保护地土壤酸度特征及酸化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
保护地集约化栽培,复种指数高、大量施用化肥,加上缺少雨水淋洗、温度高等特殊环室内境条件,致使保护地使用若干年后,酸化、次生盐渍化、养分不平衡等诸多土壤退化问题随之产生。本文选择辽宁地区典型保护地作为研究对象,自辽宁西部的朝阳市、东部的丹东市和清源县、北部的铁岭市、中部的沈阳市东陵区和于洪区,采集不同类型、不用利用年限和不同深度层次的保护地土壤样品,采用室内分析化验和数理统计分析的方法,从土壤pH的地区分布及剖面分异、土壤活性酸度和潜在酸度、有机质含量及盐分含量及土壤离子组成等方面,对保护地土壤酸化的特征、原因、过程、机理进行了较为系统地研究,探讨了保护地土壤盐分积累及其组成变化与土壤酸化的关系。
     1.保护地土壤酸度现状
     按地区分类辽宁地区保护地土壤pH值高低排列顺序为:朝阳地区>清源地区>铁岭地区>丹东地区>沈阳东陵地区>沈阳于洪地区。
     就同一地区土壤而言,丹东地区保护地土壤pH值随着由露地改为保护地后使用年限的增长而上升,其它地区保护地土壤pH则随着改为保护地使用年限增长而下降,即表现出酸化趋势,且几乎每一地区均有pH值小于5.50的土壤样品出现。显然这与改作保护地前当地土壤pH有关。用作保护地前中性和碱性土壤pH下降,而酸性土壤pH值上升。
     就同一地点、不同深度层次土壤而言,朝阳、铁岭、沈阳东陵和于洪地区保护地土壤pH值均呈现0~20cm土层<20~40cm土层<40~60cm土层<60~80cm土层的分布规律。表层土壤(0~20cm)的pH值要远远低于其下各层次土壤;20cm以下各层次间土壤pH值的差异较小,至80cm深处已经近露地土壤pH值。而丹东、清源两地保护地0~80cm各土层土壤的pH值则表现为表层高于下层、即随着土层深度的增加其pH值逐渐降低的趋势。
     就同一地点、同一深度层次、不用种植年限的土壤而言,随着种植年限的增加,保护地土壤的pH值是持续下降的,但是在前1~4年左右下降速度缓慢,甚至有所上升;其后随着保护地种植年限的延长,pH值下降速度加快。
     2.保护地土壤酸化特征
     露地改为保护地栽培蔬菜后,土壤活性酸、交换性酸(EA)、非交换性酸(NEA)含量和交换性盐基(EB)总量、阳离子交换量(CEC)明显增加,且表层土壤增加趋势比下层明显,但盐基饱和度(BS)下降。土壤pH与EA、NEA呈极显著负相关关系,与EB呈极显著正相关关系;统计分析结果表明,土壤pH的变化主要取决与EA,而受NEA和EB的影响相对较小,土壤NEA含量较露地明显增加且一般都大于EA。
     EA总量不同,土壤中交换性H~+、Al~(3+)的相对比例随之变化;在EA<0.75cmol kg~(-1)时以交换性H~+占优势,而当EA>0.75cmol kg~(-1)时则以交换性Al~(3+)为主。
     保护地土壤CEC、土壤NEA与土壤有机质含量均呈极显著正相关关系。
     保护地上层和下层土壤中交换性盐基总量(EB)、交换性K~+、交换性Mg~(2+)、交换性Na~+含量均高于露地相应层次的土壤,而交换性Ca~(2+)含量与露地比较则表现出减少的趋势,但Ca~(2+)在交换性盐基中仍占优势地位;交换性Ca、Mg、K、Na又与水溶性Ca、Mg、K、Na呈极显著正相关关系。
     保护地土壤pH与BS、特别是Ca~(2+)饱和度呈显著正相关关系。与露地土壤相比,保护地土壤盐基饱和度BS和Ca~(2+)饱和度下降是导致土壤pH降低的重要因素。
     3.保护地土壤酸缓冲性能
     作为保护地的种植年限越长,土壤pH值越低,土壤酸害容量(达到植物受害pH值所需要的酸)越小;越容易对作物产生酸害。
     不同种植年限保护地土壤和露地土壤的酸缓冲性能曲线相似,但斜率各不相同。露地土壤pH酸缓冲性能曲线斜率绝对值最大,加入等量酸后pH下降幅度最大,即土壤酸害强度(土壤对酸的承受能力)越小;而作为保护地种植年限越久,酸缓冲性能曲线斜率绝对值最小,加入等量酸后土壤pH下降的越慢,土壤酸害强度越大。土壤酸害强度与有机质含量及阳离子交换量均呈极显著的正相关关系。
     4.保护地土壤酸化的影响因素
     (1)土壤有机质含量。土壤有机质含量较露地土壤大幅度提高是影响保护地土壤酸化的重要因素之一;土壤有机质含量增加,使保护地土壤的非交换性酸含量提高、酸缓冲能力上升。
     (2)土壤含盐量。保护地土壤pH值与含盐量呈极显著对数负相关关系,即土壤pH值随着土壤含盐量的增加而降低。保护地土壤的盐分含量随着作为保护地种植年限的延长而不断增多,由露地改为保护地10年左右供试表层土壤的平均含盐量从0.29g kg~(-1)上升至1.56g kg~(-1),EC值达到0.53mS cm~(-1),已超过作物的生育障碍临界点(EC>0.50mS cm~(-1))。盐分含量随土层深度增加而降低。
     (3)盐分离子组成。露地改为保护地栽培蔬菜后,土壤盐分含量增加,其中NO_3~-、SO_4~(2-)、Cl~-和Ca~(2+)、Mg~(2+)、Na~+、K~+均有不同程度的增加,而HCO_3~-则减少。阴离子以NO_3~-和SO_4~(2-)为主,阳离子以K~+和Ca~(2+)为主。供试表层土壤有的NO_3~-含量已高达0.66g kg~(-1),是露地土壤的29倍。而阳离子以K~+增加最为显著。统计分析结果表明,NO_3~-、SO_4~(2-)等强酸性阴离子特别是NO_3~-含量在全盐含量中所占比例上升,HCO_3~-、Na~+等盐基离子在全盐中的相对比例下降是导致土壤pH值下降的重要因素。
     综上所述,特殊的保护地室内水热条件、过量施肥和连年高强度利用,致使土壤有机质含量积累、土壤盐分含量上升和盐分离子组成及其比例改变,构成了新的土壤酸平衡体系;硝酸根、硫酸根和钙、钾等阳离子的增加及其比例改变,是导致土壤pH上升或者下降的直接原因。为了实现作物高产、优质和防治保护地土壤退化,应控制化肥和有机肥用量,合理地选择土壤水分管理技术,并辅以轮作、揭棚淋洗等措施,则是十分重要和必要的。
Soil acidification, soil salinization and nutrient imbalance were serious in protected fieldbecause of the intensive cultivation, higher multiple cropping index, fertilizer managementmeasures unreasonably and the lack of rain, which not only affected the sustainabledevelopment of food production, but also had a series of agricultural product quality securityand environmental protection problems. This paper used typical soil of protected field in theliaoning region to study the characteristic, reason, process, mechanism of soil acidificationand to explore the relation between soil salinity accumulating and pH with the help of indoorculture and mathematical analysis. The results were showed as follows:
