斑痣悬茧蜂对甜菜夜蛾幼虫的搜寻行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于寄生蜂适应度的实现几乎完全取决能否找到适宜的寄主,故研究搜寻行为就成为探究寄生蜂生活史进化的重要内容。由于室内观察的便利和野外直接观察的限制,长期以来对寄生蜂搜寻行为的研究往往在室内小环境中进行,但观察结果与野外实际表现常常存在不同程度的差异,故需要设计接近于野外的环境来探究寄生蜂真实的搜寻选择行为。衡量寄生蜂的寄主选择性一般用寄生率大小表示,但由于寄生蜂对寄主的产卵选择表现不仅受试验观察环境的影响,而且受到自身生理状态变化的影响,故探究新的估计寄生蜂选择性的变量,就成为寄生蜂搜寻行为生态学研究面临的重要挑战。对此,本论文实验研究以斑痣悬茧蜂[Meteorus pulchricornis (Wesmael)]孤雌生殖品系及其寄主甜菜夜蛾[Spodoptera exigua (Hubner)]幼虫为对象,在接近于野外开放环境的大罩笼中,观察寄生蜂对不同龄期寄主幼虫的搜寻选择行为;并探索运用寄主识别期作为变量,采用生存分析(失效事件分析)中的风险估计模型,估计寄生蜂的寄主选择性。获得以下结论:
     1.斑痣悬茧蜂在室内条件下的寄主搜寻行为
     (1)非选择性试验
     室内条件下采用非选择性试验,观察了斑痣悬茧蜂对甜菜夜蛾不同龄期幼虫的产卵的识别期,用生存分析模型估计寄主被寄生的风险,并研究了寄生经历对该分析的影响。研究结果表明,与2龄寄主幼虫(参照虫龄)相比,3~5龄寄主幼虫被寄生的累计风险比率显著提高(2.6-4.O倍);而当寄生蜂具有1次寄生经历后再次寄生,对2~4龄幼虫的识别期显著缩短,3~5龄寄主幼虫被寄生的风险与2龄幼虫没有显著差异。由此推测,无寄生经历的斑痣悬茧蜂对较高龄期甜菜夜蛾幼虫表现出明显偏好。
     (2)选择性试验
     室内条件下采用选择性实验,观察了斑痣悬茧蜂对甜菜夜蛾不同龄期幼虫的选择频次,用‘'Manly选择比率”(w)估计寄生蜂的选择性。结果表明,无论首次寄生还是再次寄生,斑痣悬茧蜂倾向于选择高龄寄主幼虫。例如,在首次寄生中,斑痣悬茧蜂不选择1龄幼虫,选择2龄寄主的比例最低(10%),但对4龄和5龄幼虫的寄生比例为70%;在再次寄生,很少选择1龄幼虫(3.0%),但对4龄和5龄幼虫的寄生比例为73.0%。
     2.斑痣悬茧蜂在野外条件下的寄主搜寻行为
     (1)对各龄期相同密度寄主幼虫的搜寻
     在室外大型纱笼(长×宽×高=2.5×2.5×1.8)中,采用固定时刻瞬间观察法,记录斑痣悬茧蜂对不同寄主斑块的搜寻与选择行为;然后回收寄主单头饲养,记录寄生数量。结果表明,寄生率随寄主龄期的增大而增大,寄生蜂针刺斑块上寄主的比率基本是随着龄期的增大而不断增大,寄生蜂针刺1龄寄主和2龄期寄主幼虫的比率分别是13%和16%,而针刺3-5龄寄主幼虫的比例高达70%;从寄生比率来看,1-2龄寄主被寄生的比率较低(比例占18%),3-4龄期寄主被寄生的比率与5龄寄主幼虫的寄生比率高达82%。对寄生蜂在不同寄主斑块上的寄生识别期进行的Cox回归模型拟合表明,与1龄寄主幼虫(参照虫龄)相比,只有3龄幼虫被寄生的累计风险比例高于1龄寄主幼虫,2、4、5龄寄主幼虫被寄生的累计风险比例与1龄幼虫无显著差异。
     (2)对各龄期不同密度寄主幼虫的搜寻
     野外条件下甜菜夜蛾幼虫的数量随着龄期的增大而减少,为了进一步探明野外条件下寄生蜂对不同龄期寄主的选择偏好,在野外受控条件下,采用(3×3)拉丁方设置寄主斑块,结果表明,寄生蜂发现斑块上寄主数量的比率始终是随着龄期的增大而不断增大,寄生蜂发现1-2寄主和3-4龄寄主幼虫的比率分别是23%和28%,而发现5龄寄主幼虫的比例高达49%;3-4龄寄主被寄生的比率与5龄寄主幼虫被寄生的比率约是1-2龄寄主的3倍(占41%和35%)对寄生蜂识别不同寄主识别期的Cox回归模型拟合分析表明,各龄期之间被寄生的风险差异不显著,但寄主被选择寄生的比率随寄主龄期的增大而增大。
As the fittness of parasitoids depend on hosts they could find and oviposit, research of foraging behavior has been in focus for study of life history parasitoids. Owing to convenience to study parasitoid behaviours in the lab but difficulty in the field, most of foraging behaviors of parasitoids are studied in the lab. However, what are observed in the lab may not reflections of that performed in the field. Host prefenece of parasitoids are usually measured by parasitism rate, but parasitization of parasitoids can be influenced by both environmental factors and physiological states of parasitoits. Therefore, variables other than parasitism rate are needed for the evaluation of host preference in parasitoids, which are the chanllenges facing behavioral ecologists. The thesis study was conducted to observe foraging behaviors of Meteorus pulchricornis (Wesmael) in a large walk-in cage in the outdoor as compared to those in small cages in the lab. In addition to the traditional variable (parasitism rate) for measuring host selection, the host recognition time was used to measure selection of parasitoids by fitting to Cox proportional hazard model. The main results obtained are summarized as followed below.
