水平管循环流化床换热器防、除垢的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
换热设备的防、除垢问题是学术界及工业界普遍关注的课题。将多相流态化技术引入防、除垢过程,通过在换热装置中加入一定种类、浓度、粒径的惰性固体颗粒的方法来达到防、除垢和强化传热的目的,取得了显著的效果,具有广阔的应用前景。
     本文对水平管液固循环流化床换热器的防、除垢和强化传热性能进行了研究,考察了操作参数对其防除垢和强化传热的影响,提出了最佳工艺条件,并利用Matlab语言实现了数据的可视化。实验结果表明,惰性固体颗粒的加入不仅大大地延缓了结垢,达到了防除垢的目的,而且强化传热效果显著。加入固体颗粒体积分率越大,强化传热效果越明显;颗粒循环流量越大传热系数越高;热通量大时传热效果好。最后通过建立线性回归模型,得出了水平流化床换热器膜传热系数及压降关联式,以指导工程实践。
There is a common focus on the subject of preventing and removing the foulings in heat exchanger in the field of academia and industry. Multi-phase fluidization technique has been used in the process of preventing and removing the fouling. Inert solid particles were added to the heat exchanger in order to preventing and removing foulings and enhancement heat transfer, which has remarkable effect and can be applied widely.
     Focal point of this text was studying the influence of the capability of preventing and removing fouling and enhancing the heat transfer in a horizontal liquid-solid circulating fluidized bed heat exchanger. The capability of preventing and removing fouling and enhancing the heat transfer were reviewed, moreover the optimum operating conditions were proposed. Experimental data had been visualized by using Matlab software. The experimental results show that the fouling can be prolonged for adding particles, and solid particle can prevent fouling and enhance heat transfer. The more adding particles, the better heat transfer effect was. The heat transfer effect was better in high speed than low speed with adding particles. The coefficient of heat transfer increased with the heat flux. In the last, the mathematical model of horizontal fluidized bed heat exchanger was induced, by setting up linearity regression model, which can be applied to engineering.
引文
[1]程立新,杨杰辉.换热设备防垢技术进展.石油化工设备,2000,29(4):2225
    [2] Chandler,J.L.The effect of supersaturation and flow conditions on the initiation of scale formation. Trans. Inst. Chem. Engrs, 1962, 42: 24~34
    [3] Andritsos N, Kontopoulou M, Karabelas A J. Koutsoukos P G. Can J of Chem Eng, 1996, 74(6): 911
    [4] Hasson, D. Zahavi, J. Mechanism of calcium sulfate scale deposition on heat transfer surfaces, I&EC Fundamentals 1993, 9: 1~10
    [5] Ritter, R. B. Crystalline fouling studies. ASME. J, Heat Transfer 1994, 105: 374~378
    [6] Story M K. Surface temperature effects on the fouling characteristic of cooling water: [M. S. Thesis]. USA: Oregon State University, 1975
    [7]王睿,丁洁,沈自求.换热设备的结垢机理研究现状.化工进展,1999,3 :31~35
    [8] S.H.Najibi, H.Mǖller-Steinbagen, M.Jamialahmadi. Calcium sulphate scale formation during subcooled flow boiling. Chemical Engineering Science,1997, 52(8):1265~1284
    [9] Amedeo Lancia, Dino Musmarra,Marina Prisciandaro. Measuring Induction Period Calcium Sulfate Dihydrate Precipitation. AIChE Journal, 1999, 2
    [10]李修伦,刘绍丛.汽液固三相流化床沸腾换热的研究.化工学报,1993, 44(2):224~229
    [11]李修伦,闻建平.三相流沸腾传热.高校化学工程学报,1995, 9(4):326~331
    [12]李修伦,闻建平.垂直管内三相流沸腾传热特性.化学工程,1995, 23(4):50~54
    [13]杨善让,徐志明.换热设备的污垢与对策.北京:科学出版社,(1995).17~18, 124~131