     1. The present condition analysis of soil acidification in typical protected field inLiaoning.
     The areas should be arranged from high to low, according to their soil pH in Liaoningprotected field, as follows: Chaoyang > Qingyuan > Tieling > Dandong > Dongling > Yuhong.At the present time, the soil pH sharply decreased after the field began vegetable cultivationunder protection in most of Liaoning District (except Dandong), and the sampling point that islesser than pH 5.50 consist in most of Liaoning district.
     The soil pH shows the trend of 0~20cm soil layer<20~40cm soil layer <40~60cm soillayer <60~80cm soil layer in protected field in Chaoyang, Tieling, Dongling and Yuhong.The soil pH increased and closed to open field with soil depth increasing, and topsoil(0~20cm) pH was far below the under layer, Differences among other soil layers were small. Butthe pH of topsoil layer higher than other soil layers in protected field in Dandong andQingyuan. That is to say, the soil pH declined with soil depth increasing, and that's becausethere were related to field manage measures in protected field, geographical location and soiltexture.
     With replanting time prolonging, the soil pH was continuing decline in protected field.But the soil pH declined at a slow pace even increased in the first 1~4 years, and withreplanting time prolonging, the soil pH declined at a quick pace. With replanting timeprolonging, the soil pH was continuing decline in protected field in general.
     2. Acidity characteristics of soils in protected fields
     The content of active acidity increased obviously after the field began vegetablecultivation under protection. Soil acidification displayed a clear rising trend in topsoil thansubsoil. EA, NEA, and EB, in various layers of the soils in the protected fields were muchhigher than those in the open fields, Soil pH was in significant negative correlation with EAand NEA, but in significant positive correlation with EB, Related coefficient and partial regression coefficient of regression equation showd that: Soil pH was determined mainly byEA, while NEA and EB had less impact on that.
     Exchangeable H~+ were predominant when the EA<0.75cmol kg~(-1), and exchangeable Al~(3+)were predominant when the EA>0.75cmol kg~(-1) The proportion of exchangeable Al~(3+)increased with increasing exchangeable acid, while decreased with increasing OM. And, theproportion of H~+ in exchangeable acid showed a reverse trend. The content of NEA increasedobviously after the field began vegetable cultivation under protection. The content of NEAwere usually higher than EA. Soil NEA was in significant positive correlation with OM.
     OM and CEC of the soils in the protected fields were much higher than those in the openfields. Soil CEC was in significant positive correlation with OM, it indicated that with thecontent of OM increasing, the soil CEC was continuing increase in protected field.
     Exchangeable EB, exchangeable K~+, exchangeable Mg~(2+) and Exchangeable Na~+ invarious layers of the soils in the protected fields were much higher than those in the openfields, whereas exchangeable Ca~(2+) in various layers of the soils in the protected fields weremuch lower than those in the open fields, but the difference was not significant. ExchangeableCa~(2+) was predominant in exchangeable EB. Exchangeable K~+ of the soils has been a dramaticrise in the protected fields, which was the main characteristic of exchangeable EBcomposition variation. Soil Water-solubility Ca, Mg, K, Na were in significant correlationwith exchangeable Ca, Mg, K, Na. Therefore, soil water-solubility EB composition variationwas the main influential factor of the exchangeable EB composition variation.
     PA and total exchangeable EB of the soils in the protected fields were much higher thanthose in the open fields, but the base saturation (BS%), the saturation of exchangeable Ca~(2+)decreased significantly because of the increase of CEC, There is a significant positivecorrelation between the soil pH and the BS (%), which is mainly restrained by the dominantexchangeable base Ca~(2+). Therefore, It was an important factor that the BS(%), especially thesaturation of exchangeable Ca~(2+) decreased which caused soil acidification.
     3. Effects of protected field vegetable cultivation on soil salinity accumulating and pH
     The salinity content and EC value of the soils in the protected fields were much higherthan those in the corresponding open fields. The average of the salinity content was 0.29g kg~(-1)in open field soil. With replanting time prolonging, the salinity content was continuingincrease in protected field, The average of the salinity content had reached 1.56g kg~(-1) after thefield began vegetable cultivation under protection for 10 years. Corresponding EC hadexceeded the scope of that was 0.53mS/cm.
     The salinity content of 0~80cm soil layer in the protected fields were much higher thanthose in the corresponding open fields. The salinity content declined with soil depth increasing. The salinity content of topsoil was far above the under layer. The salt movingdownwards to the bottom soil and salt accumulating upwards to the topsoil were very obviousin the protected field soils.
     Apart from HCO_3~-, the content of NO_3~-, SO_4~(2-), Cl~-, Ca~(2+), Mg~(2+), K~+, Na~+ increasedsignificantly in protected field. Anions are mainly NO_3~- and SO_4~(2-), Cations are mainly K~+ andCa~(2+). The content of NO_3~- may reach 0.66g kg~(-1), that was 29 times than in open field.
     There is a significant logarithmic negative correlation between the soil pH and thesalinity content, that is to say, the soil pH declined with soil salinity content increasing.Correlation analysis, path analysis and stepwise regression results suggested that theproportion of strongly acidic Anions NO_3~-, SO_4~(2-), especially NO_3~-, to total salts decreasedwhich caused soil acidification. And it was an important factor that the proportion of HCO_3~-,Ca~(2+) to total salts decreased which caused soil acidification.
     4. Studies on acidic buffer capacity in protected field soil
     The soil pH declined with acid accession in protected fields under different plantingyears. But the rate of pH declined in the shape of "L". The rate of pH declined quickly inopen fields, and the rate of pH declined quickly. The longer the planting years in protectedfield, the slower to the rate of pH declining. When acid accession had once been accumulatedto a certain degree, soil pH in open fields was already below in protected fields.
     With replanting time prolonging, the soil acid-damage capacity was continuing decreasein protected field, that is to say, the acid bearing capacity of soil was keep decreasing. That'sbecause there were related to soil pH. The higher the soil pH, the more acid to need to reachthe point of crops injured. Therefore, the longer the planting years in protected field, the lowerthe pH and soil acid-damage capacity, the less content of acid to reach the point of cropsinjured, the easier injured.
