液体火箭发动机试验台自动增压系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液体火箭发动机贮箱增压系统是试验台的重要组成部分,其作用是为推进剂贮箱增压,以便推动推进剂以一定的压力进入发动机燃烧室,满足发动机泵入口压力要求,从而验证发动机是否达到设计的性能指标。贮箱增压是一个非常复杂的工作过程,为减轻操作人员的劳动强度,提高发动机入口压力调节的可靠性和稳定性,降低试验成本,提高试验效率,需要对贮箱增压进行自动化设计。
     第一章绪论部分首先对贮箱增压系统的概念和用途进行介绍,详细分析了火箭发动机试验平台对贮箱增压系统的指标要求,同时回顾了国内外贮箱增压系统的研究和使用情况。
     第二章详细介绍了贮箱增压系统的系统组成和工作原理,针对每个分系统或部件,详细描述了它们的功能和性能指标,最后概述了本课题的主要研究内容。
     第三章首先利用一维可压缩流的有限元状态空间模型,建立液体火箭发动机试验台贮箱的数学模型。然后基于小扰动线性化理论,对数学模型进行线性化,获得简化的被控对象数学模型。最后计算出被控对象输入输出之间的传递函数。
     第四章首先根据获得的贮箱压力控制系统数学模型,设计了常规PID控制器。由于常规PID控制器依赖于精确的数学模型,难以获得满意的响应结果,本文又在常规PID控制算法的基础上进行了改进。将模糊控制器与PID控制器结合在一起,利用模糊逻辑控制实现PID参数的在线自调整,使控制系统性能得到改善。利用Matlab /simulink软件对贮箱增压过程两种控制方法进行了仿真验证,并对它们的性能进行了仿真比较。
     第五章详细描述了为验证增压系统模型建立的准确性,检验控制系统设计的有效性而开发的一套模拟火箭发动机试车台贮箱增压系统的试验装置。利用水介质进行了调试试验,最后分析和讨论了该试验装置的测试结果。
     第六章对本课题的研究内容进行了总结与展望。
Tank pressurization system is one important part of a liquid rocket engine test-bed. The tank pressurization system can control the gas quantity into the tank which extrudes the propellant into engine combustion chamber under the required pressure. The process of tank pressurization is rather complex and time-consuming. Hence, a set of automatic tank pressurization equipment is imperative to release workload, improve pressure regulation precision, boost the work efficiency and decrease test cost.
     In Chapter 1,definition and purpose of a tank pressurization system is introduced. Performance requirements to construct an applicable tank pressurization system are described. The art of the state of the tank pressurization system is also provided in this chapter.
     In Chapter 2, system configuration and working principle of the tank pressurization system are provided at first. Function and performance index of each component of the system are given. Then, the content of the project is outlined.
     In Chapter 3, a mathematic model for tank pressurization system of liquid rocket engine test-bed is developed by using the finite elements state-space model theory for one-dimensional compressible fluid flow. Based on the small disturbance linearization method, a simplified control model is obtained and the corresponding input-output transfer function is achieved.
     In Chapter 4, two control systems are designed based on the conventional PID method and the fuzzy system-enhanced PID method respectively. Using Matlab/Simulink toolbox, the proposed control systems are implemented. Then, simulation results demonstrate their validity.
     In Chapter 5, a set of tank pressurization system is implemented for a simulated liquid rocket engine test-bed. Several tests are carried out to verify the tank pressurization system by using water medium. Test results are analyzed
     The last chapter summarizes the project and provides some future research directions.
引文
[1]郭霄峰.液体火箭发动机试验[M].北京:宇航出版社. 1990.
    [2]沈赤兵.液体火箭发动机静态特性与响应特性研究[D].湖南:国防科技大学研究生院. 1997.
    [3]张育林,刘昆,程谋森.液体火箭发动机动力学理论与应用[M].北京:科学出版社. 2005.
    [4]邢耀国译.液体火箭发动机及其供给系统动力学[M].海军航空工程学院. 1988.
    [5]朱宁昌主编.液体火箭发动机设计(下)[M].北京:宇航出版社. 1990.
    [6]张雪梅,张黎辉,金广明等.减压器动态过程的数值仿真[J].航空动力学报. 2004,19(4):541-545.
    [7]董飞,周吉.智能型减压器试验台的研制[J].火箭推进. 2005,31(2):59-62.
    [8]张新闻.气动薄膜调节阀工作特性对调节系统的影响[J].电力建设. 2003,24(7):48-50.
    [9]周雪冰,郭威华.控制回路中气动调节阀的选用[J].工业仪表与自动化装置. 2004,1:53-55.
    [10]李化民,温艳芬,邓敬芬等.气动薄膜调节阀的应用[J].甘肃冶金. 2004,26(3):61-62.
    [11]廖少英.可贮存推进剂火箭增压气体与泵入口压力关系研究[J].上海航天. 2001(1):16-21.
    [12]刘元扬主编.自动检测与过程控制[M].第3版.北京:冶金工业出版社. 2005.
    [13]陈阳,高芳,张振鹏等.液体火箭发动机试验台贮箱增压系统模块化仿真[J].航天动力学报. 2005,20(2):339-344.
    [14] Kimberly Holt, Alok Majumdar. Numerical Modeling and Test Data Comparison of Propulsion Test Article Helium Pressurization System[C]. AIAA 2000-3719.
    [15]张青松,张振鹏,杨雪等.液体火箭发动机试验台气液管路系统故障仿真及分析[J].航空动力学报. 2006,21(2):403-409.
