WNT5A在鼻咽癌转移中的作用及BMI-1对鼻咽癌细胞药敏性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分WNT5A/PCK介导上皮间质转化与鼻咽癌转移
     [研究背景]
     鼻咽癌(Nasopharyngeal carcinoma,NPC)是我国华南地区及东南亚常见的一种恶性肿瘤。鼻咽癌的治疗主要以放疗为主,对放化疗都比较敏感,早期疗效好,而晚期鼻咽癌的疗效甚差,并且有30%以上的鼻咽癌患者会产生远处转移,所以转移是导致鼻咽癌患者死亡的原因之一。但迄今为止,导致鼻咽癌转移的具体机制尚未明了。因此,探讨鼻咽癌转移的特征性基因及其分子机制,对于找到鼻咽癌转移治疗的新靶点及提高转移患者的生存率具有重大的意义。
     WNT家族是一类含丝氨酸丰富的分泌性糖蛋白,包括19种成员,主要通过细胞表面受体调节特异性转录因子参与细胞生命调控、迁移以及细胞极化等。WNT信号通路能抑制凋亡,促进肿瘤细胞的增殖,同时WNT家族及其成员也参与了多种肿瘤的发生,包括鼻咽癌。WNT5A被归于WNT家族中无转化能力的成员之一,主要参与了非经典的WNT信号通路。有研究表明WNT5A的表达增加与肿瘤发生发展密切相关。但是WNT5A在鼻咽癌转移中的作用及机制尚不清楚。因此,本研究旨在探讨WNT5A在鼻咽癌侵袭、转移过程中的作用及其相关的分子机制。
     1)WNT5A是鼻咽癌转移的特征性分子之一
     前期的研究已经从人鼻咽癌细胞株CNE2中分离出不同转移能力的克隆细胞株Clone-18,Clone-22和Clone-26。其中Clone-18具有显著的侵袭转移能力,而亲代鼻咽癌细胞株CNE2及其克隆Clone-22,Clone-26的侵袭转移能力较弱。对上述细胞我们通过全基因组表达基因的高通量分析,分别筛选出多个在Clone-18上调和下调的基因。对裸鼠移植瘤进行全基因组表达基因的高通量分析,得出类似的结果,其中WNT5A在高转移细胞株Clone-18中的表达明显上调。
     2)高转移细胞株Clone-18发生EMT现象
     光镜观察发现人鼻咽癌细胞株CNE2及其低转移能力的克隆Clone-22和Clone-26呈现典型的上皮细胞形状,而高转移细胞克隆Clone-18的形态则类似于成纤维细胞的形态。由于这种细胞形态的改变类似于细胞发生上皮-间质转变时的典型特征,于是检测了相关的分子标志物。在Clone-18中E-cadherin的表达明显降低,而Snail的表达明显增加。
     3)抑制WNT5A的表达能降低高转移细胞株Clone-18的体外迁移和侵袭能力
     为了阐明WNT5A对鼻咽癌细胞运动能力的影响,设计了三条针对WNT5A mRNA的干扰序列,并筛选出最有效的一条用于后续的实验。通过划痕实验和侵袭实验,证实了干扰WNT5A能有效降低Clone-18细胞株的迁移和侵袭能力。
     4)抑制PKC的活性能降低高转移细胞克隆Clone-18的运动能力
     有研究报道在黑色素瘤细胞中PKC能介导WNT5A通过非经典的WNT/Ca~(2+)通路参与细胞的侵袭转移。另外在乳腺癌细胞中PKC的活化能反馈性的上调WNT5A的表达。因此我们研究PKC的抑制剂是否能阻碍高转移细胞克隆Clone-18的运动。GF-10923X是PKC的经典抑制剂,能有效抑制Clone-18中PKC的磷酸化,导致PKC的失活,下调WNT5A的表达。同时影响到EMT标志性分子的改变,即导致Snail表达的下降和增加E-cadherin的表达,最终降低Clone-18的运动能力。采用另一种PKC的抑制剂G(O|¨) 6983能产生类似的效果。因此,PKC参与了鼻咽癌细胞的EMT,调节细胞的运动。
     5)WNT5A通过PKC途径调节鼻咽癌细胞EMT
     由于WNT5A能增加PKC的磷酸化,而PKC参与了细胞的运动和上皮间质转化,我们因此进一步探究WNT5A是否能直接诱导细胞的EMT。在WNT5A被干扰之后,Clone-18中磷酸化PKC的表达显著降低,而EMT的标志性分子Snail表达下调,E-cadherin表达增加。而在低转移细胞克隆Clone-22中加入外源性重组WNT5A蛋白后,Snail的表达增加,E-cadherin的表达下调,提示促进了细胞发生EMT改变。
     6)PKC的活化通过调节Snail和E-cadherin的表达促进低转移细胞克隆的运动
     为了进一步研究PKC的激活是否能增强低转移鼻咽癌细胞克隆的运动能力,我们采用PKC的激活剂佛波酯PMA来处理细胞。结果显示当采用低浓度的PMA(200nM)处理后,磷酸化PKC的表达在30分钟左右达到顶峰,随后缓慢地衰减,12小时至24小时左右表达最低。有趣的是,WNT5A和Snail的表达则随着时间的延长缓慢增加,12小时至24小时达最高,而E-cadherin的表达却是缓慢地减弱。正如所预测的,当加入PMA或重组WNT5A因子之后,划痕实验显示细胞的运动能力增强,但是这一运动能力可以被PKC抑制剂G(O|¨) 6983阻断。
     7)WNT5A的表达上调与鼻咽癌转移的临床相关性
     我们也关心WNT5A促进鼻咽癌细胞在体外的迁移侵袭能力是否具有临床相关性。我们收集了49例临床新鲜活检组织样本,包括20例非肿瘤的鼻咽黏膜组织样本,19例鼻咽原位肿瘤样本,5例鼻咽癌淋巴结转移灶的穿刺活检样本(局部转移),4例鼻咽癌肝转移灶的穿刺活检样本(远处转移),进行荧光实时定量PCR检测WNT5A的mRNA表达水平。结果显示WNT5A在鼻咽癌淋巴结转移灶的的mRNA表达水平显著高于鼻咽原位肿瘤样本,在鼻咽癌肝转移样本的表达显著高于淋巴结转移样本。但是WNT5A的mRNA在非肿瘤鼻咽黏膜组织和鼻咽原位肿瘤的表达没有显著差异性。
     [结论]
     1)WNT5A通过激活PKC通路,调节Snail和E-cadherin的表达,促进鼻咽癌细胞发生上皮间质转化,从而导致肿瘤的转移;
     2)PKC的激活剂PMA以及抑制剂GF.10923X和G(O|¨) 6983也能通过调节Snail和E-cadherin的表达,影响细胞EMT和鼻咽癌细胞的迁徙能力;
     3)WNT5A与PKC之间存在反馈调控作用:
     第二部分BMI-1对鼻咽癌细胞药敏性的影响
     [研究背景]
     鼻咽癌的发生是多因素导致的一种恶性肿瘤,包括遗传易感性、EB(Epstein-Barr)病毒的感染以及其他环境因素等。目前,5-氟脲嘧啶是治疗鼻咽癌的一线化疗药物。然而,有部分鼻咽癌患者在进行5-氟脲嘧啶治疗后出现复发甚至恶化,其主要原因是体内的肿瘤细胞出现了抗药性。因此,如何增加肿瘤细胞对药物的敏感性越来越受到重视。
     BMI-1(B-cell-specific moloney leukemia virus insert site 1)属于多梳基因家族抑制复合体PRC1(Polycomb Repressive Complexl)的成员,被公认为是一个癌基因。它在多种恶性肿瘤中高表达,其表达与恶性肿瘤的进程相关,并且与患者的生存预后密切相关。研究表明,BMI-1具有诱导细胞永生化,促进肿瘤的早期转化,维持及促进干细胞的自我更新等重要功能。此外,有文献报道,BMI-1在鼻咽癌中高表达,且其表达水平与鼻咽癌原发灶的浸润范围以及患者生存预后密切相关;而BMI-1的表达下调能促进肿瘤细胞的凋亡。因此我们假设BMI-1的下调能通过促进鼻咽癌细胞的凋亡而增加化疗药物的敏感性,从而进一步阐明其分子机制,旨在为解决肿瘤细胞的抗药性提供新的药物靶点。
     1)BMI-1的干扰能增加鼻咽癌细胞对5-氟脲嘧啶的敏感性
     在人鼻咽癌细胞株CNE2和HONE1中,通过逆转录病毒感染系统建立BMI-1稳定干扰的细胞株即CNE2-BMI-1/RNAi,CNE2-vector和HONE1-BMI-1/RNAi,HONE1-vector。以上述细胞作为研究模型,加入不同浓度的5-氟脲嘧啶处理72小时,MTT法检测药物的IC50值。结果显示:CNE2-vector,CNE2-BMI-1/RNAi中5-氟脲嘧啶的IC50值分别为9.1504±0.6997mg/L,3.1151±0.8073mg/L(P<0.05):HONE1-vector,HONE1-BMI-1/RNAi中5-氟脲嘧啶的IC50值分别为3.9023±0.752mg/L,1.5815±0.433mg/L(P<0.05)。
     2)BMI-1的干扰能增加5-氟脲嘧啶诱导的鼻咽癌细胞的凋亡
     为了探讨BMI-1干扰后对细胞凋亡的影响,采用5mg/L 5-氟脲嘧啶分别处理CNE2-vector,CNE2-BMI-1/RNAi细胞株72小时,Hoechst 33258染色观察细胞凋亡的形态学改变,流式细胞仪检测细胞凋亡率。结果显示,CNE2-BMI-1/RNAi细胞株出现明显的凋亡形态如细胞染色质浓缩、核固缩,凋亡小体形成等。而CNE2-vector的凋亡形态改变相对不明显。同时CNE2-BMI-1/RNAi的细胞凋亡率为45.4%,而CNE2-vector的细胞凋亡率仅为32.1%(P<0.05)。
     3)BMI-1干扰后通过P13K/AKT途径增加5-氟脲嘧啶诱导的鼻咽癌细胞的凋亡
     为了进一步探讨5-氟脲嘧啶诱导鼻咽癌细胞株凋亡的分子机制,我们检测了AKT、磷酸化AKT、BAX和BCL-2的蛋白表达水平。结果显示,当BMI-1稳定干扰后,磷酸化AKT的水平显著降低,BCL-2的蛋白表达明显减少;而BAX的表达上调;加入5-氟脲嘧啶处理后上述变化更明显。随后,采用P13K的抑制剂Wortmanin预处理细胞1小时后,再加入不同浓度的5-氟脲嘧啶分别处理CNE2-vector,CNE2-BMI-1/RNAi细胞,MTT检测细胞的存活率。结果显示,Wortmanin和5.氟脲嘧啶联合处理后,细胞的存活率明显降低,但两株细胞的存活率没有显著的差异,提示BMI-1干扰后可能通过P13K/AKT途径增加5-氟脲嘧啶诱导的鼻咽癌细胞的凋亡。
     [结论]
     1)BMI-1干扰能增加肿瘤细胞对化疗药物5.氟脲嘧啶的敏感性,该效应与促进5-氟脲嘧啶诱导的细胞凋亡有关。
     2)BMI-1干扰能抑制AKT的活性,上调BAX的表达,下调BCL-2的表达。
     3)BMI-1干扰可能通过P13K/AKT途径增加5-氟脲嘧啶诱导的鼻咽癌细胞的凋亡。
PartⅠWNT5A/PKC Induces Epithelial to Mesenchymal
     Transition and Nasopharyngeal Carcinoma Metastasis
     [BACKGROUD]