     With replanting time prolonging, the soil acid-damage intensity was continuing increasein protected field, that is to say, in the case of equal acid joining, the longer the planting yearsin protected field, the smaller of the degree to which soil pH declined. That's because therewere related to soil OM and CEC. There is a significant positive correlation between soilacid-damage intensity and the content of OM and CEC. That is to say, the higher the contentof OM and CEC, the stronger the ability of the soil to resist acid, it would slow down soilacidification. There were some differences between soil acid-damage capacity and soilacid-damage intensity, Soil acid-damage intensity can better reflect that the soil is sensitive toacid than soil acid-damage capacity.
引文
[1] 艾天成,李方敏,黄志新.2006.设施土壤盐分组成分析[J].湖北农业科学,45(3):316-317
    [2] 蔡艳,薛泉宏,陈占全,等.2003.青海省保护地辣椒根际土壤和根表放线菌研究[J].应用与环境生物学报,9(1):92-96
    [3] 曹升赓.1980.土壤微形态在土壤发生、分类研究中的应用[J].土壤专报,37:25-50
    [4] 曹晓燕等.1999.保护地土壤调理剂的应用研究.植物保护与植物营养研究进展,中国农学会.北京,中国农业出版社
    [5] 陈翠玲,蒋爱凤,任秀娟,等.2005.潮土区不同质地类型土壤对酸缓冲性能的研究[J].河南农业科学,(10):64-66
    [6] 陈福兴,秦瑞军.1996.湘南丘陵红壤利用方式对交换性铝分布的影响[J].土壤,(6):295-297
    [7] 陈福兴,姚造华,徐明岗,等.2000.红壤复合改良剂研制及其功效Ⅲ.土壤肥料,(1):42-44
    [8] 陈华葵.1983.土壤微生物学,第一版[M].上海:上海科学技术出版社,56-89
    [9] 陈华癸,陈庆笙.1995.徽生物学[M].北京:农业出版社
    [10] 陈为峰.1999.山东省大棚土壤积盐状况及防治对策的研究[D].山东:山东农业大学硕士学位论文
    [11] 陈新之,梁成华,顾青海.1999.蔬菜保护地土壤对外源钾的固定特征研究[J].沈阳农业大学学报(自然科学版),30(1):20-23
    [12] 陈竹君,王益权,许安民,等.2008.施用不同种类氮肥对日光温室土壤溶液离子组成的影响[J].植物营养与肥料学报,14(5):907-913
    [13] 陈竹君,王益权,周建斌,等.2007.日光温室栽培对土壤养分累积及交换性养分含量和比例的影响[J].水土保持学报,21(1):5-8
    [14] 程美廷.1990.温室土壤盐分积累、盐害及其防治[J].土壤肥料,(1):1-4
    [15] 仇荣亮.1997.陆生生态环境酸沉降敏感性研究[J].环境科学进展,5(4):8-2
    [16] 崔正忠,陈友,单德新.2001.蔬菜保护地土壤养分变化趋势[J].北方园艺,137(2):10-12
    [17] 大石直记.1992.农业技术研究,46(9):16
    [18] 党菊香,郭文龙,郭俊炜等.2004.不同种植年限蔬菜大棚土壤养分积累及硝态氮迁移规律[J].中国农学通报,20(6):189-191
    [19] 邓玉龙,张乃明.2006.设施土壤pH值和有机质演变特征研究[J].生态环境,15(2):367-370
    [20] 丁庆堂.1986.有机质对土壤碳、氮性状的影响[J].土壤通报,(2):16-17
    [21] 东野光亮.2000.从微形态特征看砂姜黑土土地资源的利用改良[J].土壤通报,31(2):52-54
    [22] 杜社妮,张成娥,徐福利,等.2003.不同施肥对日光温室西红柿菜地土壤酶活性的影响[J].西北植物学报,23(8):1467-1470
    [23] 杜连凤,刘文科,刘建玲.2005.河北省蔬菜大棚土壤盐分状况及其影响因素[J].土壤肥料,(3):17-19
    [24] 杜连凤,张维理,武淑霞,等.2006.长江三角洲地区不同种植年限保护地菜地土壤质量初探[J].植物营养与肥料学报,12(1):133-137
    [25] 段雷,黄永梅,郝吉明,等.2002.中国植被对氮和盐基阳离子吸收速率及其在土壤酸化中的作用[J].环境科学,23(3):68-74
    [26] 范宇,刘世全,张宗锦.2004.西藏酸性土壤交换性盐基状况及其变化特点.四川农业大学学报,22(4):356-359
    [27] 方汉兴.1987.pH值对茶树生理活动的影响[J].茶叶科学,7(1):15-21
    [28] 费振文.1989.不同耕作施肥措施下土壤微形态特征的变化[J].土壤专报,43:31-36
    [29] 傅柳松,吴杰民,杨影,等.1993.模拟酸雨对浙江省主要土壤类型土壤铝溶出规律研究.农业环境保护[J].12(3):114-119
    [30] 甘燕.1989.酸雨对重庆地区土壤盐基淋溶的影响初报[J].农业环境保护,8(4):19-23
    [31] 高秀兰,肖千明,娄春荣.1997.日光温室栽培番茄引起生理障碍NO_3~--N浓度的研究.辽宁农业科学,(1):8-12
    [32] 葛箐萍.1998.大棚土壤的理化性状[J].土壤通报,29(1):88-90
    [33] 葛箐萍,霍云鹏,蔡柏岩.1999.大棚土壤剖面EC_(25℃)值变化研究[J].土壤通报,30(2):80-81.
    [34] 葛晓光.2000.设施土壤蔬菜栽培的土壤障碍及克服途径[J].中国蔬菜,(增刊):16-19
    [35] 关松荫.1980.土壤酶与土壤肥力[J].土壤通报,1(6):41-44
    [36] 关松荫.1986.土壤酶及其研究法,第1版[M].北京:农业出版社,28-34
    [37] 郭笃发,姜爱霞.1997.酸沉降对土壤过程和性状的影响[J].土壤通报,28,(4):187-189
    [38] 郭凤鸣,刘永春,赵福顺.1996.保护地栽培中土壤盐渍化回避法[J].北方园艺,(2):3-5
    [39] 郭培国等.2000.pH值对烤烟根系活力及烤后烟叶化学成分的影响[J].中国农业科学.33(1):39-45
    [40] 郭荣发,廖宗文,陈爱珠.2004.活化磷矿粉在砖红壤上的施用效果.湖南农业大学学报(自然科学版)[J].30(3):233-235
    [41] 郭文龙,党菊香,吕家珑,等.2005.不同年限大棚土壤性质演变与施肥问题的研究[J].干旱地区农业研究,23(1):85-89
    [42] 郭文忠,刘声锋,李丁仁,等.2004.设施土壤次生盐渍化发生机理的研究现状与展望[J].土壤,36(1):25-29
    [43] 郝吉明,谢邵东,段雷,等.2001.酸沉降临界负荷及其应用[M].北京:清华大学出版社,1-26.
