土工织物拉伸力学性能的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文结合土工织物的实际应用,从试验和理论两个方面针对试样宽度对土工织物拉伸性能的影响及开孔土工织物孔截面上的应力分布情况进行了分析研究,研究结果为土工织物抗拉强度的测试和实际工程应用提供了理论依据和参考。
     通过对土工织物不同宽度的拉伸试验,分析了土工织物试样宽度与断裂强度、断裂伸长率、侧向收缩率、定伸长强度、弹性模量之间的关系。结果表明:土工织物的断裂强度与试样宽度之间存在着幂函数关系,侧向收缩是影响不同宽度试样断裂强度的潜在因素;试样宽度对土工织物断裂伸长率没有明显的影响;伸长率较大时的定伸长强度同样会受试样宽度的影响;土工织物的弹性模量随试样宽度的增大略有增加。
     将边界元法应用到土工织物拉伸力学性能的研究中,编写了针对计算研究土工织物拉伸力学性能的边界元法程序。
     用边界元法程序从理论上计算分析了土工织物试样宽度与拉伸断裂强度间的关系,理论计算结果与试验结果具有相同的趋势,证实了土工织物的断裂强度与试样宽度之间存在着幂函数关系。同时从理论上计算了土工织物试样单向拉伸时试样内的应力分布情况,计算结果表明:夹头夹持试样边附近的拉应力集中现象较明显,试样在靠近夹头附近不受约束的自由边处则存在显著的剪应力集中。
     用边界元法程序分别对开有圆孔或椭圆孔或方孔的土工织物试样在单向与双向拉伸时孔截面上的应力分布情况进行了计算与分析,结果表明:土工织物孔截面上的应力集中出现在距孔边3倍左右的孔径尺寸范围内;孔边附近应力集中的程度与孔的形状、大小、位置及试样的尺寸有关。不同形状孔附近的应力集中程度还与土工织物试样的拉伸条件有关,试样单向拉伸或双向拉伸时,孔边的最大应力值不同,最大应力所出现的位置也不同。
     为验证用边界元法计算开孔土工织物应力分布的正确性,对开有不同大小圆孔或方孔的土工织物试样进行了拉伸试验。将开孔试样的理论计算断裂强度与试验所得结果进行分析对比,理论值与试验值具有相同的变化趋势,理论值较试验值偏低;通过记录开孔试样的拉伸过程,证实了土工织物孔边附近存在着应力集中现象;并根据计算结果提出了开孔土工织物安全应用的方法。
Tensile properties are very important for application of geotextiles. In order to provide theoretical bases and references for practical application, the influence of the specimen width to geotextile's tensile properties and the stress distribution of the holed geotextile were investigated on both experiment and theoretic in this thesis.
    Based on tensile testing for different width specimens of geotextiles, the relationship between specimen width and breaking strength, breaking elongation, lateral contraction, strength of fixed elongation and elasticity modulus were analyzed. The results show that there is power function between breaking strength and specimen width of geotextile affected by lateral contraction, and the specimen width has no evident effect on geotextile's breaking elongation, but has effect on the strength of fixed elongation when the fixed elongation is larger. The elasticity modulus of geotextile increases a little with increasing of the specimen width.
    Boundary element method was used to analyze tensile properties of geotextiles. The calculation program of boundary element method for geotextiles was compiled.
    The relationship between geotextile specimen width and breaking strength was calculated and analyzed with boundary element method program. The results of theoretic and experiment have same regularity. It validates that there is power function between breaking strength and specimen width of geotextile. The stress distribution in the specimen under uniaxial tension was also calculated. The results indicate that there is tensile stress concentration near two sides of the specimen gripped by the clamps, at the same time there is prominent shearing stress concentration on area of the free sides of the specimen near the clamps.
    The stress distribution on the cross section of geotextile with a circle or an ellipse or a square hole under uniaxial tension or double-axial tension was calculated with boundary element method program. The results show that the stress concentration appear at the range from the hole side to about 3 times of the hole diameter, and the degree of stress concentration near the hole is related to the shape of the hole, the size of the hole, the position of the hole and the dimension of the specimen. The stress
    
    
    
    concentration near the hole of different shape is also related to the tensile condition. When the specimen bears uniaxial tension or double-axial tension, the value of the maximum stress near the hole side is different and the position of the maximum stress is also different.
