. Brutsaert. Regional Roughness of the Landes Forest and Surface Shear Stress Under Neutral Conditions. Boundary-Layer Meteorology. 1989, 48(1):69-81
    100 A. Crockford, S. Hui. Wind Profiles and Forests. Master thesis of TechnicalUniversity of Denmark. 2007
    101 J. R. Garratt. Flux Profile Relations Above Tall Vegetation. Quarterly Journal of the Royal Meteorological Society. 1978, 104(439):199-211
    102 M. Athanassiadou, I. P. Castro. Neutral Flow Over a Series of Rough Hills: A Laboratory Experiment. Boundary-Layer Meteorology. 2001, 101:1-30
    103 H. Schlichting. Boundary-Layer Theory. New York: McGraw-Hill. 1979
    104 M. R. Raupach, R. A. Antonia, S. Rajagopalan. Rough-Wall Turbulent Boundary Layers. Applied Mechanics Reviews. 1991, 44:1-25
    105 E. C. C. Choi. Proposal for Unified Terrain Categories Exposures and Velocity Profiles. The Seventh Asia-Pacific Conference on Wind Engineering, Taipei, Taiwan, 2009:
    106 E. Simiu, R. H. Scanlan. Wind Effects on Structures: Fundamentals and Applications to Design. New York: Wiley-Interscience. 1996
    107 J. Bietry, E. Simiu, C. Sacre. Mean Wind Profiles and Change of Terrain Roughness. Journal of the Structural Division. 1978, 104(10):1585-1593
    108 J. Wieringa, A. G. Davenport, C. S. B. Grimmond, T. R. Oke. New Revision of Davenport Roughness Classification. Proceedings of the 3rd European & African Conference on Wind Engineering, Eindhoven, Netherlands, 2001:2-6
    109 Ris? National Laboratory. Wasp Engineering Help. Denmark. 2005
    110 J. R. Garratt. The Atmospheric Boundary Layer. Cambridge University Press. 1994:336
    111 R. G. Flay, D. C. Stevenson. Integral Length Scales in Strong Winds Below
    20 M. Journal of Wind Engineering and Industrial Aerodynamics. 1988, 28:21-30
    112贺德馨.风工程与工业空气动力学.国防工业出版社, 2006
    113 C. W. Park, S. J. Lee. Experimental Study on Surface Pressure and Flow Structure Around a Triangular Prism Located Behind a Porous Fence. Journal of Wind Engineering and Industrial Aerodynamics. 2003, 91(1-2):165-184
    114 J. R. Pearse, D. Lindley, D. C. Stevenson. Wind Flow Over Ridges in Simulated Atmospheric Boundary Layers. Boundary-Layer Meteorology. 1981, 21(1):77-92
    115 Y. F. Lun, A. Mochida, S. Murakami, H. Yoshino, T. Shirasawa. Numerical Simulation of Flow Over Topographic Features by Revised K-[Var Epsilon] Models. Journal of Wind Engineering and Industrial Aerodynamics. 2003,91(1-2):231-245
    116 A. J. Bowen, D. Lindley. A Wind-Tunnel Investigation of the Wind Speed and Turbulence Characteristics Close to the Ground Over Various Escarpment Shapes. Boundary-Layer Meteorology. 1977, 12(3):259-271
    117杨伟,金新阳,顾明,陈素琴.风工程数值模拟中平衡大气边界层的研究与应用.土木工程学报. 2007, 40(2):1-5
    118 B. Blocken, J. Carmeliet. Pedestrian Wind Environment Around Buildings: Literature Review and Practical Examples. Journal of Building Physics. 2004, 28(2):107
    119 F. H. Durgin. Pedestrian Level Wind Criteria Using the Equivalent Average. Journal of Wind Engineering and Industrial Aerodynamics. 1997, 66(3):215-226
    120 F. R. Menter. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA journal. 1994, 32(8):1598-1605
    121 F. Trochu. A Contouring Program Based on Dual Kriging Interpolation. Engineering with Computers. 1993, 9(3):160-177