    [44] 何传龙,徐继平,王世祥,等.2003.大棚土壤障碍因子形成及调控技术的研究进展[J].安徽农业科学,31(6):1040-1042
    [45] 何文寿.2004.设施农业中存在的土壤障碍及其对策研究进展[J].土壤,36(3):235-242
    [46] 贺秀斌.2001.农业生态与土地退化的土壤微形态研究[J].土壤与环境,10(3):234-237
    [47] 侯云霞,钱光熹,王建民.1987.上海蔬菜保护地的土壤盐分状况[J].上海农业学报,3(4):31-38
    [48] 胡衡生,潘晖.格拉姆柱花草对土壤改良作用的研究.广西师院学报(自然科学版),1994(1):57-61
    [49] 胡红青,李学垣,刘景福,等.1994.红壤上直接施用磷矿粉的增产效果和改土作用.热带亚热带土壤科学[J].3(4):219-225
    [50] 郇恒福.2004.不同土壤改良剂对酸性土壤化学性质影响的研究,华南热带农业大学博士论文
    [51] 黄锦法,李艾芬,马树国,等.2001.浙江嘉兴保护地土壤障碍的农化性状指标研究[J].土壤通报,32(4):160-162
    [52] 黄元仿,贾小红,秦岭等.1997.不同施肥条件下菜地土壤无机氮动态及淋洗污染潜力[J].土壤通报.28(4):175-177
    [53] 黄昌勇.2000.土壤学[M].北京:中国农业出版社,171-173.
    [54] 季国亮,王敬华,张效年,等.1999:土壤酸化的现状及预测.(引自:南方红壤退化机制与防治措施研究专题组.中国红壤退化机制与防治[M].北京:中国农业出版社,2940
    [55] 贾继文,聂俊华,李絮花,等.2001.蔬菜大棚土壤理化性状与土壤酶活关系的研究[J].山东农业大学学报(自然科学版).32(4):427-432
    [56] 姜勇,张玉革,梁文举.2005.温室蔬菜栽培对土壤交换性盐基离子组成的影响.水土保持学报,19(6):78-81
    [57] 焦坤,李德成.2003.蔬菜大棚条件下土壤性质及环境条件的变化[J].土壤,35(2):94-97
    [58] 靳桂云.1999.土壤微形态分析及其在考古学中的应用[J].地球科学进展,14(2):197-200
    [59] 康德梦,庞叔薇.1987.西南酸雨地区土壤中铝溶出规律的探讨[J].环境科学学报,7 (2):221-230
    [60] 孔晓玲,季国亮.1992.我国南方土壤的酸度与交换性氢铝的关系.土壤通报,23(5):203-204
    [61] 李成尧.1989.塑料大棚栽培优质蔬菜的微气象研究[J].湖北农业科学,(9):33-34
    [62] 李德成,花建明,李忠佩,等.2003.不同利用年限蔬菜大棚土壤中微量元素含量的演变[J].土壤,35(6):495-499
    [63] 李德成,李忠佩,周样,等.2003.不同使用年限蔬菜大棚土壤重金属含量变化[J].农村生态环境,19(3):38-41
    [64] 李国师.1996.日光沮室地温变化规律与调控中国农业气象[J].17(4):38-40
    [65] 李庆康,丁瑞兴,黄瑞采.1992.种植茶树对黄棕壤有机铝富集的影响[J].南京农业大学学报,15(2):61-66
    [66] 李文庆,杜秉海,骆洪义,等.1996.大棚栽培对土壤微生物区系的影响[J].土壤肥料,(2):31-33
    [67] 李文庆,贾继文,李贻学.1997.大棚种植蔬菜对土壤理化及生物性状的影响[J].见:谢建昌, 陈际型编著,菜园土壤肥力与蔬菜合理施肥[C].南京:河海大学出版社,76-79
    [68] 李文庆,李光德,骆洪义.1995.大棚栽培对土壤盐分状况影响的研究[J].山东农业大学学报,26(2):165-169
    [69] 李先珍,王耀林,张志斌.1993.京郊蔬菜大棚土壤盐离子积累状况研究初报[J].中国蔬菜,(4):15-17.
    [70] 李学垣.2001.土壤化学[M].高等教育出版社,231-233
    [71] 李学垣.2001.土壤化学[M].北京:高等教育出版社,29,213-216
    [72] 廖伯寒.1991.土壤对酸沉降的缓冲能力与土壤矿物的风化特征[J].环境科学学报,11(4):425-430
    [73] 廖伯寒.2001.我国酸雨中盐基离子的重要性[J].农业环境保护,20(4):254-256
    [74] 廖万有.1998.我国茶园土壤的酸化及其治理[J].农业环境保护,17(4):178-180
    [75] 林咸永,章永松.2002.铝胁迫下不同小麦基因型根际pH值变化、NH_4~+和NO_3~-吸收及还原与其耐铝性的关系[J].植物营养与肥料学报.8(3):330-334
    [76] 刘德,吴凤芝.1998.哈尔滨市郊区蔬菜大棚土壤盐分状况及影响[J].北方园艺,(6):1-2.
    [77] 刘厚田,杜晓明,张维平.1989.重庆南山的酸性降水与马尾松衰亡,引自“酸雨与农业”(中国林学会主编).北京:中国林业出版社,140-146
    [78] 刘继尧.1980.高产稳产茶园突然酸度及演变的初步探讨[J].茶叶通讯,(3):7-12
    [79] 刘金昌,潘云芳.2008.辽宁省保护地蔬菜发展的成就、问题及对策[J].辽宁农业科学,(3):57-59
    [80] 刘丽霞,辛克敏,张德美,等.1998.粉煤灰的理化性质及其对粘土影响研究初报.贵州科学[J].16(1):62-68
    [81] 刘淑英,李小刚,王平.1998.兰州市安宁区保护地蔬菜施肥状况的调查[J].甘肃农业大学学报,33(2):190-193.