    The tensile testing of geotextile specimen with a circle hole or a square hole was carried out in order to testify the results of boundary element method. Comparing the theoretical breaking strength with the experimental breaking strength of the holed geotextile specimen, they change as uniform trend though the theoretical results are lower than the experimental results. It was proved that there is stress concentration near the hole on holed geotextile by recording the tensile process of the holed geotextile specimen. The method of reasonable application of holed geotextiles has also been put forward.
引文
[1] 《土工合成材料工程应用手册》编写委员会.土工合成材料工程应用手册(第二版).中国建筑工业出版社,2000,1-4
    [2] 包承纲主编.堤防工程土工合成材料应用技术.中国水利水电出版社,1999,12
    [3] 徐又建等编.水利工程土工合成材料应用技术.黄河水利出版社,2000,12
    [4] 周凤飞,国内外各类土工布的生产技术及应用.产业用纺织品,1995,13(1):9—12
    [5] 郑建华.土工布的应用及其发展状况.广东化纤,1999,(1):30-33
    [6] 刘玉兰.土工织物发展综述.非织造布,1996, (4):1-4
    [7] 孙天柱,沈志明.浅谈我国土工布的发展.非织造布,1999,13(3):12-13
    [8] 迟景魁,中国土工合成材料发展现状及前景,产业用纺织品,2001,19(1):1-4
    [9] 迟岩冰,齐伟峰.土工制品的发展和演化.河南交通科技,2000,20(2):28—29,59
    [10] 蔡永东.土工布的应用与发展.棉纺织技术,1999,27(7):15-18
    [11] 包承纲.我国土工合成材料应用技术发展的若干评述.全国第五届土工合成材料学术会议论文集,2000, 1-6
    [12] 钱程,储才元.土工合成材料在我国的应用和发展.上海纺织科技,2000,28(1):5—7
    [13] 胡发亭,郭奕崇等.土工合成材料的应用与发展.塑料加工,2002,35(1):47—49
    [14] 郑宁来.我国土工布的发展.塑料技术,1999,19(3):9-11
    [15] 中华人民共和国行业标准GB50290-98土工合成材料应用技术规范.中华人民共和国水利
    
    部发布.中国计划出版社,1998
    [16] N.W.M.John. Geotexiles. Blackie and Son LTD., London, 1987
    [17] National Highway Institute. Geotextile Design & Construction Guidelines Participant Notebook. 1992, 4
    [18] 杨思让,张家铭编.土工布应用技术.纺织工业出版社,1991
    [19] 杨汝楫主编.非织造布概论.中国纺织出版社,1990
    [20] 吕伟元,吴为初.高性能经编土工合成材料在我国的生产及应用.产业用纺织品,1999,17(5): 22—26
    [21] 崔世忠,王善元.经编土工布的应用及其特点.产业用纺织品,1995,13(5):30-33
    [22] 南京水利科学研究所编.土工合成材料测试手册.1991,78-97
    [23] 郭秉臣主编.非织造布的性能与测试.中国纺织出版社,1998,205-210
    [24] S. C.Shrestha, R. A. J.Bell. Wide strip tensile test of geotextiles. International Conference on Geotextiles, 2nd. 1982, 739-744
    [25] J.Baudonnel, J. P.Giroud, J. P.Goure. Experimental and theoretical study of tensile behavior of nonwoven geotextiles. International Conference on Geotextiles, 2nd. 1982, 823-828
    [26] B.Myles, I.G.Carswell. Tensile testing of geotextiles. Third International Conference on Geotextiles. Volume 3. 1986, 713-718
    [27] R. K.Rowe, S. K.Ho. Determination of geotextiles stress-stain characteristics using a wide strip test. Third International Conference on Geotextiles. Volume 3. 1986, 885-890
    [28] H.Schroeder,K.Moritz,W.Wilmers. Strip tensile test of geotextile nonwoven fabrics. Textilveredlung. 1986, 21 (3): 96-102
    [29] 郑玉琨,土工织物抗拉特性试验研究.全国第二届土工合成材料学术论文集,1990,442—447
    [30] 马梅英,陈环,郑玉琨.土工合成材料测试方法方面的论文综述.全国第二届土工合成材料学术论文集,1990,45—51