     Nasopharyngeal carcinoma(NPC) is a prevalent malignancy in South China and Southeast Asia.It is sensitive to radiotherapy and/or radiochemotherapy.The therapeutic effect of NPC patients in early stage is good while it is extremely poor in late stage,and more than 30%of NPCs will develop distant metastases.The underlying mechanism(s) of NPC have been poorly explored.Therefore,it is of great importance to investigate specific moleculars and its mechanism for the guidance of new theraputic targets as well as increasing the 5-year survival rate.
     WNTs belong to a large family of cysteine-rich secreted glycoproteins consisting of at least 19 members in humans.WNT proteins control cell fate,migration and cellular polarity through cell surface receptors that modulate the transcription of specific target genes. WNT signaling can suppress apoptosis and promote invasive growth of cancer cells.The importance of aberrant WNT signaling has been reported in many human cancers,including NPC.WNT5A signaling has been classified as a noncanonical and nontransforming pathway.There is many evidences that increased WNT5A expression is associated with cancer progression.But little is known about the role and mechanism of WNT5A in the metastasis of NPC.This study aims to explore whether and how WNT5A induces invasion and metastasis of NPC.
     1) WNT5A is one of the most specific gene in NPC metastasis
     Among the cellular clones isolated from CNE-2,Clone-18 has the highest metastatic ability;Clone-22,Clone-26,and the parental CNE-2 line possess limited metastatic potential.Through whole-genome expression profiling of the cultured cells in vitro,we identified 25 up-regulated and 24 down-regulated genes in the high-metastasis Clone-18.Using the same methodology,parallel gene sets in Clone-18 were also identified from xenograft tumors.WNT5A was found to be up-regulated in Clone-18 in both the in vitro and in vivo scenarios.
     2) Characteristics of epithelial-to-mesenehymal transition(EMT) in Clone-18 cells
     Morphologically,the parental line CNE2,as well as Clone-22 and Clone-26,displayed a tightly packed cobblestone appearance.Clone-18 cells,however,displayed a fibroblast-like morphology,suggesting an epithelial-to-mesenchymal transition(EMT).In the Clone-18 cells,the expression of Snail was up-regulated and E-cadherin was down-regulated relative to their expressions in CNE2,Clone-22,and Clone-26 cells, confirming the existence of EMT in the highly metastatic Clone-18 cells.
     3) Inhibition of Wn5a expression reduced the movement and invasive ability of Clone-18 cells
     To elucidate the role of WNT5A in the motility of NPC cells, three different siRNA sequences targeting WNT5A were designed and tested,siRNA-3 was the most efficient sequence and was chosen for subsequent experiments.Knocking down WNT5A using siRNA-3 dramatically impaired the process of wound healing in Clone-18 cells. Moreover,suppression of WNT5A could significantly reduce the invasive ability of Clone-18 cells(P<0.05).These results indicate that WNT5A plays a key role in NPC cell migration and invasion.
     4) Inhibition of PKC activity decreased the motility of Clone-18 cells
     The role of WNT5A in the invasiveness of melanoma cells depends on the Wnt/Ca~(2+) pathway mediated by PKC.It has been reported that PKC activation can up-regulate WNT5A expression in a positive feedback loop in breast cancer cells.We therefore tested whether inhibition of PKC would impede the motility of Clone-18 cells. GF-10923X,a widely used PKC inhibitor,efficiently inhibited the phosphorylation of PKC in Clone-18 cells,producing an inactivated form of PKC.The inhibition of PKC activity by GF-10923X reduced the expression of WNT5A in the Clone-18 cells.The same concentration of GF-10923X also down-regulated the expression of Snail,which is the most prominent EMT-inducing regulator and E-cadherin-specific transcriptional repressor,resulting in the up-regulation of E-cadherin. Consequently,the motility of Clone-18 cells was reduced after GF-10923X treatment.These results were consistently repeated using another conventional PKC inhibitor,G(o|¨) 6983.Therefore,PKC is involved in the EMT of NPC cells,regulating the motility of the cells.
     5) WNTSA regulates EMT through PKC activity
     Given that WNT5A is able to increase the phosphorylation of PKC and that PKC is involved in cell motility and in EMT,we tested whether WNT5A could directly induce EMT.First,we found that knocking down WNT5A mRNA using siRNA-3 in the highly metastatic Clone-18 cells significantly diminished PKC phosphorylation,and also EMT,as indicated by down-regulation of Snail protein and accumulation of E-cadherin in the cells.Second,treatment with recombinant WNT5A protein in the low-metastatic Clone-22 cells resulted in the overexpression of Snail and the reduction of E-cadherin protein.