    [14] J. Taborek, T. aoki. fouling: The Major Unresolved Problem in Heat Transfer. Chem. Eng. Prog., 1972, 68(7):69~78
    [15] S. K. Beal, Deposition of Particles in Turbulent Flow on Channel or Pipe Walls. Nucl. Sci. Eng., 1970,40:1~11
    [16] J. M. Bartlett. U. S. Atomic Energy Commission Report. BNWL 676, 1968,5
    [17] D. Q. Kern and R. E. Seaton, A Theoretical Analysis of Thermal Surface Fouling, British Chem. Eng., 1959, 4:258~262
    [18] W. L. Mccabe and C. S. Robinson, Int. Chem. Eng., 1924,16:478~479
    [19] B. J. Reitzer, Int. Chem. Eng., 1964,3:345~348
    [20] F. G. Baryakhtar, P. K. Knizhenkov. Experience in Using Current Reversal in Electrochemical Cleaning Metals of Dielectric Coatings. Soviet Surface Engineering and Applied Electrochemistry, 1988, 113~114
    [21]刘天庆.换热表面防垢新方法的研究.表面技术,1993, 2(5):214
    [22] M. N. Mar. Enhanced Protein Binding on a Surface Plaomom Resomance Sensor Using a Plasma Deposited Functionalization Film. Proc. of the Int. Society for Optical Eng. 1995, 4:2388
    [23] S. M. Jackson, E. B. G. Tones. Fouling Film Development on Anti-fouling Paints with Special Reference to Thickness. International Biodeterioration, 1988, 24(4~5):277~287
    [24] W. J. Frederick, T. M. Grace. Analysis of Scaling in Black Liquor Evaporator. AICHE Symp. Ser., 1979, 42(8):2224
    [25] B. Hultman. Inhibition of Calcium Daxalt Deposit in a Sulfate Mill by Addition of Alumilumsulfate, Svensk Papperstldming, 1981, 84(18):163~168
    [26]时钧,汪家鼎.化学工业工程手册(上).第2版.北京:化学工业出版社,1996
    [27]胡修慈.外沸式蒸发器的循环计算.河北工学院学报,1980, 4:56
    [28]赵景利. L型蒸发器的设计计算与应用.河北工业大学学报,1997, 26(4):26~29
    [29] S. G. Yiantaios, S. G. Karabelas. Fouling of Tube Surfaces Modeling of Removal Kinetics. AICHEJ. 1994, 40(11):1804~1813
    [30] P. Walker. on-line Automatic Tube Cleaning. Engineering Systems, 1994, 10:58~62
    [31] M. Hull and J. A. Kitchener. Interaction of Spherical Colloidal Particles with Planar Surfaces. Trans. Faraday Soc., 1969, 65:3093
    [32] Muller-Steinhagen H. Particulate Fouling for Low-finned Tubes and for Plate Heat Exchangers. Paper Delivered at International Conference on Fouling in Process Plant, Oxford, 1988.
    [33] Sheikholeslami R, Watkinson A P. Scaling of Plain and Externally Finned Heat Exchanger Tubes. Heat Transfer, 1986,108(1):147~152
    [34] Watkinson A P, Louis L. Brent R. Scaling of Enhanced Heat Exchanger Tubes. Can. J. Chem. Eng, 1974, 52(5):558~562
    [35] Webb R L, Kim N-H. Particulate Fouling in Enhanced Tubes. Paper Presented at the 1989 National Heat Transfer Conference, Philadelphia, 1989
    [36] Klaren D G, Balilie R E. The Non-fouling fluidized Bed heat Exchanger [A]. In:Shah R H. National Heat Transfer Conference HTD,Vol.108:Heat Transfer Equipment Fundamentals Design, Application and Operating Problems[C].New York; ASME,1989.273~279
    [37] L. P. Match,D.G. Klaren. Scale control in High Temperature Distillation Utilized Fluidized Bed Heat Exchanger.Research and Development Report, 1970. 571
    [38] C. A. Allen,E. S. Grimmett. Liquid-Fluidized-Bed Heat Exchanger Design parameters. Department of Energy Idaho Operation office,Under Contrast, 1978, 4:1570