    [31] 王安江,张滨,吕丽华.试验条件对土工织物条带拉伸强度的影响.全国第二届土工合成材料学术论文集,1990,492-494
    [32] 储才元,周承元.针刺土工织物条样拉伸试验试样尺寸的探讨.全国第三届土工合成材料学术论文集,1992,46—50
    [33] 王俊林,王英杰,袁秀霞.土工织物拉伸试验研究.全国第四届土工合成材料学术论文集,1996,39—42
    [34] 袁则宏.土工合成材料筋材宽条试样拉伸特性评述.全国第五届土工合成材料学术论文集,2000,44—50
    [35] 喻宏,李作攀,储才元.不同宽度非织造布试样力学性能研究.非织造布,2000,8(1):44—45
    [36] 何朝林,魏取福.非织造土工布的拉伸性能.安徽机电学院学报,2000,15(4):62—64
    [37] M. M. K. Kan, K. Chan, W. C. Wan. Geotextile resistance. Textile Asia, 1996, 27 ( 1): 73-78
    [38] 周承元,张军英.机械破损对针刺非织造布性能的影响.产业用纺织品,1993,11(3):28—31
    [39] 迟景魁,白建颖.土工合成材料应用机理及专项研究(Ⅲ).产业用纺织品,1999,17(11):23-27
    [40] 钱程.粘合复合土工布的开发及性能研究.东华大学博士学位论文,2001,6
    [41] S.Bais-Singh, R.D.Anandjiwala, and B.C.Goswami.Characterizing Lateral Contraction
    
    Behavior of Spunbonded Nonwovens During Uniaxial Tensile Deformation. Textile Research Journal, 1996, 66:131-140
    [42] 张洪弟,谢莉青.土工织物拉伸性能测试与分析.产业用纺织品,2000,18(6):31-32,45
    [43] 谢莉青,周镭.聚丙烯机织土工织物拉伸性能测试与分析.北京纺织,2000,21(5):35—36
    [44] S. Bais-Singh and B. C. Goswami, Predicting the Biaxial Tensile Deformation Behavior of Spunbonded Nonwovens. Textile Research Journal, 1998, 68:219-227
    [45] Y.A.Gowayed, Y.Mogahzy. The frictional behaviour of nonwoven geotextiles in granular soils International Nonwovens Journal. 1994, 6 (4): 66-71
    [46] Y. E. El Mogahzy, Y. Gowayed, and D. Elton, Theory of Soil/Geotextile Interaction. Textile Research Journal, 1994, 64:744-755
    [47] H. Zhai, S. B. Mallick, D. Elton, and S. Adanur, Performance Evaluation of Nonwoven Geotextiles in Soil-Fabric Interaction. Textile Research Journal, 1996, 66:269-276
    [48] S. Adanur and T. Y. Liao, Computer Simulation of Mechanical Properties of Nonwoven Geotextiles in Soil-Fabric Interaction. Textile Research Journal, 1998, 68:155-162
    [49] S. B. Mallick, D. J. Elton and S. Adanur, A New Approach in Modeling of Soil-Geotextile Interface Behavior in Pullout Tests. Sixth International Conference on Geosynthetics, 1998, 729-732
    [50] S. H. Chew, S. A. Tan, K. H. Loke, P. Delmas and C. T. Ho, Large Scale Pullout Tests of Geotextile in Poorly Draining Soils. Sixth International Conference on Geosynthetics, 1998, 821-824
    [51] 王伟,杨尧志.土工织物与土相互作用的机理.无锡轻工大学学报,1999,18(3):107—112
    [52] S. Backer and D. R. Petterson. Some Principles of Nonwoven Fabrics. Textile Research Journal, 1960, 30:704-711
    [53] J. W. S. Hearle and P. J. Stevenson, Nonwoven Fabric Studies, Part Ⅲ: The Anisotropy of Nonwoven Fabrics. Textile Research Journal, 1963, 33:877-888
    [54] H.Novais-Ferreira, M.G.Quaresma. Anisotropy of mechanical properties of geotextiles. Third International Conference on Geotextiles. Volume 3. 1986, 719-724
    [55] 汤宝润.柔性复合材料土工布的各向异性研究.全国第四届土工合成材料学术论文集.1996,33—38