     6) Activation of PKC induces motility in low-metastasis cells through Snail and E-cadherin expression
     To determine if activation of PKC can increase cellular motility in the low-metastasis Clone-22 and Clone-26 cells,which possess low levels of WNT5A protein,the clones were treated with the PKC activator PMA.The level of phospho-PKC peaked 30 min after treatment with a low concentration of PMA(200 nM),then gradually decreased to very low levels by 12-24h.Interestingly,both WNT5A and Snail protein levels gradually increased and reached their peaks at 12-24 h,whereas E-cadherin gradually decreased during this period.As expected,cellular motility increased in Clone-22 and Clone-26 cells after treatment with PMA or recombinant WNT5A for 12 h as assessed by the wound healing assay.More importantly,the increase of cellular motility induced by recombinant WNT5A could be abolished by pretreatment with the PKC inhibitor G(o|¨) 6983.
     7) Up-regulation of WNT5A is associated with NPC metastases in clinical scenarios
     Finally,we sought to test if the critical role of WNT5A in the migration and invasion of NPC cells revealed in the present study is clinically relevant.Quantitative real-time PCR was performed to evaluate the level of WNT5A mRNA in the tissues of 20 noncancerous nasopharyngeal mucosa,19 primary NPCs,5 metastatic NPC in the cervical lymph nodes(regional metastasis),and 4 metastatic NPC in the liver(distant metastasis).The expression level(relative to GAPDH) of WNT5A mRNA in lymph node metastatic NPC was significantly higher than that in the primary tumor.Further,the expression was much higher in the distant(liver) metastatic NPCs than in regional metastases.There was no significant difference in WNT5A mRNA levels between the noncancerous NP mucosa and primary NPC tissues.
     [CONCLUSION]
     1) WNT5A activates the PKC pathway,regulating the expressions of Snail and E-cadherin and subsequently inducing EMT and metastasis in NPC;
     2) Changes in PKC activity caused by PMA,GF-10923X,or G(o|¨) 6983 can modulate the expressions of Snail and E-cadherin and subsequently affect EMT and metastasis in NPC;
     3) A positive feedback loop between WNTSA and phosphorylated PKC exists in NPC metastasis;
     PartⅡthe Effects of BMI-1 on Chemosensitivity of
     Nasopharyngeal Carcinoma Cells
     [BACKGROUD]
     Nasopharyngeal carcinoma(NPC) is a common malignancy in southern China with uncertain etiologic factors.The development and progression of NPC are believed to result from the interplay of several factors,including genetic susceptibility,Epstein-Barr virus(EBV) infection,and other environmental factors.Currently,the administration of 5-fluorouracil(5-FU)—the most widely used anticancer agent—is one of the standard chemoradio-therapy regimens for NPC.However,a sizable proportion of NPC patients show tumor recurrence after 5-FU treatment that is mainly caused by drug-resistant cancer cells.Therefore, during the past 2 decades,new strategies for enhancing the sensitivity of cancer cells to drug-induced apoptosis for cancer therapy have been intensively explored.
     The B-cell-specific moloney leukemia virus insert site 1 is one of the components of Polycomb Group protein repression complex 1 (PRC1).It was originally isolated as an oncogene cooperatingwith c-Myc in lymphomagenesis in a murine model.BMI-1 is closely associated with the development and progression of malignant tumors.It is upregulated in a number of cancers and the expression correlates with the invasion and metastasis phenotype,as well as the prognosis of patients.BMI-1 plays critical roles in immortalization of normal epithelial cells and early transformation of malignants,as well as maintenance of the self-renewal of stem cell.Forthermore,some reports showed that BMI-1 is upregulated in nasopharyngeal carcinoma and its expression level is strongly associated with the invasion phenotype of NPC and poor survival of patients.Recently,it has been reported that the downregulation of BMI-1 can result in the apoptosis of cancer cells. Therefore,we hypothesize that the abrogation of BMI-1 expression may be an effective strategy for sensitizing human cancer cells,including NPC cells,to cancer chemotherapy.
     1) BMI-1 knock down made the ceils more sensitive to 5-FU
     To examine the effect of 5-FU on the survival of BMI-1 knock-down cells,an MTT assay was performed after the CNE2-BMI-1/ RNAi,HONE1-BMI-1/RNAi,CNE2-vector,and HONE1-vector cells were treated with 5-FU for 72h.After treatment with various concentrations of 5-FU,we found that both the BMI-1 shRNA-transfected cells,i.e.,the CNE2-BMI-1/RNAi and HONE1-BMI-1/ RNAi cells,showed lower cell viabilities than the empty vector-transfected cells.The IC50 of 5-FU in the CNE2-vector and CNE2-BMI-1/RNAi cells were 9.1504±0.6997 mg/L and 3.1151±0.8073 mg/L(P<0.05),respectively;the IC50 values of 5-FU in the HONE1-vector and HONE1-BMI-1/RNAi cells were 3.9023±0.752 mg/L and 1.5815±0.433 mg/L(P<0.05),respectively.These results indicated that BMI-1 knockdown made the cells more sensitive to 5-FU.
     2) Depletion of BMI-1 enhanced 5-FU-induced apoptosis
     In order to evaluate the effect of BMI-1 knockdown on the induction of apoptosis,the CNE2-BMI-1/RNAi and CNE2-vector cells that were treated with 5 mg/mL of 5-FU for 72h were subjected to Hoechst 33258 staining.The cells were examined under a fluorescence microscope.Typical apoptotic morphological changes,such as condensed chromatin,shrunken nuclei,and loss of cell volume,were frequently observed in the CNE2-BMI-1/RNAi cells.Incontrast,only few apoptotic CNE2-vector cells were observed with the same apoptotic morphological changes.In order to further confirm the aforementioned results,we examined the apoptotic rate in the CNE2-BMI-1/RNAi and CNE2-vector cells after treating them with 5 mg/L of 5-FU for 72h.The flow cytometry data showed that the apoptotic rate among the CNE2-BMI-1/RNAi cells was 45.4%as compared to 32.1%among the CNE2-vector cells(P<0.05).
     3) PI3K/AKT pathway was essential for the sensitization effect of BMI-1 to 5-FU treatment
     To further explore the mechanism underlying the enhancement of 5-FU-induced apoptosis by the silencing of BMI-1,we examined the expression levels of total-AKT,phospho-AKT,BAX,and BCL-2 in the CNE2-BMI-1/RNAi and CNE2-vector ceils.Our results showed that the knockdown of endogenous BMI-1 led to substantial reduction in the levels of phospho-AKT,while the total-AKT levels remained uninfluenced.Consistent with this reduction in the phospho-AKT level, Westernblot analysis showed significantly decreased expression of BCL-2 in BMI-1-knocked down cells exposed to 5-FU.The accumulation of BAX in the BMI-1-knocked down ceils was more prominent after the cells were exposed to 5-FU.To investigate whether the depletion of BMI-1 enhances 5-FU-induced apoptosis through the PI3K/AKT pathway,the CNE2-BMI-1/RNAi cells were treated with a PI3K inhibitor.The cells were pretreated with 1μM of the PI3K inhibitor wortmarmin for 1 h and then treated with various concentrations of 5-FU; this was followed by the measurement of cell viability determined by the MTT assay.The inhibition rates of the CNE2-BMI-1/RNAi and CNE2-vector cells by 5-FU treatment were not significantly different after application of the PI3K inhibitor.However,the rate of inhibition of the CNE2-vector cells by 5-FU increased after pretreatment of the cells with wortmannin;this was in contrast to the low rate of inhibition of the CNE2-vector cells by 5-FU without influencing PI3K activity.Taken together,the abrogation of the PI3K/AKT pathway could not further increase the sensitivity of the CNE2-BMI-1/RNAi cells to 5-FU treatment.This suggested that PI3K/AKT pathway was essential for the sensitization effect of BMI-1 to 5-FU treatment.
     [CONCLUSION]
     1) Knockdown of BMI-1 makes cancer cells more sensitive to 5-FU as well as enhances 5-FU-induced apoptosis.