     1. Foraging behaviors of Meteorus pulchricornis in the laboratory
     (1) Non-choice experiments
     To assess the parasitization hazard of different instar larvae of Spodoptera exigua by Meteorus pulchricornis, the host recognition time of first and subsequent launches were recorded under non-choice condition, and fitted by Cox proportional hazard model of survival analysis. The results showed that L1 host was not susceptible to parasitism, but L3 to L5 hosts were more prone to be attacked than L2 ones by 2.6-4.0 fold. However, survival curves, measuring the fraction of host larvae unparasitized, were compared for the first and subsequent attacks, which indicated that the host recognition time for the first attack on L2-L4 was much less than for the subsequent attack. The study suggests that higher instar larvae are more likely to be attacked by naive parasitoids.
     (2) Choice experiments
     In order to study the host-instar selection of Meteorus pulchricornis, a choice-experiment was conducted in the lab, and host selection frequencis were observed and estimated by Manly's selection ratio. Under the multiple-choice condition, the parasitoids preferred higher instar larvae at both first and subsequent attacks as measured by oviposition, where the relative selection ratio in terms of Manly standardized selection ratio was 70% for L4 plus L5 hosts and only 10% for L2 host in the first attack, and 73% for L4 plus L5 hosts and 3.0% for L1 host in the successive attack.
     2. Foraging behavior of Meteorus pulchricornis in the open-field
     (1) Foraging behavior for host instars with same density
     In order to study the difference of parasitoids behaviors between the lab and field, half-field experiment was conducted in a cage (2.5×2.5×1.8) with random patches. Foraging behaviors of parasitoids to different host instars were observed instantaneously, and the parasitism rates were caculated. The results showed that parasitism rate was higher in the old patches than in the young ones, the selection ratio of host patches was correlative with the host instar positively. The sting ratio of L1 and L2 were 13% and 16%, but it was up to 70% from L3 to L5, the parasitism ratio was lower on L1-L2 host patches(18%), but it was higher on L3-L5 host patches(82%). Cox proportional hazard model fitted by the host recognition time showed that L3 were more prone to be attacked than L1. However, there were no significant differences among L1, L2, L4 and L5.