    [82] 刘兆辉,李晓林,祝洪林,等.2001.保护地土壤养分特点[J].土壤通报,32(5):206-208
    [83] 卢丽萍,高贤彪,李彦等.2000.盐渍土番茄苗期养分吸收特性的研究[J].植物营养与肥料学报,6(增刊):83-86
    [84] 鲁如坤.1992.我国磷矿磷肥中镉的含量及其对生态环境影响的评价,土壤学报[J].29:150-15
    [85] 鲁如坤.时正元.赖庆旺.2005.红壤养分退化研究(Ⅱ)[J].土壤通报,26(6):241-243
    [86] 鲁如坤主编.1998.土壤植物营养学原理和施肥[M].北京:化学工业出版社,281-306,412-422
    [87] 吕福堂,司东被,张秀省.2004.日光温室土壤盐分和养分的变化趋势[J].中国蔬菜,(3):14-16
    [88] 吕福堂,司东霞.2004.日光温室土壤盐分积累及离子组成变化的研究[J].土壤,36(2):208-210.
    [89] 罗承德.1993.森林土壤酸化和它的特征[J].四川林业科技,14(3);30-34
    [90] 马立锋,石元值,阮建云.2000.苏、浙、皖茶区茶园土壤pH近况及近几十年来的变化[J].土壤通报,31(5):205-207
    [91] 马毅杰.土壤矿物和有机质对土壤胶体表面积影响[J].土壤.1984,16(1):31
    [92] 毛红安,谢德体,杨剑虹.2005.重庆市江津柑橘果园土壤pH与盐基饱和度的关系探讨[J].土壤通报.36(6):877-879
    [93] 孟赐福,水建国,傅庆林,等.1999.浙江中部红壤施用石灰对土壤交换性钙、镁及土壤酸度的影响[J].植物营养与肥料学报.5(2):129-136
    [94] 明道绪.1990.通径分析[M].雅安:四川农业大学出版社
    [95] 牟树森,青长乐.1993.环境土壤学[M].农业出版社,114-117
    [96] 牟树森,青长乐,王力军.1990.酸沉降物致酸土壤极其危害研究[J].农业环境保护,9(6):1-6
    [97] 牟咏花,张德成.1998.NaCl胁迫下番茄苗的生长和营养元素的积累[J].植物生理学通讯,34(1):14-16
    [98] 潘根兴,P.Fallavier,卢文玉等.1993.近35年来庐山土壤酸化及其物理化学性质变化[J],土壤通报,24(4):145-147
    [99] 潘根兴,冉伟.1994.中国大气酸沉降与土壤酸化问题[J].热带亚热带土壤科学,3(4):50-54
    [100] 潘根兴.1990.土壤酸化过程的土壤化学分析[J].生态学杂志,9(6):48-52
    [101] 庞叔薇,许宁,康德梦,1987.酸性降水对土壤酸化及铝溶出的规律研究[J].环境化学,(1):41-45
    [102] 彭金良,严安国,沈国兴.2001.酸雨对水生生态系统的影响[J].水生生物学报,25(3):282-288
    [103] 彭世良,吴甫成.2004.衡山土壤酸化研究[J]_土壤通报,35(5):599-603
    [104] 戎秋涛,杨春茂,徐文彬.模拟酸雨对浙东北红壤中盐基离子和铝的淋失影响研究[J].环境科学学报,1997,17(1):32-37
    [105] 戎秋涛,杨春茂,徐文彬,等.1996.土壤酸化研究进展.地球科学进展[J].11(4):396-401
    [106] 史春余,张夫道,张俊清,等.2003.长期施肥条件下设施蔬菜地土壤养分变化研究[J].植物营养与肥料学报,9(4):437-441
    [107] 史桂芳,毕军,夏光利,等.2003.保护地蔬菜土壤障碍指标界定及应用研究[J].耕作与栽培,(3):49-50.
    [108] 苏德纯,杨奋翮,张福锁.1999.北京郊区蔬菜保护地土壤磷空间及形态分布特征[J].中国蔬菜,(4):7-11
    [109] 苏友波,李刚,毛昆明,等.2004.昆明地区主要花卉蔬菜基地设施栽培土壤养分变化特点[J].土壤,36(3):303-306
    [110] 孙松发.1992.温室土壤次生盐渍化的研究[J]_上海农学报,10(2):132-140.
    [111] 唐咏,梁成华,刘志恒.1999.日光温室蔬菜栽培对土壤微生物和酶活性的影响[J].沈阳农业大学学报,30(1):16-19
    [112] 田仁生,刘厚田.1990.酸性土壤中铝及其植物毒性.环境科学,11(6):41-45
    [113] 童有为,陈淡飞.1991.温室土壤次生盐渍化的形成和治理途径研究[J].园艺学报,18(2):159-162
    [114] 万贵怡,周茂林,李玲,等.1994.粉煤灰改良红壤性中低产田(地)的实验研究.江西农业科技[J].(4):30-34
    [115] 汪雅谷.1988.模拟酸雨对土壤金属离子的淋溶和植物有效性的影响[J].环境科学,9(2):22-26
    [116] 王辉,董元华,安琼,等.2005.高度集约化利用下蔬菜地土壤酸化及次生盐渍化研究.土壤,37(5):530-533.
    [117] 王敬国.植物营养的土壤化学.北京:北京农业大学出版社,1995.92-103
    [118] 王敬华,张效年,于天仁.1994.华南红壤对酸雨敏感性的研究[J].土壤学报,31(4):348-354.
    [119] 王柳,张福埃,高丽红.2003.京郊日光温室土壤养分特征的研究[J].中国农业大学学报,8(1):62-66
    [120] 王平,刘淑英.1998.兰州市安宁区蔬菜保护地土壤盐分的含量及其剖面分布规律[J].甘肃农业大学学报,33(2):86-189.
    [121] 王新民,王卫华,侯彦林.2004.豫北蔬菜保护地土壤磷素形态及其空间分布特性研究[J].土壤,36(2):173-176
    [122] 王绪奎,陈光亚.2001.设施农业中的土壤问题及对策[J].江苏农业科学,(6):39-42
    [123] 王耀林.2000.节能日光温室创新增效及其可持续发展的途径(一)[J].中国蔬菜,(01)
    [124] 魏志华,杨利玲,王彩霞.2004.安阳郊区保护地土壤磷素形态及其空间分布[J].河南农业科学,(2):36-37
    [125] 温志平,刘树基.1996.糖厂碳法滤泥对赤红壤上柑橘施用效果初探.热带亚热带农业科学[J].5(3):158-161
    [126] 文湘华.1996.乐安江沉积物酸碱特性极其对重金属释放特性的影响[J].环境化学,15(6):511-515
    [127] 吴多三.1987.土壤盐类浓度障害对蔬菜生长的影响.蔬菜,3(4):1-4
    [128] 吴风芝,刘德.1998.大棚蔬菜连作年限对土壤理化性状的影响.中国蔬菜,(4):12-13.