     2) Knockdown of BMI-1 inhibits AKT activation and upregulates the expression level of BAX as well as downregulats expression of BCL-2
     3) Knockdown of BMI-1 enhances apoptosis of NPC cells via AKT/PI3K pathway.
引文
[1]Verein A V.Meeting of the Saciety of Physicvans in Hamburg.Germany.The Society of Physicians of Hamburg,Hamburg,1896
    [2]Jackson C.Primary carcinoma of the nasopharynx:a table of cases.Journal of the Anerican Medical Association,1901,31:371-7
    [3]Wei W I,Sham J S.Nasopharyngeal carcinoma.Lancet,2005,365(9476):2041-54
    [4]Chan A T,Teo P M,Johnson P J.Nasopharyngeal carcinoma.Ann Oncol,2002,13(7):1007-15
    [5]Yu M C,Yuan J M.Epidemiology of nasopharyngeal carcinoma.Semin Cancer Biol,2002,12(6):421-9
    [6]Sham,J.S.,Choy,D.,and Wei,W.I.Nasopharyngeal carcinoma:orderly neck node spread.Int J Radiat Oncol Biol Phys,1990:19:929-33
    [7]唐玲珑,刘立志,马骏,等。咽后淋巴结转移在鼻咽癌分期中的意义。癌症,2006,25(2):129-35
    [8]Lee A W,Poon Y F,Foo W,et al.Retrospective analysis of 5037 patients with nasopharyngeal carcinoma treated during 1976-1985:overall survival and patterns of failure.Int J Radiat Oncol Biol Phys,1992,23(2):261-70
    [9]Meyer T and Hart IR.Mechanism of tumor metastasis.Eur J Cancer,1998;34:214;
    [10]Woodhouse EC,Chuaqui RF and Liotta LA.General mechanisms of metastasis,Cancer,1997;80:1529
    [11]曾益新 肿瘤学。北京:人民卫生出版社,第二版,2003
    [12]Liu SJ,Sun YM,Tian DF,et al.Downregulated NM23-H1 expression is associated with intracranial invasion of nasopharyngeal carcinoma.Br J Cancer.2008;98(2):363-9,
    [13]Huang GW,Mo WN,Kuang GQ,et al..Expression of p16,nm23-H1,E-cadherin,and CD44 gene products and their significance in nasopharyngeal carcinoma. Laryngoscope. 2001; 111(8). 1465-71.
    [14] Guo X, Min HQ, Zeng MS, et al.. nm23-Hl expression in nasopharyngeal carcinoma: correlation with clinical outcome. Int J Cancer. 1998; 79(6):596-600
    [15] Horikawa T, Yoshizaki T, Sheen TS, et al. Association of latent membrane protein 1 and matrix metalloproteinase 9 with metastasis in nasopharyngeal carcinoma. Cancer. 2000; 89(4):715-23.
    [16] Wang X, Ling MT, Guan XY, et al. Identification of a novel function of TWIST,a bHLH protein, in the development of acquired taxol resistance in human cancer cells. Oncogene. 2004; 23(2): 474-82
    [17] Horikawa T, Yang J, Kondo S, et al. Twist and epithelial-mesenchymal transition are induced by the EBV oncoprotein latent membrane protein 1 and are associated with metastatic nasopharyngeal carcinoma. Cancer Res. 2007;67(5): 1970-8.
    [18] Qian CN, Zhang CQ, Guo X, et al. Elevation of serum vascular endothelial growth factor in male patients with metastatic nasopharyngeal carcinoma. Cancer.2000; 88(2):255-61.
    [19] Qian CN, Guo X, Cao B, et al. Met protein expression level correlates with survival in patients with late-stage nasopharyngeal carcinoma. Cancer Res. 2002;62(2): 589-96
    [20] Thiery JP. Epithelial-mesenchymal transitions in development and pathologies1 CurrOp in Cell Biol, 2003, 15: 740-746
    [21] Robert L. The extracellular matrix in development and regeneration[J]. Int J Dev Biol, 2004, 48(8): 687-694
    [22] Leber MF, Efferth T. Molecular principles of cancer invasion and metastasis. Int J Oncol. 2009;34(4):881-95.
    [23] Naw shad A , Lagamba D, Polad A , et al. Transforming growth factor-psignaling during epithelial-mesenchymal transforation: Implication for embryogenesis and tumor metastasis. Cells Tissues Organs, 2005, 179 (1): 11- 23
    [24] Takeichi M. Morphogenetic roles of classic cadherins . Curr Opin Cell Biol ,1995,7(5): 619-27
    [25] Stetler Stevenson W G, Aznavoorian S , Liotta L A. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol ,1993,9:541-73.
    [26] Christofori G, Semb H. The role of the cell - adhesion molecule E - cadherin as a tumour - suppressor gene. Trends Biochem Sci, 1999 , 24 (2) :73 -6
    [27] Cheng C W, Wu P E , Yu J C , et al . Mechanisms of inactivation of E -cadherin in breast carcinoma : modification of the two - hit hypothesis of tumor suppressor gene. Oncogene, 2001, 20 (29): 3814 -23
    [28] Perl A, Wilgenbus P, Dcabl J., et al . A casual role for E-cadherin in the transition firm adenorns to carcinoma. Nature, 1998, 392:190-3
    [29] Zheng Z, Pan J, Chu B, et al. Downregulation and abnormal expression of E-cadherin and beta-catenin in nasopharyngeal carcinoma: close association with advanced disease stage and lymph node metastasis. Hum Pathol. 1999 ;30(4):458-66.
    [30] Lou P, Chen W, Sheen T, et al. Expression of E-cadherin/catenin complex in nasopharyngeal carcinoma: correlation with clinicopathological parameters. Oncol Rep. 1999; 6(5): 1065-71
    [31] Batlle E, Sancho E , Franci C, et al. The transcription factor Snail is a repressor of E - cadherin gene expression in epithelial tumour cells. Nat Cell Biol , 2000 , 2(2): 84 -9
    [32] Comijn J , Berx G, Vermassen P, et al. The two - handed E-box binding zinc finger protein SIP1 down- regulates E-cadherin and induces invasion. Mol Cell ,2001,7(6): 1267-78
    [33] Moody SE, Perez D, Pan TC, et al. The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell. 2005; 8(3): 197-209
    [34] Amparo Cano , Mirna A. Perez Moreno, et al. The transcription factor Snail controls epithelial mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biology , 2000, 2 (2):76 - 83
    [35] Margi AH, Norbert K, Hartmut B. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol, 2005, 17 ( 5 ): 548-558.
    [36] Thiery JP, Sleenman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol, 2006, 7 (2 ):131-42.
    [37] Thiery JP. Epithelial-mesenchymal transitions in development and pathologies.Curr Opin Cell Biol, 2003, 15(16): 740- 46
    [38] Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathway.Science, 2004, 303(5663): 1483-7
    [39] Eger A, Stockinger A, Part J, et al. Beta-Catenin and TGF-beta signaling cooperate to maintain a mesenchymal phenotype after FosER induced epithelial to mesenchymal transition. Oncogene, 2004, 23( 15 ): 2672- 80
    [40] Liebner S, Cattelino A, Gallini R, et al. Beta-Catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. J Cell Biol, 2004, 166(3): 359-67
    [41] Radtke F, Raj K. The role of Notch in tumorgenesis: Oncogen or tumour suppressor? Nat Rev Cancer, 2003, 3(10): 756- 67
    [42] Timmeman LA, Grego Bessa J, Raya A, et al. Notch promotes epithelial- mesenchymal transition during cardiac development and oncogenic transformation.Genes Dev, 2004, 18(1): 99-115
    [43] Zavadil J, Cermak L, Soto Nieves N, et al. Intergration of TCF-beta/Smad and Jagged/Notch signaling in epithelial-to-mesenchymal transition. EMBO, 2004, 23(5):1155-1165
    [44] Pasca MM, Hebrok M. Hedgehog signaling in cancer formation and maintenance. Nat Rev Cancer, 2003, 3(12): 903-11.