     (2) Foraging behavior of parasitoid to host instars with different density
     In the open-field, the number of hosts often decreased with host instars. To research into the host preference of parasitoids in the field and the influence of host density, the semi-field experiment with different levels of host density was conducted. The results showed that parasitism rate was positively correlated with host instars. The detection rate of L1-2-host patches and L3-4-host patches were 23% and 28% respectively, but was up to 49% for L5-host patch. The parasitism rate was higher in old-host patches than the younger by three-fold. Cox-proportional hazard model fitted by the host recognition time showed that there was no difference among L1-5 host larvae, but the older hosts were preferred to the younger.
引文
1. 曹爱华,郭林.1990.武汉大学学报(自然科学版),4:103-108.
    2. 甘明,苗雪霞,丁德诚.2003.日本柄瘤蚜茧蜂与其寄主豆蚜的相互作用:寄主龄期选择及其对发育的影响.昆虫学报,46(5):598-604.
    3. 郭林芳,李保平.2008.斑痣悬茧蜂寄生对甜菜夜蛾幼虫取食和食物利用的影响.昆虫学报,51(10):1017-1021.
    4. 何俊华,施祖华,刘银泉.2002.中国甜菜夜蛾寄生蜂名录.浙江大学学报,28(5):473-479.
    5. 何丽芬等.1990.影响松毛虫赤眼蜂性比的因素.昆虫天敌,12(2):66-70.
    6. 侯照远,严福顺.1997.寄生蜂寄主选择性为研究进展.昆虫学报,40(1):94-108.
    7. 康晓霞,杨益众,赵光明,张小丽,杨进.2007.卷叶螟绒茧蜂寄生棉大卷叶螟的行为及其与寄主密度的关系.植物保护学报,34(1):22-26.
    8. 李元喜,刘树生.1999.寄主对拟寄生昆虫产卵行为的防御.中国生物防治,15(3):130-134.
    9. 刘小侠,张青文,蔡青年,李建成,董杰.2004.Bt杀虫蛋白对不同品系棉铃虫和中红侧沟茧蜂生长发育的影响.昆虫学报,47(4):461-466.
    10.刘小侠,张青文,李建成,徐静.2004.寄主大小对中红侧沟茧蜂产卵和发育的影响.中国生物防治,20(2):110-113.
    11.刘亚慧,李保平.2006.斑痣悬茧蜂对甜菜夜蛾幼虫龄期的选择及生长发育的研究.南京农业大学学报,29(2):66-70.
    12.娄永根,汪霞,杜孟浩,周国鑫,王霞.2005.寄生性天敌寄生行为及研究中应注意的若干问题.生态学杂志,24(4):438-442.
    13.邱鸿贵,何丽芬,沈伯钧等.1989.昆虫学报,32:129-134.
    14.邱鸿贵,邱中良,沈伯钧,符文俊.2001.啮小蜂寄主接受行为的研究.昆虫天敌,23(3):97-108.
    15.孙新涛,林乃铨,王黎明,陈和杰.2003.化学和物理因子在寄生蜂寻找寄主过程中的作用.武夷科学,19:230-237.
    16.陶敏,李保平,孟玲.2010.甜菜夜蛾不同龄期幼虫被斑痣悬茧蜂寄生的风险分析.生态学杂志,29(1):75-78.
    17.伍和平,李保平.2007.补充营养对斑痣悬茧蜂寿命和取食行为的影响.中国生物防治,23(2):184-187.