    [129] 吴凤芝,刘德,王东凯,等.1998.大棚蔬菜连作年限对土壤主要理化性状的影响[J].中国蔬菜,(4):5-8
    [130] 吴凤芝,栾非时,王东凯,等.1996.大棚黄瓜连作对根系活力及其根际土壤酶活性影响的研究[J].东北农业大学学报,27(3):255-258
    [131] 吴凤芝,王伟.1999.蔬菜大棚番茄土壤微生物区系研究[J].北方园艺,126(3):1-2
    [132] 吴凤芝,赵凤艳,刘元英.2000.设施蔬菜连作障碍原因综合分析与防治措施[J].东北农业大学学报,31(3):241-247
    [133] 吴志行,石海仙,董明光.1994.大棚蔬菜连作障碍及土壤次生盐渍化原因与防止[J].长江蔬 菜,(5):2-23.
    [134] 夏立忠,杨林章,王德建.2001.苏南设施栽培中早作人为土养分与盐分状况的研究[J].江苏农业科学,(6):43-46
    [135] 夏艳玲,东野光亮.2003.不同棚龄大棚土壤微形态特征研究[J].云南农业大学学报,18(4):340-343
    [136] 肖辉林.2001.大气氮沉降对森林土壤酸化的影响[J].林业科学,37(4):111-116
    [137] 肖干明,高秀兰,娄春荣,等.1997.辽宁省保护地土壤肥力现状分析[J].辽宁农业科学,17-21
    [138] 谢若萍.辽西褐土的细粒矿物组成[J].土壤学报,1983,20(2):178-185
    [139] 谢思琴,周德智,顾宗濂,等.模拟酸雨下土壤中铜镉行为及急性毒性效应.环境科学,1991,12(2):24-28
    [140] 熊汉琴,王朝晖,罗贵斌.2006.不同种植年限蔬菜大棚土壤次生盐渍化发生机理的研究[J].陕西农业科学,(3):22-26.
    [141] 徐楚生.1993.茶园土壤pH近年来研究的一些进展[J].茶叶通报,15(3):1-4
    [142] 徐福利,梁银丽,张成娥,等.2004.目光温室土壤生物学特性与施肥的关系[J].水土保持研究,11(1):20-22
    [143] 徐富安,林长英.1994.南京郊区保护地蔬菜的灌溉问题[J].土壤,26(3):140-142
    [144] 徐仁扣.1996.我国降水中的NH_4~+及其在土壤中的酸化作用[J].农业环境保护,15(3):139-140,142
    [145] 徐仁扣,D.R.Coventry.2002.某些农业措施对土壤酸化的影响[J].农业环境保护,21(5):385-388
    [146] 薛继澄,毕德义,李家金,等.1994.保护地栽培蔬菜生理障碍的土壤因子与对策[J].土壤肥料,(1):4-9
    [147] 薛继澄,吴志行,李家金等.1994.设施土壤氮肥施用问题的研究[J].中国蔬菜,(5):22-25
    [148] 闫立梅,王丽华.2004.同龄温室土壤微形态结构与特征[J].山东农业科学,(3):60-61
    [149] 杨昂,孙波,赵其国.1999.中国酸雨的分布、成因及其对土壤环境的影响[J].土壤,(1):13-18
    [150] 杨丽娟,张玉龙.2001.保护地菜田土壤硝酸盐积累及其调控措施的研究进展[J].土壤通报,32(2):67-70
    [151] 杨彭年.石灰性土壤有机矿物质复合体及其团聚性研究[J].土壤学报,1984,21(1):144-151
    [152] 杨秀虹,仇荣亮,岑慧贤.1999.陆地生态系统对酸沉降的敏感性及其影响因素[J].农业环境保护,18(2):92
    [153] 杨忠芳,余涛,唐金荣,等.2006.湖南洞庭湖地区土壤酸化特征及机理研究[J].地学前缘,13(1):105-112
    [154] 姚圣梅,杨晓红,刘雄德,等.1997.蔬菜大棚土壤微生物群落的研究[J].中国蔬菜(4):37
    [155] 姚圣梅,杨晓红,郑雪虹,等.1997.蔬菜大棚土壤微生物种类及数量的初步研究[J].华中农业大学学报,16(4):347-350
    [156] 叶厚专,范业成.1996.磷石膏改良红壤的效应.植物营养与肥料学报[J].2(2):181-185
    [157] 易杰祥,吕亮雪,刘国道.2006.土壤酸化和酸性土壤改良研究[J].华南热带农业大学学报,12(1):23-27
    [158] 尹睿,张华勇,黄锦法,等.2004.保护地菜田与稻麦轮作田土壤微生物学特征的比较[J].植物营养与肥料学报,10(1):57-62
    [159] 于群英,李孝良.2005.皖北地区设施土壤酸化特征研究[J].安徽农业科学,33(12):2279-2280
    [160] 于天仁,陈志诚.1990.土壤发生中的化学过程[M].北京:科学出版社,101-102
    [161] 于天仁.1988.中国土壤的酸度特点和酸化问题[J].土壤通报,19(2):58-59
    [162] 于天仁.土壤化学原理.1987.北京:科学出版社,1987.325-363
    [163] 于喜艳,何启伟,孔庆国.2002.不同阴离子化肥对黄瓜生长及土壤EC、pH的影响.山东农业科学,(2):16-18
    [164] 余海英,李廷轩,周健民.2005.设施土壤次生盐渍化及其对土壤性质的影响[J].土壤,37(6):581-586
    [165] 余海英,李廷轩,周建民.2006.典型设施栽培土壤盐分变化规律及潜在的环境效应研究.土壤学报,43(4):571-576.
    [166] 余元春,丁爱芳,胡茄.模拟酸雨对土壤酸化和盐基迁移的影响[J].南京林业大学学报,2001,25(2):39-42
    [167] 於忠样.1996.合肥郊区菜园土土壤酶活性研究[J].土壤通报,27(4):179-181
    [168] 藏壮望.2002.保护地土壤障害与综合治理[J].蔬菜,(6):21-22
    [169] 张宝安,章守陶.1997.从磷石膏的特性谈农业上的应用.土壤肥料[J].(2):3-7
    [170] 张昌爱,毕军,夏光利,等.2002.大棚土壤的理化状况和微生物状况[J].安徽农业科学,30(2):275-276
    [171] 张恩平,张淑红,司龙亭,等.2001.NaCl胁迫对黄瓜幼苗子叶膜脂过氧化的影响[J].沈阳农业大学学报,32(6):446-448
    [172] 张福锁,李春俭,王敬国.1995.根际微生态学.土壤与植物营养研究新动态[M].第三卷.中国农业出版社.98-110
    [173] 张福锁主编.1993.环境肋迫与植物营养.北京.北京农业大学出版社.