    [39] J. F. Richardson,W. N. Zaki. Sedimentation and Fluidization: PartⅠ, Trans. Inst. Chem. Engrs, 1954, 32: 35~53
    [40] D. G.Klaren. Development of a vertical Flash Evaporator,Ph. D. Thesis,Delft University of Technology, 1975
    [41] J. A. M. Merjer. Inhibition of Calcium sulfate Scale by a Fluidized Bed, Ph. D. Thesis, Delft University of Technology, l984
    [42] A. W. Veenman. A Review of New Development in Desalinations by Distillation Process, Desalination by Distillation Process, Desalination, 1978, 27: 21~29
    [43] A. W. Veenma. Desalination 1977, 22: 49~52
    [44] Kollbach J.St, Rautenbach R. Continuous cleaning of Heat Transfer in Heat Exchanger with Recirculating Fluidized Bed[J].Heat Transfer Engineering,1987,8(4):26~32
    [45] Kollbach J. St, Rautenbach R. The Fluidized Bed technique in the Evaporation of Wastewater with severe Fouling/Scaling Potential lattes. Development/Application/Limitations. Desalination, 1991,81(3):285~298
    [46] Meijer J M.Prevention of Calcium SuphateScale Deposition by a Fluidized Bed[J]. Desalination, 1983, 47(5):3~15
    [47] Klaren D G. Fluidized Bed Heat Transfer Exchanger: A Major Improvement in Severe Fouling Heat Transfer[A]. In: Taborek J. Heat Exchanger: Theory and Practice[C]. Washington: Hemisphere Publishing Corporation, 1981.885~896
    [48] Klaren D.G, VailieR.E. The Non-Fouling Fluidized Bed Heat Exchanger National Heat TransferConference HTD vol.108.Heat Transfer Equipment fundamentals, Design, Application and Operation Problems. 1989,273~279
    [49]齐世学,宗祥荣,王琳.流化床换热器的研究(Ⅰ)[J].烟台大学学报(自然科学与工程版), 1994,(1):48~54
    [50] Klaren D.G. Apparatus for Carrying out a Physical and/or chemical Process, such as a Heat Exchanger, PCT, WO 94/24507.1994,10
    [51] Klaren D.G. Selbstreinigendes Konzept. Chemamlagen Verfahren. 1995,28(5):16~18
    [52]叶施仁.液固流态化换热器结构的改进及应用[J].化工机械,1998,25(1):31~33
    [53] Jenkins J T, Savages B. A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles[J]. Fluid Mech, 1983, 130: 187~202
    [54] Louge M Y, Mastorakos E, Jenkins J T. The role of particle collisions in pneumatic transport[J]. Fluid Mech, 1991, 231: 345~359
    [55] Savage S B, Jeffery D J. The street tensor in a granular flow at high sheer rates[J]. Journal of Fluid Mechanics, 1981,110: 225~272
    [56] Newitt D M, Richardson J F, Abbott M, et al. Hydaulic conveying of solids in horizontal pipes[J]. Trans Inst Chem Engrs, 1955,33(2): 93~113
    [57] Wasp E J, Kenny J P, Gandhi B L. Solid-Liquid flow slurry pipeline transportation. Clausthal: Trans Tech Publications, 1977
    [58] KriegerIM,DoughertyTJ.Amechanism for non-Newtonian flows in suspensions of rigid spheres[J]. Trans.the Society of Rheology,1959,3:137~152.
    [59] Spalding D B. Numerial computation of multi-phase flow and heattransfer. In:Taylor Ced. Recent Advances in Numerical Methods in Fluids. Swansea: Pineridge Press Limitid, 1980. 139~167
    [60] ChenC L.General solution fo rviscoplastic debris flow [J]. Hydr. Engrg, ASCE, 1988, 114(3): 259~282.
    [61]王光谦、倪晋仁.颗粒流研究评术[J].力学与实践,1992,14(1):7~18
    [62]倪晋仁、王光谦.泥石流的结构两相流模型:I.理论[J] .地理学报,1998,53(1):66~76
    [63]倪晋仁、黄湘江.高浓度固液两相流运动特性研究[J].水利学报,2002,7:8~15