    [45] Karhadkar SS, Bova GS, Abdallah N, et al. Hedgehog signaling in prostate regeneration, neoplasia and metastasis . Nature, 2004, 431(7009): 707-12
    [46] He J, Sheng T, Stelter AA, et al. Suppressing Wnt signaling by the hedgehog pathway through sFRP-1. J Biol Chem. 2006; 281(47): 35598-602
    [47] Macdonald BT, Semenov MV, He X. SnapShot: Wnt/beta-catenin signaling.Cell. 2007; 14;131(6): 1204
    [48] Yochum GS, Cleland R, Goodman RH. A genome-wide screen for beta-catenin binding sites identifies a downstream enhancer element that controls c-Myc gene expression.Mol Cell Biol. 2008; 28(24):7368-79 ;
    [49] Dai WB, Ren ZP, Chen WL, et al. Expression and significance of APC,beta-catenin, C-myc, and Cyclin D1 proteins in colorectal carcinoma. Ai Zheng.2007; 26(9): 963-6. Chinese.
    [50] Surendran K, Simon TC, Liapis H, et al. Matrilysin (MMP-7) expression in renal tubular damage: association with Wnt4. Kidney Int. 2004; 65(6): 2212-22
    [51] Zeilstra J, Joosten SP, Dokter M, et al. Deletion of the WNT target and cancer stem cell marker CD44 in Apc(Min/+) mice attenuates intestinal tumorigenesis.Cancer Res. 2008; 68(10):3655-61
    [52] Miwa N, Furuse M, Tsukita S, et al.Involvement of claudin-1 in the beta-catenin/ Tcf signaling pathway and its frequent upregulation in human colorectal cancers. Oncol Res. 2001;12(11-12):469-76
    [53] DasGupta R, Kaykas A, Moon RT, et al. Functional genomic analysis of the Wnt-wingless signaling pathway. Science. 2005; 308: 826-33.
    [54] Nemeth MJ, Topol L, Anderson SM, et al. Wnt5a inhibits canonical Wnt signaling in hematopoietic stem cells and enhances repopulation. Proc Natl Acad Sci U S A. 2007; 104: 15436-41.
    [55] Semenov MV, Habas R, Macdonald BT, et al.Snapshot: Noncanonical Wnt Signaling Pathways. Cell. 2007;131:1378.
    [56] Clark CC, Cohen I, Eichstetter I, et al. Molecular cloning of the human proto-oncogene Wnt-5A and mapping of the gene (WNT5A) to chromosome 3p14-p21.Genomics. 1993; 18: 249-60.
    [57] Kurayoshi M, Oue N, Yamamoto H, et al. Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion.Cancer Res. 2006; 66:10439- 48
    [58] Weeraratna AT, Jiang Y, Hostetter G, et al. Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell. 2002; 1: 279-88.
    [59] Da Forno PD, Pringle JH, Hutchinson P, et al. WNT5A expression increases during melanoma progression and correlates with outcome. Clin Cancer Res. 2008; 14: 5825-32.
    [60] Ripka S, Konig A, Buchholz M, et al. WNT5A--target of CUTL1 and potent modulator of tumor cell migration and invasion in pancreatic cancer. Carcinogenesis.2007; 28: 1178-87.
    [61] Polakis P. The many ways of Wnt in cancer. Curr Opin Genet Dev. 2007;17:45-51.
    [62] Ying J, Li H, Yu J, et al. WNT5 A exhibits tumor-suppressive activity through antagonizing the Wnt/beta-catenin signaling, and is frequently methylated in colorectal cancer. Clin Cancer Res. 2008;14: 55-61.
    [63] Kremenevskaja N, von Wasielewski R, Rao AS, et al. Wnt-5a has tumor suppressor activity in thyroid carcinoma. Oncogene. 2005; 24: 2144- 54
    [64] Ying J, Li H, Chen YW, et al. WNT5 A is epigenetically silenced in hematologic malignancies and inhibits leukemia cell growth as a tumor suppressor. Blood. 2007;110:4130-2.
    [65] Roman-Gomez J, Jimenez-Velasco A, Cordeu L, et al. WNT5A, a putative tumour suppressor of lymphoid malignancies, is inactivated by aberrant methylation in acute lymphoblastic leukaemia. Eur J Cancer. 2007; 43: 2736-46.
    [66] Dejmek J, Leandersson K, Manjer J, et al. Expression and signaling activity of Wnt-5a/discoidin domain receptor-1 and Syk plays distinct but decisive roles in breast cancer patient survival. Clin Cancer Res. 2005;11: 520-8.
    [67] MacLeod RJ, Hayes M, Pacheco I. Wnt5a secretion stimulated by the extracellular calcium-sensing receptor inhibits defective Wnt signaling in colon cancer cells. Am JPhysiol Gastrointest Liver Physiol. 2007; 293: G403-11.
    [68] Topol L, Jiang X, Choi H, et al. Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. J Cell Biol. 2003; 162:899-908.
    [69] Jonsson M, Andersson T. Repression of Wnt-5a impairs DDR1 phosphorylation and modifies adhesion and migration of mammary cells. J Cell Sci. 2001; 114: 2043-53.
    [70] Witze ES, Litman ES, Argast GM, et al. Wnt5a control of cell polarity and directional movement by polarized redistribution of adhesion receptors. Science. 2008; 320:365-9
    [71] Nomachi A, Nishita M, Inaba D, et al. Receptor tyrosine kinase Ror2 mediates Wnt5a-induced polarized cell migration by activating c-Jun N-terminal kinase via actin-binding protein filamin A. J Biol Chem. 2008. 10; 283(41):27973-81.
    [72] Zeng ZY, Zhou YH, Zhang WL, et al. Gene expression profiling of nasopharyngeal carcinoma reveals the abnormally regulated Wnt signaling pathway. HuPathol, 2007, 38: 120-33.
    [73] Qian CN, Berghuis B, Tsarfaty G, et al. Preparing the "soil": the primary tumor induces vasculature reorganization in the sentinel lymph node before the arrival of metastatic cancer cells. Cancer Res , 2006, 66: 10365-76
    [74] Sutherland RM, Carlsson J, Durand RE, et al. Spheroids in cancer research.Cancer Res 1981;41: 2980-94
    [75] KuWC, ChengAJ, Wang TC. Inhibition of telomerase activity by PKC inhibitors in human nasopharyngeal cancer cells in culture. Biochem Biophys Res Commun,1997, 241 (3) :730-6.
    [76] Cheng Chou YU, Shi Ching LO, Tzu Chien V. Telomeras is regulated byprotein kinase C - in human nasopharyngeal cancer cells. Biochem J ,2001,355: 459-64.
    [77] M. Jonsson, K. Smith, AL. Harris, Regulation of Wnt5a expression in human mammary cells by protein kinase C activity and the cytoskeleton, Br J Cancer ,1998, 78: 430-438.
    [78] Fong KW, Chua EJ, Chua ET, et al. Patient profile and survival in 270 computer tomography-staged patients with nasopharyngeal cancer treated at the Singapore General Hospital. Ann Acad Med Singapore, 1996, 25: 341-6.
    [79] Heng DM, Wee J, Fong KW, et al.Prognostic factors in 677 patients in Singapore with nondisseminated nasopharyngeal carcinoma. Cancer, 1999, 86: 1912-20.
    [80] Loong HH, Ma BB, Chan AT. Update on the management and therapeutic monitoring of advanced nasopharyngeal cancer. Hematol Oncol Clin North Am. 2008,22: 1267-78
    [81] Sham JS, Cheung YK, Chan FL, et al. Nasopharyngeal carcinoma: pattern of skeletal metastases. Br J Radiol ,1990, 63: 202-5.
    [82] Qian CN, Resau JH, Teh BT. Prospects for vasculature reorganization in sentinel lymph nodes. Cell Cycle, 2007, 6: 514-7
    [83] Mitterer G, Schmidt WM. Microarray-based detection of bacteria by on-chip PCR. Methods Mol Biol, 2006, 345: 37-51.