    18.谢正华,周祖基,杨伟,等.2006.寄生经历对川硬皮肿腿蜂寄主搜索行为的影响.昆虫知识,(4):1791-1797.
    19.徐建祥,昊进才,程遐年,Shelton AM.2001.岛弯尾姬蜂的寄主搜寻行为.江苏农业研究,22(2):33-38.
    20.徐清华.2007.可疑柄瘤蚜茧蜂对不同龄期和体型大小黑豆蚜的选择性及其适合度表现.昆虫学报,50(5):488-493.
    21.许维岸,李照会,李强.1997.绒茧蜂生物学和生态学特性.山东农业大学学报,28(2):221-227.
    22.杨德松.2009.斑痣悬茧蜂搜索和选择寄主行为的研究.南京农业大学博士论文.
    23.尹丽红,王琛柱,饮俊德.2001.棉铃虫齿唇姬蜂对棉铃虫血淋巴酚氧化酶的影响.科学通报,46(15):1303-1397.
    24. Agelopoulos DA, Keller MA.1994. Plant-natural enemy association in the tritrophic system, Cotesia rubecula P ieris rep ae-B rassiceae (Cruciferae):E. Sources of infochem icals. Chem Ecol., 20:1725-1734.
    25. Agelopoulos NG, Dicke M, Posthumus MAJ.1995. Chem. Ecol.,21:1789-1811.
    26. Ardeh MJ, de Jong PW, van Lenteren JC.2005. Intra-and interspecific host discrimination in arrhenotokous and thelytokous Emtmoeerus spp. Biological Control,33:74-80.
    27. Askari A. Coppel HC.1977. Observations on courtship and mating behavior of Meteorus pulchricornis, a gypsy moth parasitoid. Annals of the Entomological Society of America,70: 655-659.
    28. Bell WJ.1991. Searching behaviour. The behavioural ecology of finding resources. Chapman and Hall.
    29. Bernstein C, Driessen G.1996. Patch-marking and optimal search patterns in the parasitoid Venturia canescens. Anim Ecol.,65:211-219.
    30. Bernstein C, Jervis MA.2007. Food-searching in parasitoids:the dilemma of choosing between 'intermediate'or future fitness gains. In Behavioural Ecology of Parasitoids, ed. Wajnberg E, van Alphen JJM. pp.129-171.
    31. Bernstein C, Kacelnik A, Krebs JR.1988. Individual decisions and the distribution of predators in a patchy environment. Anim Ecol.,57:1007-1026.
    32. Bernstein C, Kacelnik A, Krebs JR.1991. Individual decisions and the distribution of predators in a patchy environment. Ⅱ. The influence of travel costs and structure of the environment. Anim Ecol., 60:205-225.
    33. Boo KS, Yang JPJ.1998. A sia-Pacific. Entomol.,1:123-129.
    34. Bressers M, Meelis E, Haccou P, Kruk M.1991. When did it really start or stop:the impact of censored observations on the analysis of duration. Behav Processes,23:1-20.
    35. Casas J.2001. Host location and selection in the field. In:Hochberg ME, Ives AR, eds. Parasitoid Population Biology, Princeton:Princeton University Press,17-26.
    36. Chanov EL, Stephens DW.1988. On the evolution of host selection and clutch size in parasitoids. American Naturists,132:707-722.
    37. Charnov EL.1976. Optimal foraging:the marginal value theorem. Theor Popul Biol.,9:129-136.
    38. Collett D.1994. Modelling survival data in medical research. Chapman and Hall.
    39. Comins HN, Hassell MP.1979. The dynamics of optimally foraging predators and parasitoids. Anim Ecol.,48:335-351.
    40. Cox DR.1972. Regression models and life tables. JR Stat Soc B.,74:187-220.
    41. Crawley MJ.2005. The R book. England:John Wiley & Sons, Ltd:787-810.
    42. Desouhant E, Driessen G, Amat I, Bernstein C.2005. Host and food searching in a parasitic wasp Venturia canescens:a trade-off between current and future reproduction? Anim Behav.,70: 145-152.