    [174] 张慧勤,赵晓东,王秋玲.1991.我国能源结构与大气污染[J].环境科学研究,4(6):50-54
    [175] 张俊侠,孙得平,司友斌.2001.设施土壤蔬菜栽培的障碍因子研究[J].安徽农学通报,(4):52-54
    [176] 张明初.1997.萍乡市蔬菜大棚小气候特征观察小结[J].江西气象科技,(3):26-29
    [177] 张学军,陈晓群,王黎民,等.2004.宁夏银川市设施蔬菜田土壤养分资源特征[J].宁夏农林 科技,(1):7-10
    [178] 张彦东,王庆成,张国珍.1997.水曲柳落叶松混交林土壤磷活化机理.见:沈国舫,翟明普主编.混交林研究.北京:中国林业出版社,136-139.
    [179] 张真和.2005.当代中国蔬菜产业的回顾与展望(上)[J].长江蔬菜,2-6
    [180] 张振华,姜怜若,胡永红,等.2003.设施栽培大棚土壤养分、盐分调查分析及其调控技术[J].江苏农业科学,(1):73-75
    [181] 张振武,龙平扬,李秀茹,等.1984.施肥量对大棚黄瓜产量及土壤浸出液电导率的影响[J].沈阳农业大学学报,(1):29-36.
    [182] 章明奎.1995.中性肥料对侵蚀红壤的土壤溶液酸度及大麦生长的影响.浙江农业科学,(5):225-228
    [183] 赵风艳,吴风芝,刘德,等.2000.大棚菜地土壤理化特性的研究[J].土壤肥料,(2):11-13
    [184] 赵其国主编.2002.中国东部红壤地区土壤退化的时空变化和机理及调控措施.北京:科学出版社
    [185] 郑有斌,赵大为.1991.酸沉降对重庆农业生态的影响[J].重庆环境科学,(13):55-59
    [186] 郑有斌译.1990.土壤酸化和元素循环的关系[J].国外环境科学技术,(2):23-32
    [187] 中国林业学会.1989.酸雨与农业[M].北京.中国林业出版社
    [188] 周礼恺.1987.土壤酶学,第1版[M].北京:科学出版社,267-268,275-276
    [189] 周修萍.1992.模拟酸雨对南方五种土壤理化性质的影响[J].环境科学,9(3):6-12
    [190] 朱国鹏,刘士哲,王玉彦,等.2002.蔬菜设施栽培土壤的盐分累积及其调控[J].热带农业科学,22(3):57-61
    [191] 朱宏斌,王充青,武际,等.2003.酸性黄红壤上施用白云石的作物产量效应和经济效益评价.土壤肥料[J].(5):7-20
    [192] 邹长明,张多蛛,张晓红,等.2006.蚌埠地区设施土壤酸化与盐渍化状况测定与评价[J].安徽农业通报,12(9):54-55
    [193] [日]矢吹万寿.1987.设施园艺学,第一版[M].朝仓书店,32-48
    [194] [日]矢吹万寿等.1987.设施园艺学[M].日本;朝仓书店
    [195] [日]内海修一.1984.保护地园艺-环境与作物生理,第一版[M].北京:农业出版社,24-66
    [196] Allan, J C and Bland, W L. et al. 1991. Simulation of root grooth. In Modeling Plant and Soil Systems. eds. Hanks, J. and Ritchie, J T. 71-89
    [197] Alva, A K, Edwards, D O, Asher, C J and Blarney, F P C. 1986. Effects of phosphorus aluminums molar ratio and calcium concentration on plant response to aluminum toxicit. Soil Science. Soc. Am. 50: 133-137
    [198] Arp P. A, Ouimet R. 1986. Aluminium Speciation in soil Solution: Calculations[J]. Water Air and Soil Pollution, 31: 259-366
    [199] Berggren D, Bergkvist B, Falkengren-Grerup U. 1992. Influence of acid deposition on metal soubility and fluxes in natural soil [M]. In: Lag J. Chemical climatology and geomedical problems, Oslo, Norway: The Royal Norwegian Press, 114-153
    [200] Bhatt G M. 1973. Significance of path coefficient analysis in association[J]. Euphytica, 22 (2) : 338-343
    [201] Binkley D, Driscoll CT, Allen HL, et al, 1989. Acidic Deposition and Forest Soils. Springer-verlag: New York. 1-12, 65-85
    [202] Bolan, N S, Naidu R, Mahimairaja S, Baskaran S, 1994. Influence of low molecular weight organic acids on the solubilization of phosphates Bio[J]. Fertil. Soils. 18: 311-319
    [203] Bouwman A F. 1990. Soil and greenhouse Effect [M]. Chichester: John Wiley and Sons Brady N C. 1990. The Nature and Properties of Soils, 11st Ed. New York : Macrnillan Publishing Co,343-355
    [204] Bowman R A, Cole C V. 1978. An exploratory method for fractionation of organic phosphorus from Grassland Soils. Soil Sci, 125 (2) : 95-101
    [205] Caetano-Anolles, GLagares, A. and Favelukes, G. 1989. Addsorption of Rrtizobium meltloti to alfalfa roots: Dependence on divalent cations and pH. Plant Soil. 117: 67-74
    [206] Christiansen, M. N. 1970. Stimulation of solute loss from radicles of Gossyplum hirsutumL. by chilling, anaerobiosis, and low pH. Plant Physiol. 46: 53-56
    [207] Cregan PD, Scott BJ. 1998. Soil acidification-an agricultural and environmental problem[A]. In: Pratley J E and Robertson A ed. Agriculture and the Environmental Imperative[C]. CS1RO Publishing: Melbourne, 98-128
    [208] Devries W , Breeuwsma A . 1987 . The relation between soil acidification and element cycling[J]. Water, Air and soil Pollution, 35: 293
    [209] Dinkelaker, B, RomheldV. and Marschner, H. 1989. Citric acid secretion and precipitation of calcium citrate in the rizosphere of white lupin (lupinus albus L) . Plant Cell Environ. 12: 285-292
    [210] Doerge T A, Garder E H. 1985. Reacidification of twolime amended soils in western Oregon. Soil SciAm J[J]. 49 (3): 680-685
    [211] Duncan, R R. 1981. Veriability among sorghum genotype fof uptake of elements under acid soil field conditions. Plant Nurt. 4: 21-32
    [212] Etienne Dambrine et al. 1999. evidence of current soil acidification in spruce stands in the vosges mountains north-eastern France[J]. Water, Air and soil pollution, 110: 3-4; 225
    [213] Falkengren Grevup U. 1987. long-term ehanges in pHof forest soil in south Sweden[J]. Environ Pollu, 43: 79-90
    [214]Faw W F, Shih S C, Jung G A. 1976. Extractant influence on the relationship between extractable proteins and cold tolerance of alfalfa. Plant Physiol, 57(5): 720-723
    [215] Fox T R. Comerford, N B. 1990. Low-molecular-weight organic acids in selected forest soils of the southeastern USA. Soil[J]. Sci. Soc. Am. 54: 1139-1144
    [216] Foy, C E. 1974. Effects of aluminium on plant growth. In E. W. Carson (ed.) , The Plant Root and Its Environment. Univ. Press of Virginia, Charlottesville. 601-642
    [217] Garrison S. The Chemistry of Soils. Oxford, Oxford University Press , 1989. 209-222
    [218] Gosselin A. Interaction Between Root Temperature and Lumination ation Intensity: The Inference on Planting Development and Photosynthesis of photo Cultivar Vendor Abstr XXIst Inter Hort Cnrg 1982