    [64]韩文亮,柴洪恩.固液两相流不稳定方程及水击压力的计算[J].泥沙研究,1998,3:68~73
    [65]王长安.密相液固两相三维湍流流动的研究及其在泵叶轮内流场计算与分析中的应用:[博士学位论文].西安:西安交通大学能源与动力工程学院,1996
    [66]姜培正,魏进家,王长安.浓密度液固两相流动的数值研究与理论分析[J].西安交通大学学报,1998,32(4):84~88
    [67]刘大有,路展民.竖置管流中液固两相脉动特性和颗粒浓度分布[J].力学学报,2000,32(5):552~558
    [68]魏进家.稠密液固两相湍流KET模型和数值计算及离心泵叶轮内两相流场实验研究:[博士学位论文].西安:西安交通大学,1999
    [69]翁大聪,韩宇,程林娜.外循环流化床生物反应器的流动及发酵特性[J].化工冶金,1992,13(4):325~330
    [70] Liang W G, Zhang S L, Zhu J X, et al. Flow Characteristics of the Liquid-Solid Circulating Fluidized Bed[J]. Powder Technol., 1997, 90:95~102
    [71]梁五更,张书良等.液固循环流化床的研究(I)[J].化工学报,1993,44(6):667~671
    [72] Grace J R. Contacting Modes and Behavior Classification of Gas-Solid and Other Two-phase Suspensions[J]. Can J Chem Eng, 1986, 64:353~363
    [73] Liang Wugeng, Yu Zhiqing, Jin Yong, et al. Study on Phase Holdups and Solid CirculatingRate in Liqud-Solid Circulating Fluidized Beds[J]. Journal of Chemical Industry and Engineering, 1993,44:666~671
    [74] Zheng Y, Zhu J X, Wen J Z, A-S, et al. The Axial Hydrodynamic Behavior in a Liquid-Solid Circulating Fluidized Bed[J]. Can J Chem Eng, 1999a, 77:284~290
    [75]梁五更,张书良等.液固循环流化床的研究(II)[J].化工学报,1993,44(7):672~676
    [76] Liang W G, Zhu J X . A Core-Annulus Model for the Radial Flow Structure in a Liquid-Solid Circulating Fluidized Bed[J]. Chem Eng J, 1997a, 68:51~62
    [77] Liang W G, Zhu J X .Effect of Radial Flow Non-uniformity on the Alkylation Reaction in a Liquid-Solid Circulating Fluidized Bed Reactor[J]. Ind Eng Chem Res, 1997b, 36:4651~4658
    [78]贾丽云.液固循环流化床和流化床换热器流动特性的研究.硕士学位论文,天津大学化工学院, 1998
    [79] CarlosCR, Richardson J F.Chem Eng Sci,1968,23:813~824
    [80]胡新辉,朱家骅,夏素兰,石研福.液固流化床中颗粒循环运动机理的初步研究[J].化学反应工程与工艺,1998,14(1):97~100
    [81]郝晓刚,张忠林,郭金霞,孙彦平.液-固流化床中液速分布与颗粒循环流[J].高校化学工程学报,2004,18(2):298~302
    [82] Roy S, Chen J W, Kumar S B, Al-Dahhan M H, Dudukovic M P. Tomographic and particle tracking studies in a liquid-solid riser[J]. Ind Eng Chem Res, 1997, 36: 4666~4669.
    [83]张欢,王铁峰,王金福,金涌.液固循环流化床中的颗粒速度场[J].化工学报,2003,54(10):1355~1360
    [84]张学岗,杨建宇,李修伦.二维液固循环流化床内固体颗粒浓度分布的研究[J].天津化工,2001,(1):10~12
    [85]韩莉果.液固流化床换热器分布装置及其分布性能研究,[硕士学位论文].天津:河北工业大学,2004
    [86]孙姣.气液固循环流化床换热器颗粒分布板的分布性能实验研究,[硕士学位论文].天津:河北工业大学,2004
    [87]许振良,孙宝铮.水平管内非均质流速度分布的研究[J].辽宁工程技术大学学报,1998,17(5):449~454
    [88]彭龙生.水平管螺旋流中均匀固粒的分布[J].太原工业大学学报,1997,38(3):57~63
    [89]吴金香,俞秀民.管内循环流态化卧式列管换热器.中国实用新型专利(专利号:ZL93233428.8)
    [90]张利斌,李修伦.三相循环流化床中沸腾传热特性.化工学报,1999,50(2):208~214
    [91]邹克华.三相流循环流化床流动沸腾传热和压降的研究:[硕士学位论文].天津:天津大学研究生院,1999
    [92]李秀伦.新型汽液固三相流化床蒸发器性能研究:[硕士学位论文].天津:天津大学研究生院,1999
    [93]于志家,慕旭宏.气-液-固三相流载气蒸发传热研究.工程热物理学报,1993, 14(3):305~308
    [94] Hidetoshi et al. Mechanism of Calcium Sulfate Scale Deposition on Heat-Transfer Surfaces and Mechanical Removal of Scale by Particle Abrasion Method,日本海水学会誌 1994, 48(2): 96
    [95]贾原媛.三相循环流化床麦草浆黑液蒸发器及防、除垢和强化传热研究:[博士学位论文].天津:天津大学研究生院,2003
    [96]胡金刚,刘燕,赵斌,等.水平管内液固流化床颗粒分布.化工装备技术,2006,27(4):12~16
    [97]李修伦,闻建平.垂直管内三相流沸腾传热特性.化学工程, 1995, 23(4):50~54
    [98]刘双科,高桥弘.水平管内伴有悬浮床的冰-水两相流动特性[J].泥沙研究,2003,24~28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700