基于半导体能带工程的高效可见光催化剂的结构设计及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境问题和能源问题是21世纪人类可持续发展面临的两大挑战。能利用洁净太阳能资源的半导体光催化技术成为应对这两大挑战的重要手段之一。本论文针对半导体光催化技术实际研究中存在的问题,以半导体能带工程为指导思想,以设计及合成高效可见光催化材料为研究目标,采用理论和实验相结合的研究手段,一方面利用共掺杂对间的电荷补偿效应对宽禁带半导体光催化材料进行改性修饰,探索共掺杂对宽禁带半导体材料能带结构剪裁的微观机制,揭示共掺杂原子种类、掺杂形式及光催化活性间的构效关系;另一方面,通过两种半导体材料的复合构筑异质结光催化材料,揭示界面相互作用及界面光生载流子迁移的微观机制,探讨有效异质界面及分离后的光生电子和空穴的迁移对材料光催化活性的影响,为新型高效可见光催化材料的设计及合成提供理论指导。主要研究内容及结果如下:
     第一章绪论介绍了半导体光催化技术的发展及研究现状,及以半导体能带工程中带隙图形工程为指导思想的掺杂改性手段和以半导体能带工程中的能带结构工程为指导思想的构筑异质结手段在改善半导体光催化材料活性及探索新型可见光催化材料中的应用,提出从微观层面上揭示共掺杂原子种类、掺杂形式与光催化活性间的构效关系,以及异质界面相互作用及界面光生载流子迁移机制,探索有效异质界面及分离后光生电子和空穴迁移对异质结光催化材料活性的影响,并简要介绍了本论文的研究内容。
     第二章简要介绍了密度泛函理论的基本理论方法及其发展和应用,以交换相关能量泛函的发展为主线,介绍了局域密度近似、广义梯度近似等泛函形式以及自洽场计算流程,并在此基础上,介绍了本论文使用的计算软件包。
     上篇中包含第三章、第四章和第五章三章研究内容。本部分以半导体能带工程中的带隙图形工程为指导思想,通过两种或两种以上的共掺杂异质原子间的电荷补偿效应钝化体系带隙中因单一掺杂引起的半充满杂质态,在减小半导体带隙的同时,消除因掺杂产生的电子-空穴复合中心,从而提高半导体材料的可见光催化活性。
     第三章中,我们采用密度泛函理论计算的方法,研究了C、N和F单一掺杂和两两共掺杂ZnW04体块的几何结构、电子结构及光活性。虽然单一掺杂能在一定程度上减小体系的电子激发能,但是同时会在体系的带隙中引入半充满的杂质态,这些杂质态会成为光生电子-空穴对的复合中心,不利于光催化活性的提升。基于缺陷波函数特征的分析,我们设计了Cs+2Fs、Ns+Fs、Ci+2Ns和Ni+Fs四种共掺杂对,利用施主-受主对间的电荷补偿效应钝化带隙中由单一掺杂引起的半充满杂质态,同时还能减小ZnWO4共掺杂体系的形成能。这四种共掺杂对均在一定程度上减小了ZnWO4体系的电子激发能,其中Ci+2NS和Ni+Fs共掺杂成功将ZnWO4的光吸收边红移至可见光区。
     第四章中,我们采用密度泛函理论计算的方法,研究了N和F单一掺杂以及N,F)共掺杂ZnWO4(010)表面的电子性质。N和F的单一掺杂并不能满足体系吸收边红移的需求,并且会在带隙中引入半充满的杂质态,形成光生电子-空穴对的复合中心。N,F)共掺杂ZnW04(010)表面的电子结构显示,N-F共掺杂对间的协同效应会钝化体系中因单一掺杂引起的半充满杂质态,但是,不同的共掺杂形式对应着不同的电荷补偿机制,对体系光活性的影响也不同。四种共掺杂形式对应的电荷补偿机制分别为:在NsFs共掺杂ZnWO4(010)表面中,单施主Fs形成的W5d'态上的电子钝化单受主Ns上的空穴;在NadFs共掺杂ZnWO4(010)表面中,单施主Fs形成的W5d'态上的电子钝化NadOb π*反键轨道上的空穴;在NsFad共掺杂ZnWO4(010)表面中,Ns-Ob作为单施主,其σ*反键上的电子迁移至Fad,填充Fad2p轨道;在NadFad共掺杂表面中,Fad作为单受主从Nad-Ob π*反键轨道上捕获电子填充其2p轨道。这四种共掺杂形式均能减小ZnWO4(010)表面的电子激发能,其中NadFs和NadFad共掺杂能将ZnWO4(010)表面的光吸收边红移至可见光区。但是由于NadFad共掺杂表面中的电子仅在Nad-Ob π*反键轨道间迁移,这使得其对改善ZnWO4(010)表面光催化活性的实际意义不大。
     第五章中,我们采用密度泛函理论计算的方法,研究了锐钛矿相TiO2(101)表面的掺杂La、取代掺杂N与一个氧空位之间的相互作用。计算结果显示,La吸附掺杂和取代掺杂的Ti02(101)表面都是实验上可能存在的缺陷构型。La在h-Cave位点的吸附掺杂能促进N的取代掺杂,反之亦然,然而电荷补偿效应在吸附掺杂La与取代掺杂N之间并未生效,这导致在带隙中引入半充满的杂质态。取代Ti5c的La掺杂能促进N的取代掺杂,且La和N的取代共掺杂会促进氧空位的形成,所形成的氧空位从内层Osb-3c位点迁移至表面Ob位点。在La和N分别取代Ti5c和O3c-down的共掺杂表面,取代La和取代N间的电荷补偿在带隙中形成两条孤立的占据Ns-O π*反键杂质能级。进一步考虑在该共掺杂表面上有氧空位存在的情况,氧空位作为双施主,取代La和取代N分别作为单受主,形成受主-施主-受主补偿对,双施主能级的两个电子分别钝化两个单受主能级上的空穴,形成与价带连续的占据态,使得体系带隙减小了0.17eV,与实验测试的数据吻合,这为实验上La/N共掺杂锐钛矿相Ti02增强其可见光催化活性提供了一个合理的微观机制解释。