    [16]刘昆,程谋森,张育林.低温推进剂供应管道系统充填过程的动力学模型[J].国防科技大学学报. 2003,25(3):1-5.
    [17]张超,鲁雪生,田丽亭.火箭低温液体推进剂增压系统数学模型[J].低温与超导. 2005,33(2):35-39.
    [18]刘昆,张育林.液体推进系统充填过程的有限元状态变量模型[J]. 2001,22(1):19-21.
    [19]谭永基,蔡志杰.数学模型[M].上海:复旦大学出版社. 2005.
    [20]刘昆,张育林.一维可压缩流的有限元状态空间模型[J].推进技术. 1999,20(5):62-66.
    [21]李文绚,金保侠.气体动力学计算方法[M].北京:机械工业出版社. 1990.
    [22]付卫东,袁修干,梅志光.管路系统通过调节阀控制气体流动的动态数学模型建立[J].航空学报. 1999.
    [23]陈阳,高芳,张振鹏等.气动薄膜调节阀控制系统工作过程的动态仿真[J].火箭推进. 2006,32(6):28-34.
    [24] Coxe E F, Tatom J W. Analysis of the Pressuring gas requirements for an evaporated propellant pressurization system[J]. Advances in cryogenic engineering. 1962, 7:234-240.
    [25]张化照,田玉蓉,张福忠.某型火箭氧箱自生增压可行性理论分析与试验研究[J]. 2004,5:39-42.
    [26]刘昆,张育林,程谋森.液体火箭发动机系统瞬变过程模块化建模与仿真[J]. 2003,24(5):401-405.
    [27]马飞,王海洲.基于Matlab/Simulink的气体增压系统建模分析[J].导弹与航天运载技术. 2006,3:41-47.
    [28] Liu Kun, ZhangYulin. A Study on Versatile Simulation of Liquid Propellant Rocket Engine Systems Transients[C]. AIAA:2000-3771.
    [29] Rivera D E, Skogestad S, Morari M. Internal Model Control for PID Controller Design[J]. Ind. Eng Chem. Proc. Des&Dev, 1986 (25): 252-265.
    [30] Dorf RC, Bishop RH. Modern Control System[M]. 10th ed,Person Prentice Hall. 2005.
    [31] Kiam Heong, Gregory Chong. PID Control System Analysis, Design, and Technology[J]. IEEE Transactions on control system technology 2005, 13(4):559-576.
    [32] Stuart Bennett. The past of PID controllers[J]. Annual Reviews in control. 2001(25):43-53.
    [33]潘永湘,刘兴伟.基于神经网络逆模型的Fuzzy-PID控制方法及其应用研究.西安理工大学学报.1999, 15(3):42-45.
    [34]张恩勤,施颂椒,翁正新.一类基于PID控制的新型模糊控制方法.上海交通大学学报. 2000, 34(56): 30-634.
    [35] Huang Y. J., Kuo T. C., Lee H. K. Fuzzy-PD Controller Design with Stability Equations for Electro-hydraulic Servo Systems. In Proceeding of International Conference on Control, Automation and Systems 2007, 2407-2410.
    [36] Kyoung K. A., Bao K. N., Yoon H. S. Self Tuning Fuzzy PID Control for Hydraulic Load Simulator[C]. Int. Conference on Control, Automation, and Systems. 2007:345-349.
    [37] Zulfatman, Rahmat M.F.. Application of self-tuning fuzzy PID controller on industrial hydraulic actuator using system indentification approach[J]. International Journal on Smart Sensing and Intelligent Systems. 2009, 2(2): 246– 261.
    [38] Astrom K J, Hagglund T. Automatic tuning of PID controllers. ISA. 1988.
    [39] Gyongy I J, Clarke D W. On the automatic tuning and adaptation of PID controllers. Control Engineering Practice. 2006(14):149-163.
    [40]王伟,张晶涛,柴天佑. PID参数先进整定方法综述.自动化学报. 2000, 26(3):357-355.
    [41]常晓恒.模糊自适应整定PID控制器的设计[J].辽宁工程技术大学. 2003.
    [42] Moradi M H, Katehi M R, Johnson M A. Predictive PID control, A new algorithm. The 27th Annual Conference of the IEEE Industrial Electronics Society. IECONOI. Denver. USA. 2001:764-769.
    [43] Chien I L. LMC-PID Controller Design An Extension[J]. IFAC Proceeding Series. 1988 (6): 147-152.
    [44] Moradi M H, Katehi M R, Johnson M A. Predictive PID control, A new algorithm. The 27th Annual Conference of the IEEE Industrial Electronics Society. IECONOI. Denver. USA. 2001:764-769.
    [45]刘金琨.先进PID控制及其MATLAB仿真[M].北京:电子工业出版社. 2003.
    [46]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用.北京:清华大学出版社. 2002.
    [47]谢雪梅,陈国邦,李琦芬等.液氧贮箱自生增压输液模拟试验[J].推进技术. 2005,26(3):196-201.
    [48]王维.卫星双元统一推进系统改进研究[学位论文].上海:上海技术研究院. 2006.
    [49] Hang C C, Astrom K J, Ho W K. Refinement of the Ziegler-Nichols tuning formula. IEE. Proceeding. Part D. 1991, 138(2):111-118.
    [50]刘昆,张育林.考虑入口和出口容积效应的涡轮动力学模型[J].国防科技大学学报. 2001,23(3):9-11.
    [51] Hoo K.A., Piovoso M.J.,Schnelle P.D., D.A. Rowan. Process and Controller Performance monitoring: overview with industrial applications. Int. J. of Adaptive Control and Signal Processing. 2003, 17: 635-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700