    [84] Ramachandran N, Hainsworth E, Demirkan G, et al. On-chip protein synthesis for making microarrays. Methods Mol Biol, 2006, 328: 1-14
    [85] Revermann T, Gotz S, Karst U. Quantitative analysis of thiols in consumer products on a microfiuidic CE chip with fluorescence detection. Electrophoresis, 2007,28(7): 1154-60.
    [86] Xiang Q, Xu B, Fu R, et al. Real time PCR on disposable PDMS chip with a miniaturized thermal cycler. Biomed Microdevices, 2005, 7(4): 273-9.
    [87] Kennedy RT. Serial immunoassays in parallel on a microfiuidic chip for monitoring hormone secretion from living cells. Anal Chem, 2007, 79 (3): 947-54.
    [88] Tozer JT, Henderson SC, Sun D, et al. Photoconversion using confocal laser scanning microscopy: A new tool for the ultrastructural analysis of fluorescently labeled cellular elements. J Neurosci Methods, 2007, 164(2): 240-6.
    [89] Medrano EE. Wnt5a and PKC, a deadly partnership involved in melanoma invasion. Pigment Cell Res, 2007, 20: 258-9
    [90] Fields AP, Regala RP. Protein kinase C iota: human oncogene, prognostic marker and therapeutic target. Pharmacol Res, 2007, 55: 487-97
    [91] Nakajima T. Signaling cascades in radiation-induced apoptosis: roles of protein kinase C in the apoptosis regulation. Med Sci Monit. 2006;12(10):RA220-4.
    [92] Yoshiji H, Kuriyama S, Ways DK, et al. Protein kinase C lies on the signaling pathway for vascular endothelial growth factor-mediated tumor development and angiogenesis. Cancer Res. 1999; 59(17):4413-8
    [93] FicherM, HinrichsR ,ErisserG, et al. Expression of CD44 isoforms in neuroblastoma cells is regulated by PI3-kinase and protein kinase C.Oncogene, 1997,14 : 2817-24.
    [94] AtlaioE, WolfsonM, OfissnerG. et al. Elevated activations of protein kinase C and tyrosine kinase correlate to leukemic cell aggression. Int J Cancer, 1992, 50 :136-41.
    [95] Guo H, Gu F, Li W, et al. Reduction of protein kinase C zeta inhibits migration and invasion of human glioblastoma cells. J Neurochem. 2009; 109(1):203-13
    [96] Ku WC, Cheng AJ, Wang TC. Inhibition of telomerase activity by PKC inhibitors in human nasopharyngeal cancer cells in culture. Biochem Biophys Res Commun.1997;241(3):730-6
    [97] Endo K, Kondo S, Shackleford J, et al. Phosphorylated ezrin is associated with EBV latent membrane protein 1 in nasopharyngeal carcinoma and induces cell migration. Oncogene. 2009 Feb 23. [Epub ahead of print]
    [98] Guangrong Yan, WeiLuo, Zhongxin Lu, et al. Epstein - Barr virus latent membrane protein 1 mediates phosphorylation and nuclea translocation of annexinA2 by activating PKC pathway. Cellular Signalling, 2006, 7(19): 1010-6.
    [99] Endo K, Kondo S, Shackleford J,et al. Phosphorylated ezrin is associated with EBV latent membrane protein 1 in nasopharyngeal carcinoma and induces cell migration. Oncogene. 2009 Feb 23. [Epub ahead of print]
    [100] Schlessinger K, McManus EJ, Hall A. Cdc42 and noncanonical Wnt signal transduction pathways cooperate to promote cell polarity. J Cell Biol , 2007, 178:355-61
    [101] S.K. Dissanayake, M. Wade, C.E. Johnson, et al. Weeraratna, The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition, J Biol Chem 2007,282: 17259-71
    [102] Dissanayake SK, Weeraratna AT. Detecting PKC phosphorylation as part of the Wnt/calcium pathway in cutaneous melanoma. Methods Mol Biol. 2008; 468: 157-72.
    [103] Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchyma transition during tumor progression. Curr Opin Cell Biol , 2005, 17:548-58
    [104] Kang Y, Massague J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell, 2004, 118: 277-9
    [105]Lee JM,Dedhar S,Kalluri R,The epithelial-mesenchymal transition:new insights in signaling,development,and disease.J Cell Biol.2006;1 72(7):973-81
    [106]Horikawa T,Yang J,Kondo S,et al.Twist and epithelial-mesenchymal transition are induced by the EBV oncoprotein latent membrane protein 1 and are associated with metastatic nasopharyngeal carcinoma.Cancer Res.2007;67(5):1970-8.
    [107]Barrallo-Gimeno A,Nieto MA.The Snail genes as inducers of cell movement and survival:implications in development and cancer.Development.2005;132(14):3151-61.
    [108]Ohta H,Aoyagi K,Fukaya M.et al.Cross talk between hedgehog and epithelial-mesenchymal transition pathways in gastric pit cells and in diffuse-type gastric cancers.Br J Cancer.2009;100(2):389-98
    [1]Maeda K,Kang SM,Onoda N,et al.Expression of p53 and vascular endothelial growth factor associated with tumor angiogenesis and prognosis in gastric cancer J.Ontology,1998,55:594-9
    [2]Weidner N.Intratumor microvessel density as a prognostic factor in cancer.Am J Pathol,1995,147:9
    [3]Borensztajn KS,Spek CA.Protease-activated receptors,apoptosis and tumor growth.Pathophysiol Haemost Thromb.2008;36(3-4):137-47
    [4]曾益新,吕有勇,朱明华等。肿瘤学[M].北京:人民卫生出版社,2003:213
    [5]Evang,Little,Wood T.A matter of life and cell death.Science,1998,281(5381):1317-22
    [6]Kim I,Xu W,Reed JC.Cell death and endoplasmic reticulum stress:disease relevance and therapeutic opportunities.Nat Rev Drug Discov.2008;7(12):1013-30
    [7]Kerr JF,Wyllie AH,Currie AR.Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics.Br J Cancer.1972;26(4):239-57
    [8]Diamantis A,Magiorkinis E,Sakorafas GH,et al.A brief history of apoptosis:from ancient to modern times.Onkologie.2008;31(12):702-6
    [9]Baxa DM,Luo X,Yoshimura FK.Genistein induces apoptosis in Tlymphoma cells via mitochondrial damage.Nutr Cancer,2005,51(1):93
    [10]Nagata S.Apoptotic DNA fragmentation.Exp Cell Res,2000,10:12-18
    [11]Lessene G,Czabotar PE,Colman PM.BCL-2 family antagonists for cancer therapy.Nat Rev Drug Discov.2008;7(12):989-1000
    [12]Fern(?)ndez-Luna JL.Apoptosis regulators as targets for cancer therapy.Clin Transl Oncol.2007;9(9):555-62.
    [13]Meulmeester E,Jochemsen AG p53:a guide to apoptosis.Curr Cancer Drug Targets.2008;8(2):87-97
    [14]Camero A,Blanco-Aparicio C,Renner O,et al.The PTEN/PI3K/AKT signalling pathway in cancer,therapeutic implications.Curr Cancer Drug Targets.2008; 8(3): 187-98
    [15] Krueger A, Baumann S, Kranner PH, et al. FLICE — inhibitory proteins :regulators of death receptor mediated apoptosis. Mol Cell Biol, 2001 , 21(24) :8247-54.
    [16] Wong WW, Puthalakath H. Bcl-2 family proteins: the sentinels of the mitochondrial apoptosis pathway. IUBMB Life. 2008; 60(6): 390-7
    [17] Zhang X, Jin B, Huang C.The PI3K/Akt pathway and its downstream transcriptional factors as targets for chemoprevention. Curr Cancer Drug Targets.2007; 7(4):305-16
    [18] A.T. Chan, S.F. Leung, R.K. Ngan, et al., Overall survival after concurrent cisplatin-radiotherapy compared with radiotherapy alone in locoregionally advanced nasopharyngeal carcinoma, J.Natl.Cancer Inst. 2005; 97: 536-9.
    [19] J.C. Lin, IS. Jan, C.Y. Hsu, et al., Phase Ⅲ study of concurrent chemoradiotherapy versus radiotherapy alone for advanced nasopharyngeal carcinoma: positive effect on overall and progression-free survival, J. Clin. Oncol. 2003 ; 21:631-7.