     下篇中包含第六章、第七章和第八章三章研究内容。本部分以半导体能带工程中的能带结构工程为指导思想,基于晶格匹配和能带匹配原理,将窄带隙半导体与宽禁带半导体复合构筑异质结材料,利用窄带隙半导体吸收可见光,同时利用两半导体间的能带势差促进光生电子-空穴对的分离,从而获得高效的可见光催化材料。
     第六章中,我们采用理论与实验相结合的方法,系统研究了g-C3N4/ZnWO4异质结中的界面相互作用、电荷迁移及分离的微观机制,以及其对体系光催化活性的影响。高分辨透射电子显微镜(HRTEM)和密度泛函理论(DFT),计算的结果相互验证,表明体系中g-C3N4(001)/ZnWO4(010)和g-C3N4(001)/ZnWO4(011)界面存在的合理性。g-C3N4/ZnWO4异质结可见光下降解甲基蓝的活性优于纯相g-C3N4和ZnWO4。此外,与纯相g-C3N4对苯酚微弱的氧化能力相比,异质结对苯酚的氧化能力明显增强,表明g-C3N4和ZnWO4间存在协同效应。在可见光照射下,g-C3N4/ZnWO4异质结的电子微观迁移路径为,异质结价带顶的电子直接由g-C3N4跃迁至ZnWO4导带底的W5d轨道,从而实现光生电子和空穴的分离。
     第七章中,我们通过调控两种单体材料在同一分散溶液中的表面电荷,利用带相反电荷的颗粒间的静电吸引力,设计并制备了具有高有效异质界面率的高效g-C3N4/Zn2GeO4异质结光催化材料。单体材料带相反表面电荷(OSC)的g-C3N4/Zn2GeO4异质结在可见光下对亚甲基蓝的降解活性优于纯g-C3N4、纯Zn2Ge04和单体材料带相同表面电荷(ISC)的g-C3N4/Zn2Ge04异质结。所制备样品的光吸收、吸附能力和光电流响应的测试结果表明,OSC g-C3N4/Zn2Ge04异质结光催化材料的高活性主要是由于其有效异质界面率高,能显著提高光生电子-空穴对的分离率。我们的理论计算揭示了g-C3N4/Zn2Ge04异质结可见光下的电子微观迁移路径:g-C3N4的N2p态上的电子受激发直接跃迁至Zn2Ge04的Zn4s和Ge4s杂化轨道上。
     第八章中,我们通过异质结纳米结构构筑与晶面工程相结合的方法,设计并合成了两种不同界面组成的BiOI/BiOCl异质结光催化剂,分别为BiOI(001)/BiOCl(001)和BiOI(001)/BiOCl(010)异质结。BiOI(001/BiOCl(001)和BiOI(001/BiOCl(010)异质结的可见光催化活性均高于BiOCl和BiOI单体材料。这是由于形成异质结能显著减弱光生载流子复合,提高光生载流子的分离效率。虽然BiOI(001)/BiOCl(001)具有更高的晶格匹配度,但是BiOI(001/BiOCl(010)的可见光催化活性优于BiOI(001)/BiOCl(001)。由于BiOI(001)/BiOCl(001)和BiOI(001)/BiOCl(010)异质结的能带匹配情况相似,所以二者的ηsep相同。然而,因为BiOCl的自发内电场平行于BiOI(001)/BiOCl(010)异质结,优化了分离后的光生电子的迁移路径,从而使得BiOI(001)/BiOCl(010)异质结的ηinj高于BiOI(001)/BiOCl(001)异质结。这是BiOI(001)/BiOCl(010)异质结具有更优可见光催化活性的主要原因。
     第九章对本论文进行了总结,归纳了创新点,并对今后拟开展的研究工作进行了展望。
Ever since the1970s, steadily worsening environmental pollution and energy shortages have raised awareness of a potential global crisis. Among the wide variety of green earth and renewable energy projects underway, semiconductor photocatalysis has emerged as one of the most promising technologies because it represents an easy way to utilize the energy of natural sunlight. Based on the problems of semiconductor photocatalytic technology that existed in practical application, this thesis took the semiconductor band engineering as the guiding ideology