    43. Doutt RL.1959. The biology of parasitic Hymenoptera. Annual Review of Entomology,4:161-182.
    44. Driessen G, Bernstein C, van-Alphen JJM, et al.1995. A count-down mechanism for host search in the parasitoid Venturia canescens. Journal of Animal Ecology,64:117-125.
    45. Driessen G, Bernstein C.1999. Patch departure mechanisms and optimal host exploitation in an insect parasitoid. Anim Ecol.,68:445-459.
    46. Eigenbrode SD, Bernays EA.1997. Evaluation of factors affecting host plant selection, with an emphasis on studying behavior. In:Dent D R and M P Walton. ed. Methods in ecological and agricultural emtomology. London:CAB International:147-169.
    47. Eigenbrode SD, Espelie KE. Shelton AM.1991. Behavior of neonate diamondback moth larvae on leaves and leaf waxes of resistant and susceptible cabbages. Journal of Chemical Ecology,17: 1691-1704.
    48. Foster SP, Harris MO.1992. Foliar chemicals of wheat and related grasses influencing oviposition by Hessian fly, Mayetiola destructor (Say) (Diptera:Cecidomyiidae). Journal of Chemical Ecology, 18:1965-1980.
    49. Fox GA.2001. Failure-time analysis. In:Scheiner SM, Gurevitch J. eds. Design and analysis of ecological experiments. New York:Oxford University Press:235-266.
    50. Frenoy C, Durier C, Haw litzky NJ.1992. Chem Ecol.,18:761-773.
    51. Fretwell SD, Lucas HL.1970. On territorial behaviour and other factors influencing habitat distribution in birds. Acta Biotheor.,19:16-36.
    52. Fuester RW, Taylor PB, Peng H.1993. Laboratory biology of a uniparental strain of Meteorus pulchricornis (Hymenoptera:Braconidae), an exotic larval parasite of the gypsy moth (Lepidoptera:Lymantriidae). Annual of the Entomology Society of America,86:298-304.
    53. Futuyma D.1998. Ecological Specialization and Generalization. In:Fox WC, Roff AD and Faurbain JD. eds. Evolutionary Ecology, Concepts and Case Studies. London:Oxford University Press:177-189.
    54. Godfray HCJ.1994. Parasitoids:Behavioral and Evolutionary Ecology. Princeton, New Jersey: Princeton University Press.
    55. Green RF.1987. Stochastic models of optimal foraging. In:Kamil AC, Krebs JR, Pulliam HR (eds) Foraging behaviour. Plenum, New York,273-302.
    56. Haccou P, de Vlas SJ, van Alphen JJM, Visser ME.1991. Information processing by foragers: effects on intra-patch experience on the leaving tendency of Leptopilina heterotoma. Anim Ecol.,60: 93-106.
    57. Haccou P, Glaizot O, Cannings C.2003. Patch leaving strategies and superparasitism:an asymmetric generalised war of attrition. Theor Biol.,225:77-89.
    58. Haccou P, Meelis E.1992. Statistical analysis of behavioural data. An approach based on time-structured models. Oxford University Press.
    59. Hamelin F, Bernhard P, Nain P, Wajnberg E.2006a. Foraging under competition:evolutionarily stable patch-leaving strategies with random arrival times.
    60. Harvey JA, Strand MR.2002. The developmental strategies of endoparasitoid wasps vary with host feeding ecology. Ecology,83:2349-2451.
    61. Hassell MP.2000. The Spatial and Temporal Dynamics of Parasitoid Interactions. Oxford University Press.
    62. Hassell MP, Southwood TRE.1978. Foraging strategies of insects. Ann Rev Ecolog Syst.,9:75-98.
    63. Heimpel GE, Casas J.2008. Parasitoid foraging and oviposition behavior in the Field. In:Wajnberg E, Bernstein C, van Alphen J, eds. Behavioral Ecology of Insect Parasitoids. London:Blackwell Publishing,51-70.