    [20] J. Wee, EH. Tan, B.C. Tai, et al., Randomized trial of radiotherapy versus concurrent chemoradiotherapy followed by adjuvant chemotherapy in patients with American Joint Committee on Cancer/International Union against cancer stage Ⅲ and Ⅳ nasopharyngeal cancer of the endemic variety, J. Clin. Oncol. 2005; 23 : 6730-38
    [21] Thant AA, Wu Y, Lee J, et al. Role of caspases in 5-FU and selenium-induced growth inhibition of colorectal cancer cells. Anticancer Res. 2008; 28(6A): 3579-92
    [22] Wang Q, Huang S, Yang L, et al.Down-regulation of Sonic hedgehog signaling pathway activity is involved in 5-fluorouracil-induced apoptosis and motility inhibition in Hep3B cells. Acta Biochim Biophys Sin. 2008; 40(9):819-29
    [23] Suzuki M, Shinohara F, Nishimura K, et al. Epigenetic regulation of chemosensitivity to 5-fluorouracil and cisplatin by zebularine in oral squamous cell carcinoma. Int J Oncol. 2007; 31(6): 1449-56
    [24] M.E. Valk-Lingbeek, S.W. Bruggeman, M. van Lohuizen, Stem cells and cancer;the polycomb connection, Cell. 2004; 118 : 409-18.
    [25] Y. Haupt, W.S. Alexander, G. Barri, et al. Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in E mu-myc transgenic mice, Cell .1991; 65: 753-63.
    [26] M. van Lohuizen, S. Verbeek, B. Scheijen, et al. Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging, Cell. 1991; 65 : 737-52
    [27] Alkema, M. J., et al., Characterization and chromosomal location of the human proto-oncogene BMI-1. Hum Mol Genet, 1993, 2(10): 1597-603
    [28] Brunk, B. P., Martin, E. C, and Adler, P. N. Drosophila genes posterior sex combs and suppressor two of zeste encode proteins with homology to the murine BMI-1 oncogene. Nature, 1991,353: 351-3
    [29] Saurin, A. J., Borden, k. 1., Boddy, M. N, et al.. Dose this have a familiar RING? Trends Biochem Sci, 1996, 21: 208-214
    [30] Jacobs, J. J., et al., BMI-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Rev, 1999, 13(20):2678-90
    [31] Van Lohuizen M, Verbeek S, Scheijen B, et al. Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell. 1991; 65(5):737-52
    [32] Cohen KJ, Hanna JS, Prescott JE, et al.. Transformation by the BMI-1 oncoprotein correlates with its subnuclear localization but not its transcriptional suppression activity. Mol Cell Biol. 1996; 16(10): 5527-35
    [33] Rogers S, Wells R, Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science. 1986; 234(4774): 364-8
    [34] van Kemenade FJ, Raaphorst FM, Blokzijl T, et al.. Coexpression of BMI-1 and EZH2 polycomb-group proteins is associated with cycling cells and degree of malignancy in B-cell non-Hodgkin lymphoma. Blood. 2001; 97(12): 3896-901
    [35] Kim JH, Yoon SY, Kim CN, et al.. The BMI-1 oncoprotein is overexpressed in human colorectal cancer and correlates with the reduced p16INK4a/p14ARF proteins.Cancer Lett. 2004; 203(2):217-24
    [36] Vonlanthen S, Heighway J, Altermatt HJ, et al.The BMI-1 oncoprotein is differentially expressed in non-small cell lung cancer and correlates with INK4A-ARF locus expression. Br J Cancer. 2001 ;84(10): 1372-6
    [37] Glinsky GV, Berezovska O, Glinskii AB. Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest. 2005 ;115(6): 1503-21
    [38] Nowak K, Kerl K, Fehr D, et al.. BMI1 is a target gene of E2F-1 and is strongly expressed in primary neuroblastomas. Nucleic Acids Res. 2006 ; 34(6): 1745-54
    [39] Song LB, Zeng MS, Liao WT, et al. BMI-1 is a novel molecular marker of nasopharyngeal carcinoma progression and immortalizes primary human nasopharyngeal epithelial cells. Cancer Res. 2006 ,15; 66(12): 6225-32
    [40] Vrzalikova K, Skarda J, Ehrmann J, et al. Prognostic value of BMI-1 oncoprotein expression in NSCLC patients: a tissue microarray study. J Cancer Res Clin Oncol.2008;134(9):1037-42
    [41] Liu S, Dontu G, Mantle ID, et al. Hedgehog signaling and BMI-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 2006;66(12):6063-71
    [42] Fasano CA, Dimos JT, Ivanova NB, et al. shRNA knockdown of BMI-1 reveals a critical role for p21-Rb pathway in NSC self-renewal during development. Cell Stem Cell. 2007 ; 1(1): 87-99
    [43] Bruggeman SW, Hulsman D, Tanger E, et al Bmil controls tumor development in an Ink4a/ Arf- independent manner in a mouse model for glioma. Cancer Cell. 2007;12(4): 328-41
    [44] Godlewski J, Nowicki MO, Bronisz A, et al. Targeting of the BMI-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res. 2008; 68(22): 9125-30
    [45] Vormittag L, Thurnher D, Geleff S, et al. Co-expression of BMI-1 and podoplanin predicts overall survival in patients with squamous cell carcinoma of the head and neck treated with radio(chemo)therapy. Int J Radiat Oncol Biol Phys.2009;73(3):913-8.
    [46] Fischle W, Wang Y, Jacobs SA, et al. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev. 2003; 17(15): 1870-81
    [47] Helmbold H, Deppert W, Bohn W. Regulation of cellular senescence by Rb2/pl30. Oncogene. 2006; 25(38): 5257-62
    [48] Dimri GP, Martinez JL, Jacobs JJ, et al. The BMI-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells. Cancer Res. 2002;62(16):4736-45
    [49] G.J. Harmon, RNA interference, Nature. 2002; 418: 244-51.
    [50] K. Lee, G. Adhikary, S. Balasubramanian, et al. Expression of BMI-1 in epidermis enhances cell survival by altering cell cycle regulatory protein expression and inhibiting apoptosis, J. Invest. Dermatol. 2008; 128: 9-17
    [51] L. Liu, L.G. Andrews, T.O. Tollefsbol, Loss of the human polycomb group protein BMI1 promotes cancer-specific cell death, Oncogene . 2006; 25: 4370-5.
    [52] Lane D P , Fischer P M. Turning the key on p53. Nature .2004; 427 (6977) :789-99
    [53] Z.N. Oltvai, C.L. Milliman, S.J. Korsmeyer, Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death, Cell .1993; 74:609-19
    [54] Y. Sun, G. Hegamyer, Y.J. Cheng, et al., An infrequent point mutation of the p53 gene in human nasopharyngeal carcinoma, Proc. Natl. Acad. Sci. USA 1992; 89 :6516-20.
    [55] Lowe SW, Bodis S , Bardeesy N , et al . Apoptosis and t he prognostic significance of p53 mutation. Cold Spring Harb Symp Quant Biol ,1994, 59(6) :419-26
    [56] Cheng JQ, Lindsley CW, Cheng GZ, et al. The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene,2005, 24(50): 7482-92
    [57] Kumar CC, Madison V. AKT crystal structure and AKT-specific inhibitors.Oncogene. 2005, 24(50) :7493-501
    [58] Douglas A L, Faina B, Cindy J Y, et al. Frequent mutation of the PIK3CA gene in ovarian and breast cancer. Clin Cancer Res, 2005, 11(8): 2875 -8
    [59] Knobbe C B, Kieslich A T, Reifenberger G. Genetic alteration and expression of the phosphoinositol- 3-kinase /Akt pathway genes PIK3CA and PIKE in human glioblastomas Neuropathol Appl Neurobiol, 2005, 31( 5): 486- 90.