to design and synthesize efficient visible-light photocatalysts. On the one hand, we used the charge compensation effect in the donor-acceptor pairs to control the band structures of wide-bandgap semiconductors. The microscopic mechanism of tailoring the band structure by codoping and the relationship between codoping atoms, codoping forms and photocatalytic activities were studied by first-principles density function theory calculations. On the other hand, we fabricated heterojunction photocatalysts by combining two different semicondutors and investigated the microscopic mechanisms of interface interaction and interface carriers transfer by a combination of theoretical calculations and experimental techniques. Based on this, the influences of effective hetero-interfaces and transfers of separated electrons and holes on the photocatalytic activity of heterojunctions were also studied to provide theoretical guidance for the design of new efficient visible-light photocatalysts. The main researches are listed as follows:
     The first chapter introduced the research background of this thesis, including the development and research status of semiconductor photocatalytic technology and semiconductor band engineering, and the applications of codoping and fabricating heterojunctions in improving the photocatalytic activity of semiconductors. In this chapter, it put forward revealing the relationship between codoping atoms, codoping forms and photocatalytic activities from the micro level, the microscopic mechanisms of interface interaction and interface carriers transfer, and the influences of effective hetero-interfaces and transfers of separated electrons and holes on the photocatalytic activity of heterojunctions. In addition, the research ideas and content of this thesis were briefly introduced.
     In the second chapter, we have introduced the basic theoretical methods of density functional theory. The main line was the development of exchange-correlation functional, including Local Density Approximation (LDA), Generalized Gradient Approximation (GGA) and self-consistent field theory. Then, the software packages used in this thesis were introduced.