    64. Hemerik L, Driessen G, Haccou P.1993. Effects of intra-patch experiences on patch time, search time and searching efficiency of the parasitoid Leptopilina clavipes. Anim Ecol.,62:33-44.
    65. Hoffmeister TS, Babendreier D, Wajnberg E.2006. Statistical Tools to Improve the Quality of Experiments and Data Analysis for Assessing Non-Target Effects. In:Bigler F. Babendreier D. Kuhlmann U. Environmental Impact of Invertebrates for Biological Control of Arthropods: Methods and Risk Assessment. Wallingford:CABI. Publishing:222-241.
    66. Honda JY, Luck RF.2001. Interactions between host attributes and wasp size:a laboratoryevalution of Trichogramma platneri as an augmentative biological control agent for two avocado pests. Entomologia Experimentalis et Applicata,100(1):1-13.
    67. Ives AE, Hochberg M.2000. Conclusions:Debating Population Biology over Next Twenty Years. In:Hochberg ME and Anthony El. Ed. Parasitoid Population Biology. New Jersey:Princeton University Press,278-303.
    68. Iwasa Y, Higashi M, Yamamura N.1981. Prey distribution as a factor determining the choice of optimal foraging strategy. Am Nat.,117:710-723.
    69. Jacques JM. van Alphenl, Carlos Bernstein, Gerard Driessen.2003. Information acquisition and time allocation in insect parasitoids. Ecology and Evolution,18(2):81-87.
    70. Lee ET, Wang JW.2003. Statistical Methods for Survival Data Analysis. Third Edition. New Jersey: Wiley & Interscience:8-18.
    71. Lessells CM.1995. Putting resource dynamics into continuous input ideal free distribution models. Anim Behav.,49:487-494.
    72. Lewis WJ, SparksA N, Redlinger LMJ.1971. Econ Emtomol.,64:557-558.
    73. Lewis WJ, Martin JWR.1990. Semiochemicals for use with parasitoids:status and future. Chem Ecol.,16(11):3067-3089.
    74. Lewis, WJ, Tumlinson JH.1988. Host detection by chemically mediated associative learning in a parasitic wasp. Nature,331:257-259.
    75. Liu SS, Jiang LH.2003. Differential parasitism of diamondback moth larvae by the parasitoid Cotesia plutellae on two host plant species. Bulletin of Entomological Research,93(1):65-72.
    76. Liu Y, Li B,2006. Developmental interactions between Spodoptera exigua (Noctuidae:Lepidoptera) and its uniparental endoparasitoid Meteorus pulchricornis (Braconidae:Hymenoptera). Biological Control,38:264-269.
    77. Liu Y, Meng L, Li B.2008. Effects of Helicoverpa armigera (Noctuidae:Lepidoptera) host stages on some developmental parameters of the uniparental endoparasitoid Meteorus pulchricornis (Braconidae, Hymenoptera). Bulletin of Entomological Research,98:109-114.
    78. Mackauer M, Michaud JP, Volkl W.1996. Host choice by aphid parasitoids (Hymenoptera: Aphidiidae):host recognition, host quality, and host value. Canadian Entomologist,128:959-980.
    79. Manly BFJ, McDonald LL, Thomas DL, McDonald TL, Erikson WP.2002. Resource Selection by Animals. The Netherlands:Kluwer Academic Publishers.
    80. Masaki Y, Nguyen NBC, Kaoru M.2009. Host movement initiates oviposition behavior of Meteorus pulchricornis, a braconid parasitoid of free-living lepidopteran larvae. Appl Entomol Zool.,44(1):53-59.