    122 R. Kraichnan. Diffusion by a Random Velocity Field. Physics of Fluids. 1970, 11:21-31
    123 J. Y. Fu, Q. S. Li. Wind Effects on the World's Longest Spatial Lattice Structure: Loading Characteristics and Numerical Prediction. Journal of Constructional Steel Research. 2007, 63(10):1341-1350
    124 J. Smagorinsky. General Circulation Experiments with the Primitive Equations. I. The Basic Experiment. Monthly Weather Review. 1963:99-164
    125 J. W. Deardorff. A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Numbers. Journal of Fluid Mechanics. 1970, 41:453-480
    126 M. Germano, U. Piomelli, P. Moin, W. H. Cabot. A Dynamic Subgrid-Scale Eddy Viscosity Model. Physics of Fluids A: Fluid Dynamics. 1991, 3:1760
    127 D. K. LILLY. A Proposed Modification of the Germano-Subgrid-Scale Closure Method. PHYSICS OF FLUIDS A-FLUID DYNAMICS. 1992, 4(3):633-635
    128 W. W. Kim, S. Menon. A New Dynamic One-Equation Subgrid-Scale Model for Large Eddy Simulations. AIAA, Aerospace Sciences Meeting and Exhibit,33 rd, Reno, NV. 1995
    129 I. Fluent. Fluent6.3 User's Guide. 2007
    130 J. He, C. C. Song. A Numerical Study of Wind Flow Around the Ttu Building and the Roof Corner Vortex. Journal of Wind Engineering and Industrial Aerodynamics. 1997, 67-68:547-558
    131 S. Franchini, S. Pindado, J. Meseguer, A. Sanz-Andres. A Parametric, Experimental Analysis of Conical Vortices on Curved Roofs of Low-Rise Buildings. Journal of Wind Engineering and Industrial Aerodynamics. 2005, 93(8):639-650
    132 H. He, D. Ruan, K. C. Mehta, X. Gilliam, F. Wu. Nonparametric Independent Component Analysis for Detecting Pressure Fluctuation Induced by Roof Corner Vortex. Journal of Wind Engineering and Industrial Aerodynamics. 2007, 95(6):429-443
    133 C. W. Letchford, R. E. Iverson, J. R. McDonald. The Application of the Quasi-Steady Theory to Full Scale Measurements on the Texas Tech Building. Journal of Wind Engineering and Industrial Aerodynamics. 1993, 48:111-132
    134 Y. Uematsu, N. Isyumov. Peak Gust Pressures Acting on the Roof and Wall Edges of a Low-Rise Building. Journal of Wind Engineering and Industrial Aerodynamics. 1998, 77-78:217-231
    135 D. Banks, R. N. Meroney. The Applicability of Quasi-Steady Theory to Pressure Statistics Beneath Roof-Top Vortices. Journal of Wind Engineering and Industrial Aerodynamics. 2001, 89(6):569-598
    136 Q. S. Li, I. Calderone, W. H. Melbourne. Probabilistic Characteristics of Pressure Fluctuations in Separated and Reattaching Flows for Various Free-Stream Turbulence. Journal of Wind Engineering and Industrial Aerodynamics. 1999, 82(1-3):125-145
    137 J. D. Holmes. Non-Gaussian Characteristics of Wind Pressure Fluctuations. Journal of Wind Engineering and Industrial Aerodynamics. 1981, 17:103-108
    138 S. Ahmad, K. Kumar. Wind Pressures on Low-Rise Hip Roof Buildings. Wind and Structures. 2002, 5(6):493-514
    139 A. G. Davenport. The Dependence of Wind Load upon Meteorological Parameters. Universtiy of Toronto Press, Toronto, 1968:19-82
    140 P. J. Richards, R. P. Hoxey. Flow Reattachment on the Roof of a 6 M Cube. Journal of Wind Engineering and Industrial Aerodynamics. 2006, 94(2):77-99

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700