    [60] Oda K, Stokoe D, Taketani Y, et al. High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma. Cancer Res, 2005, 65( 23) :10669-73
    [61] Hartmann W, Digon-Sontgerath B, Koch A, et al. Phosphatidylinositol 3'-kinase/AKT signaling is activated in medulloblastoma cell proliferation and is associated with reduced expression of PTEN. Clin Cancer Res, 2006, 12( 10): 3019- 27.
    [62] Or Y Y, Hui A B, Tarn K Y, et al. Characterization of chromosome 3q and 12q amplicons in nasopharyngeal carcinoma cell lines. Int J Oncol, 2005, 26( 1). 49- 56.
    [63] Nyakern M, Tazzari P L, Finelli C, et al. Frequent elevation of Akt kinase phosphorylation in blood marrow and peripheral blood mononuclear cells from high-risk myelodysplastic syndrome patients. Leukemia, 2006, 20( 2): 230- 8.
    [64] Samuels Y, Wang Z, Bardelli A, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science, 2004, 304(5670): 554.
    [65] Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couples survival signals to the cell-intinsic death machinery. Cell. 1997, 91 (2): 231-41
    [66] Pommier Y, Sordet O, Antony S, et al. Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene. 2004, 23(16): 2934-49
    [67] Knuefermann C, Lu Y, Liu B, et al. Her2 /P I3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene, 2003, 22 (21) :3205-12.
    [68] Zheng L, Ren JQ, Chen Q, et al. The effect of HER2 /neu overexpression on p53 gene exp ression, cell p roliferation and sensitivity toy-irradiation via the PI3K/Akt pathway in breast cancer cell MCF-7 . Chin J Oncol, 2004, 26 (10): 594-7
    [69] W.J. Guo, M.S. Zeng, A. Yadav, et al., Mel-18 acts as a tumor suppressor by repressing BMI-1 expression and downregulating Akt activity in breast cancer cells,Cancer Res. 2007 ; 67 : 5083-9.
    [70] Datta, S., et al., BMI-1 cooperates with H-Ras to transform human mammary epithelial cells via dysregulation of multiple growth-regulatory pathways.Cancer Res,2007.67(21):10286-95
    [71]Xin M G;Deng X M.Nicotine inactivation of the proapoptotic function of bax through phosphorylation.J Biol Chem,2005,280(11):10781-9
    1. Larue L, Bellacosa A. Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3' kinase/AKT pathways. Oncogene.2005;24:7443-7454.
    2. Kuhl M, Sheldahl LC, Park M, Miller JR, Moon RT. The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet. 2000; 16:279-283.
    3. Clark CC, Cohen I, Eichstetter I, et al. Molecular cloning of the human proto-oncogene Wnt-5A and mapping of the gene (WNT5A) to chromosome 3p14-p21. Genomics. 1993;18:249-260.
    4. DasGupta R, Kaykas A, Moon RT, Perrimon N. Functional genomic analysis of the Wnt-wingless signaling pathway. Science. 2005;308:826-833.
    5. Nemeth MJ, Topol L, Anderson SM, Yang Y, Bodine DM. Wnt5a inhibits canonical Wnt signaling in hematopoietic stem cells and enhances repopulation. Proc Natl Acad Sci U S A. 2007;104:15436-15441.
    6. Semenov MV, Habas R, Macdonald BT, He X. SnapShot: Noncanonical Wnt Signaling Pathways. Cell. 2007;131:1378.
    7. Kurayoshi M, Oue N, Yamamoto H, et al. Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion. Cancer Res. 2006;66:10439-10448.
    8. Bittner M, Meltzer P, Chen Y, et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature. 2000;406:536-540.
    9. Weeraratna AT, Jiang Y, Hostetter G, et al. Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell. 2002; 1:279-288.
    10. Dissanayake SK, Wade M, Johnson CE, et al. The Wnt5a/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition. J Biol Chem.2007;282:17259-17271.
    11. Da Forno PD, Pringle JH, Hutchinson P, et al. WNT5 A expression increases during melanoma progression and correlates with outcome. Clin Cancer Res.2008;14:5825-5832.
    12. Ripka S, Konig A, Buchholz M, et al. WNT5A~target of CUTL1 and potent modulator of tumor cell migration and invasion in pancreatic cancer. Carcinogenesis.2007;28:1178-1187.
    13. Polakis P. The many ways of Wnt in cancer. Curr Opin Genet Dev.2007;17:45-51.
    14. Dejmek J, Dejmek A, Safholm A Sjolander A, Andersson T. Wnt-5a protein expression in primary dukes B colon cancers identifies a subgroup of patients with good prognosis. Cancer Res. 2005;65:9142-9146.
    15. Ying J, Li H, Yu J, et al. WNT5A exhibits tumor-suppressive activity through antagonizing the Wnt/beta-catenin signaling, and is frequently methylated in colorectal cancer. Clin Cancer Res. 2008;14:55-61.
    16. Kremenevskaja N, von Wasielewski R, Rao AS, Schofl C, Andersson T, Brabant G. Wnt-5a has tumor suppressor activity in thyroid carcinoma. Oncogene.2005;24:2144-2154.
    17. Ying J, Li H, Chen YW, Srivastava G, Gao Z, Tao Q. WNT5A is epigenetically silenced in hematologic malignancies and inhibits leukemia cell growth as a tumor suppressor. Blood. 2007; 110:4130-4132.
    18. Liang H, Chen Q, Coles AH, et al. Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell. 2003;4:349-360.
    19. Roman-Gomez J, Jimenez-Velasco A, Cordeu L, et al. WNT5A, a putative tumour suppressor of lymphoid malignancies, is inactivated by aberrant methylation in acute lymphoblastic leukaemia. Eur J Cancer. 2007;43:2736-2746.
    20. Dejmek J, Leandersson K, Manjer J, et al. Expression and signaling activity of Wnt-5a/discoidin domain receptor-1 and Syk plays distinct but decisive roles in breast cancer patient survival. Clin Cancer Res. 2005;11:520-528.
    21. Jonsson M, Dejmek J, Bendahl PO, Andersson T. Loss of Wnt-5a protein is associated with early relapse in invasive ductal breast carcinomas. Cancer Res.2002;62:409-416.
    22. Lejeune S, Huguet EL, Hamby A, Poulsom R, Harris AL. Wnt5a cloning,expression, and up-regulation in human primary breast cancers. Clin Cancer Res.1995;l:215-222.
    23. Leek RD, Harris AL. Tumor-associated macrophages in breast cancer. J Mammary Gland Biol Neoplasia. 2002;7:177-189.
    24. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature.2005;434:843-850.
    25. MacLeod RJ, Hayes M, Pacheco I. Wnt5a secretion stimulated by the extracellular calcium-sensing receptor inhibits defective Wnt signaling in colon cancer cells. Am J Physiol Gastrointest Liver Physiol. 2007;293:G403-411.
    26. Topol L, Jiang X, Choi H, Garrett-Beal L, Carolan PJ, Yang Y. Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. J Cell Biol. 2003; 162:899-908.
    27. Jonsson M, Andersson T. Repression of Wnt-5a impairs DDR1 phosphorylation and modifies adhesion and migration of mammary cells. J Cell Sci.2001;114:2043-2053.
    28. Witze ES, Litman ES, Argast GM, Moon RT, Ahn NG Wnt5a control of cell polarity and directional movement by polarized redistribution of adhesion receptors.Science. 2008;320:365-369.
    29. Bowerman B. Cell signaling. Wnt moves beyond the canon. Science.2008;320:327-328.
    30. Nomachi A, Nishita M, Inaba D, Enomoto M, Hamasaki M, Minami Y. Receptor tyrosine kinase Ror2 mediates Wnt5a-induced polarized cell migration by activating c-Jun N-terminal kinase via actin-binding protein filamin A. J Biol Chem. 2008.
    31. Mikels AJ, Nusse R. Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol. 2006;4:ell5.
    32. Liu Y, Rubin B, Bodine PV, Billiard J. Wnt5a induces homodimerization and activation of Ror2 receptor tyrosine kinase.J Cell Biochem.2008;105:497-502.
    33.Kikuchi A,Yamamoto H.Tumor formation due to abnormalities in the beta-catenin-independent pathway of Wnt signaling.Cancer Sci.2008;99:202-208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700