    81. Mills NJ, Wajnberg E.2008. Optimal foraging behavior and efficient biological control. In: Wajnberg E, Bernstein C, van Alphen J. Behavioral Ecology of Insect Parasitoids. London: Blackwell Publishing:3-30.
    82. Murdoch WW. Briggs CJ.1996. Theory for biological control:Recent developments. Ecology,77: 2001-2013.
    83. Nelson JM, Roitberg BD.1993. Factors governing host discrimi nation by opius dimidiatus (Hymenoptera:Braconidae). Insect Behav.,6:13-24.
    84. Nelson JM, Roitberg BD.1995. Flexible patch time allocation by the leafminer parasitoid, Opius dimidiatus. Ecol Entomol.,20:245-252.
    85. Nordlund DA.1981. Semiochemicals:a review of the terminology. In Nordlund D A., Jones R L. and Lewis W J. eds. Semiochemicals their role in pest control. John wiley, New York.
    86. Nufio CR, Papaj DR,2001. Host marking behavior in phytophngous insects and parasitoids. Entomol Expt Appl.,99:273-293.
    87. Orphanides GM, Gonzales D.1970. Effects of adhesive materials and host location on parasitization by unparental race of Trichogramma pretiosum. Econ. Ent.,63:1891-1898.
    88. Pierre JS, van Baaren J, Boivin G.2003. Patch leaving decision rules in parasitoids:do they use sequential decisional sampling? Behav Ecol Sociobiol.,54:147-155.
    89. R Development Core Team.2007. R:A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL. [2010-4-30]. http://www.R-project.org.
    90. Romeis J, Shanower TG, Zebitz CPW. J.1997. Chem Ecol.,23:2455-2465.
    91. Rosenheim JA.1999. The relative contributions of time and eggs to the cost of reproduction. Evolution,53:376-385.
    92. Rosenheim JA.1996. An evolutionary argument for egg limitation. Evolution,50:2089-2094.
    93. Sahragard A, Jervis MA, Kidd NAC.1991. Influence of host availability on rates of oviposition and host feeding, and on longevity in Dicondylus indianus Olmi (Hymenoptera:Dryinidae), a parasitoid of the Rice Brown Planthopper, Nilaparvata lugens Stal (Hemenoptera:Delphacidae). Journal of Applied Entomology,112:153-162.
    94. Sait SM, Andreev RA, Begon M, Thompon DJ, Harvey JA, Swain RD.1995. Venturia canescens parasitizing Plodia interpunctella:Host vulnerability-a matter of degree. Ecological Entomology, 20:199-201.
    95. Salt G.1937. Experimental studies in insect Parasitism.V.Thesense used by Trichogramma todistinguish between parasitized and unparasitized hosts. Proc. Roy. Soc., London, B 122:57-75.
    96. Shiojiri K, Ozawa R, Takabayashi J.2006. Plantvolatiles, rather than light, determine the nocturnal behavior of a caterpillar. P LoS Biol.,4:1044-1047.
    97. Singer MC.1982. Quantification of host preference by manipulation of oviposition behavior in the butterfly Euphydryas editha. Oecologia,52:224-229.
    98. Singer MC.1986. The definition and measurement of oviposition preference in plant-feeding insects. In:Miller JR, Miller TA. ed. Insect-Plant Interactiions. New York:Springer-Verlag,65-94.
    99. Strand MR, Vinson SB.1982. Behavioral response of the parasitoid Cardiochiles nigriceps to a kairomone. Entomol Exp Appl.,31:308-315.
    100. Takashi O, Ceryngier P.2000. Host discrimination in Dinocampus coccinellae (Hymenoptera: Braconidae), a solitary parasitoid of coccinellid beetles. Applied Entomology and zoology,35(4): 535-540.
    101. Tenhumberg B, Keller MA, Possingham HP.2001a. Using Cox's proportional hazard models to implement optimal strategies:an example from behavioural ecology. Math Comput Model,33: 597-607.