    [219] Grattan S R, Grieve C M. 1999. Salinity-mineral nutrient relations in horticultural crops[J]. Scientia horticulturae, 78: 127-157
    [220] GuttomsenG. 1991. Developments in plant and soil Sciences. (39): 256-258
    [221] HurdRG. 1985. Journal of horticulture Sciences. 60(3): 359
    [222] Isiam, A K M S. 1980. pH optima for crop growth: resultes of a fllowing solution culture experiment whith six species. Plant Soil. 54: 339-357
    [223] Krug E C, Frink C R. 1983. Acid rain on soils: a new perspective[J]. Scienee, 221: 520-527
    [224] Kutschera, U. 1989.Tissue Stressesg rowing plant organs. Physiol. Plant. 77: 157-163
    [225] Lauchli A. 1989. Methods of K - Research in Plants [R]. InternationalPotash Institute, Bren-Swizerland
    [226] LI Wen-qing, ZHANG Min. etal. 2001. VAN DER ZEE. Salt Contents in Soils Under Plastic Greenhouse Gardening in China [J]. Pedosphere, 11 (4) : 359-367
    [227]Lokke H, Bak J, Falkengren-Grerup U, e tal. 1996. Critical loads of acidic deposition for forest soils: is the current approach adequate. Ambio25: 510-516
    [228] Malhi SJ, Nyborg M, Harapiak JT. 1998. Effects of long-term N fertilizer-nduced acidification and liming on micronutrients in soil and in bromegrass hay. Soil & Tillage Research, 48: 91-100
    [229] McFee W W. 1980. Sensitivity of soil region s to acid precipitation, EPA-600/3-80-031
    [230] McFee W W. Environmental Experimental Botany, 1983, 23: 203-210
    [231] Morgan, P W, Joham, H E and Amin, J V. 1966. Effect of manganese toxicity on the indole -acetic acid oxidase system of cotton. Plant Physiol. 41: 718-724
    [232] Murach, D. and Matzner, E. 1987. The influence of soil acidification on root growth of Norway spruce and European beech. IUFRO Woody plant growth in a changing chemical and physical environment, Vancouver.
    [233] NAGARAJARAO Y, 1994. JAYASREE. Effect of different long term soil management practices on strength and swell-shrink characteristics, voids and microstructure[A]. In: Transactions of 15th Word Congress of Soil Science[C]. Mexico
    [234]NyePH. 1981. Change of pH across the rhizosphere induced by roots[J]. plantSoil. 61:7-26
    [235] Pearson, R W. 1975. Soil acidity and liming in Humid Tropics[M]. New York. Conell University,30
    [236] Reuss J O. Chemical processes governing soil and water acidification[J]. Nature, 1987, 329: 327-335
    [237] Reuss J O, Johnson D W. 1986. Acid Deposition and the Acidification of Soils and Waters. Springer-verlag: New York 1-15
    [238] Richardson, A. E. 1989. Effects of pH, Ca and Al on the exudation from clover seeding of compounds that induce the expression of nodulation genes in Rhizoblum trifoill. Plant Soil. 109:37-47
    [239] Ritchie GPS. 1989. The chemical behaviour of aluminium, Hydrogen and ma nganese in acid soils[A]. In: Robson AD ed. Soil Acidity and Plant Growth[C]. Academic Press: Sydney, 1-60
    [240] Rubeiz Z G, Oebker N F. 1989. Stroehlein J L. Subsurface drip irrigation and urea phosphate fertigation for vegetables on calcareous soils[J]. Journal of Plant Nutrition, 12 (12): 1451-1465
    [241] Sahrawau K L. 1982. Nitrification in some tropical soils Plant and Soil, 65: 281-286
    [242] Salam, A K. and Helmke, P K. 1998. The depandence of free ionic activities and total dissolved concentration of copper and cadmium in soil solution. Geoderma. 83: 281-291
    [243] Seltskar D M. 1992. response of ammophila breviliqulate to acid rain and low soil pH[J]. Water Air and Soil Pollution, 63: 295-303
    [244] Spain, J M, Francis, C A, Howeler, R H and Calvo, F. Differential species and varietal tolerance to soil acidity in torpical crops and pastures. In E. Bomemisza and A. Alvarado (ed.) Soil Management in Tropical America. Dep. Soil Sci. 308-329
    [245] Sposito G. 1989. The Chemistry of Soils. Oxford: Oxford University Press, 209-222
    [246] Stevenson, FJ. 1967. Organic acids in soil. Soil. Bio. chem[M]. 1: 119-146
    [247] Todd M Nissen, Michelle M Wander. 2003. Management and soil-quality effect on fertilizer-use efficiency and leaching[J]. Soil science society of America journal, 61 (5): 1524-1532
    [248] Ulrich B, Mayer R. and Khanna P. K. 1980. Chemical changes due to acid precipitation in a losse-derired soil in central Europe[J]. Soil Sci, 130: 4, 193-199
    [249] Van Breemen N. Mulder J. Driscoll C. T. 1984. Acidification and alkalinization of soils. Plant and soil, 75: 283-308
    [250] Vries W De, Kros J, Voogd J C H. 1994. Assessment of critical loads and their exceedance on Dutch forests using a multi-layer steady-state model. Water Air Soil Pollut, 75: 407-448
    [251] Wang Yu, Zhang Yiping. 2001. Quantitative Effect of Soil Texture Composition on Retardation Factor of K~+ Transport, Pedosphere, 11 (4): 377-382
    [252] Wang Z H, Li S X. 2003. Effects of N forms and rates on vegetable growth and nitate accumulation. Pedosphere, 13 (4): 309-316
    [253] Wieland E, Stumm W. 1992. Dissolution kinetics of kaolinite in acidic acqueous solutions at 25?[J]. Geochim. Cosmochim. Acta. 56: 3339-3355

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700