    [56] J. W. S. Hearle and P. J. Stevenson, Studies in Nonwoven Fabrics, Part Ⅳ: Prediction of Tensile Properties. Textile Research Journal, 1964, 34:181-191
    [57] J. W. S. Hearle and A. Newton, Nonwoven Fabric Studies. Part ⅩⅣ: Derivation of Generalized Mechanics by the Energy Method. Textile Research Journal, 1967, 37:778-797
    [58] J. W. S. Hearle and A. Newton, Nonwoven Fabric Studies Part XV: The Application of the fiber Network Theory. Textile Research Journal, 1968, 38:343-351
    [59] S. Erel and S. B. Warner, The Strength of Thermally Point-Bonded Nonwoven Fabric. Textile Research Journal, 2001, 71:22-30
    [60] P. N. Britton, A. J. Sampson, C.F. Jr. Elliott, H. W. Graben, and W. E. Gettys, Computer simulation of the Mechanical Properties of Nonwoven Fabrics, Part Ⅰ: The Method. Textile Research Journal, 1983, 53:363-368
    [61] T. H. Grindstaff and S. M. Hansen, Computer Model for Predicting Point-Bonded Nonwoven Fabric strength, Part Ⅰ . Textile Research Journal, 1986, 56:383-388
    
    
    [62] P. N. Britton, A. J. Sampson, and W. E. Gettys, Computer simulation of the Mechanical Properties of Nonwoven Fabrics, Part Ⅱ: Bond Breaking. Textile Research Journal, 1984, 54: 1-5
    [63] P. N. Britton, A. J. Sampson, and W. E. Gettys, Computer simulation of the Mechanical Properties of Nonwoven Fabrics, Part Ⅲ: Fabric Failure. Textile Research Journal, 1984, 54:425-428
    [64] 李作攀,储才元.非织造布力学性能的模拟及其应用探讨.中国纺织大学学报,1998,24(2):1—4
    [65] T. J. Kang and W. R. Yu, Drape Simulation of Woven Fabric by Using the Finite-element Method. Journal of the Textile Institute, 1995, 86:635-648
    [66] L. Gan, N. G. Ly and G. P. Steven, A Study of Fabric Deformation Using Nonlinear Finite Elements. Textile Research Journal, 1995, 65:660-668
    [67] W. A. Munro, G. A. Carnaby, A. J. Carr, and P. J. Moss, Some Textile Applications of Finite-element Analysis Part Ⅰ: Finite Elements for Aligned Fibre Assemblies. Journal of the Textile lnstitute, 1997, 88:325-338
    [68] W. A. Munro, G. A. Carnaby, A. J. Carr, and P. J. Moss, Some Textile Applications of Finite-element Analysis Part Ⅱ: Finite Elements for Yarn Mechanics. Journal of the Textile Institute, 1997, 88:339-351
    [69] 顾伯洪.纺织材料力学性能研究有限元方法应用综述.中国纺织大学学报,1998,24(3):106—109
    [70] T. Y. Liao, S. Adanur, and J.Y. Drean, Prediction the Mechanical Properties of Nonwoven geotixtiles with the Finite Element Method. Textile Research Journal, 1997, 67:753-760
    [71] S. Bais-Singh, S. B. Biggers, Jr., and B. C. Goswami, Finite Element Modeling of the Nonuniform Deformation of Spun-Bonded Nonwovens, Textile Research Journal, 1998, 68:327-342
    [72] 顾伯洪.非织造布拉伸性能有限元模拟计算.纺织学报.1998,19(3):12-13,7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700