    102.Turlings TCJ, Turlings JH.1992. Tumlinson Systemic release of chemical signals by herbivore-injured corn. Proc. Natl. Acad. Sci., USA,89:8399-8402.
    103. Turlings TCJ, McCall PJ, Albom HT, Tumlinson JH.1993. An elicitor in caterpillar oral secretions that induces corn seedlings to emit chemical signals attractive to parasitic was. Chem. Ecol.,19: 411-425.
    104. Turlings TCJ, Tumlinson JH, Lewis WJ.1990. Science,250:1251-1253.
    105. van Alphen JJM, Bernstein C, Driessen G.2003. Information acquisition and time allocation in insect parasitoids. Trends in Ecology and Evolution,18(2):81-87.
    106. van Alphen JJM, Bernstein C.2008. Information acquisition, information processing, and patch time allocation in insect parasitoids. In:Wajnberg E, Bernstein C, van Alphen J. Behavioral Ecology of Insect Parasitoids. London:Blackwell Publishing:172-192.
    107. van Alphen JJM, Vet LEM.1986. An evolutionary approach to host finding and selection. In: Waage J, Greathead D (eds) Insect parasitoids. Academic Press,23-61.
    108. Van Emden HF.1963. Observations on the effect of flowers on the activity of parasitic Hymenoptera. Entomol Mon Mag.,98:265-270.
    109. van der Meer J.1997. The ideal free distribution when predators differ in competitive abilities. Oikos,80:301-310.
    110. van Lenteren GC, Cock MJW.2006. Environmental Impact of Invertebrates for Biological Control of Arthropods:Methods and Risk Assessment. In:Bigler F. Babendreier D. Kuhlmann U. Wallingford:CABI Publishing:45-60.
    111. van Roermund HJW, Hemerik L, van Lenteren JC.1993. The leaving tendency of the parasitoid Encarsia formosa foraging for whitefly on tomato leaflets. Exp App Entomol.,4:53-60.
    112. Vet LEM.2001. Parasitoid searching efficiency links behaviour to population processes. Appl. Entomol Zool.,36(4):399-408.
    113. Vinson SB, Barfield CB, Henson RD.1977. Oviposition behavior of bracon mellitor, a parasitoid of the boll weevil(Anthonomus grandis). Ⅱ.Assosiative learning. Physiol Ent.,2:157-164.
    114. Vinson SB, Bin F, Vet EM.1998. Critical Issues in Host Selection by Insect Parasitoids. Biological Control,11:77-78.
    115. Vinson SB.1976. Host selection by insect parasitoids. Annual Review of Entomology,21:109-133.
    116. Vinson SB.1998. The general host selection behaviour of parasitoid Hymenoptera and a comparison of initial strategies utilized by larvaphagous and oophagous species. Biological Control, 11:79-96.
    117. Vison SB.1985. The behaviour of parasitoids. In G. A. Nordlund, R.L. Jones and W. J. Lewis, eds., Semiochemicals, Their Role in Pest Control, John Wiley, New York,51-78.
    118. Waage JK.1979. Foraging for patchily-distributed hosts by the parasitoid, Nemeritis canescens. Anim Ecol.,48:353-371.
    119. Wajnberg E.2006. Time allocation strategies in insect parasitoids:from ultimate predictions to proximate behavioral mechanisms. Behav Ecol Sociobiol.,60:589-611.
    120. Wajnberg E, Curty C, Colazza S.2004. Genetic variation in the mechanisms of direct mutual interference in a parasitic wasp:consequences in terms of patch-time allocation. Anim Ecol.,73: 1179-1189.
    121. Wajnberg E, Rosi MC, Colazza S.1999. Genetic variation in patchtime allocation in a parasitic wasp. Anim Ecol.,68:121-133.
    122. Yamamura N, Tsuji N.1987. Optimal patch time under exploitative competition. Am Nat.,129: 553-567.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700