     Part I contained the chapter3,4and5. This part took the band-gap graphics engineering as the guiding ideology. The charge compensation effect in the donor-acceptor pairs was used to passivate the partially occupied states in the monodoping systems, thus improving the visible-light photocatalytic activity of semiconductors.
     In the third chapter, we performed first-principles density function theory calculations to study the geometric and electronic structures and photoactivity of C, N, and F monodoped and pairwise codoped ZnWO4. The photon transition energy could be decreased to varying degrees by momodoping, while the partially occupied states in induced by the impurity were located in the gap, which may act as recombination centers and weaken the photocatalytic activity. By analyzing the defect wave function character, we proposed several pairwise codoped ZnW04systems, such as CS+2FS-, Ns+Fs-, Ci+2NS-, and Ni+Fs-codoped ZnW04, to passivate the partially occupied states in the monodoping systems by the charge compensation effect in the donor-acceptor pairs, resulting in occupied states in the gap and reducing the formation energy compared with the monodoping systems. All of these four codoping forms can decrease the transition energy to some extent, and the Ci+2Ns and Ni+Fs codoping in the ZnWO4can red shift the transition energy of photoexcited electrons to the ideal visible-light region.
     In the fourth chapter, the electronic properties of mono N-and F-doped and (N, F)-codoped ZnW04(010) surfaces were studied by means of first-principles calculations. In the monodoping surfaces, the N and F doping got unsatisfactory redshifting of absorption edge and introduced partially occupied states in the band gap, which would act as recombination centers. The electronic structures of (N,F)-codoped ZnWO4(010) surfaces showed that the related partially occupied defect bands in the monodoped surfaces were passivated by the synergetic effect of N-F recombination. However, the details of compensation mechanism and effects of enhancing photoactivity for these four codoped surfaces were different from each other:in the NsFs-codoped surface, the electron on the W5d1state formed by the single Fs donor passivated the hole on the single Ns acceptor; in the NadFs-codoped surface, the Fs acted as a single donor and the extra electron on the W5d1state passivated the hole on the NadObπ*state; in the NsFad-codoped surface, the Ns-Os species, acting as a single donor, transfered the electron on a*to Fad impurity to fill its2p orbital; in the NadFad-codoped surface, the Fad impurity as a single acceptor obtained the electron from Nad-Ob Nad-Ob π*orbital to passivate the hole on its2p states. All these four codoping forms can decrease the transition energy of ZnW04(010) surface to some extent, and the NadFs and NadFad codoping can red shift the absorption edge to visible-light region. Due to the electrons only transferring between the Nad-Ob π*states, the NadFad codoping had little sense to photocatalytic process of ZnWO4(010) surface.
     In the fifth chapter, the interaction between implanted La, substitutional N, and an oxygen vacancy at TiO2anatase (101) surface was investigated by means of first-principles density function theory calculations. Our calculations suggested that both the adsorptive and substitutional La-doped TiO2(101) surfaces were probably defective configurations in experiments. The h-Cave-adsorbed La doping decreased the formation energy for the substitutional N implantation and vice versa, while the charge compensation effects did not take effect between the adsorptive La and substitutional N dopants, resulting in some partially occupied states in the band gap acting as traps of the photoexcited electrons. The Ti5c-substituted La doping decreased the energy required for the substitutional N implantation, and the substitutional La and N codoping promoted the formation of an oxygen vacancy, which migrated from the Osb-3c site at the inner layer toward the surface Ob site. For the substitutional La/N-codoped (Ti55c_O3c-down) surface, the charge compensation between the substitutional La and substitutional N led to the formation of two isolated occupied Ns-O π*impurity levels in the gap. After further considering an oxygen vacancy on the Ti5c_O3c-down surface, the two electrons on the double donor levels (Ob vacancy) passivated the same amount of holes on the acceptor levels (substitutional La and N), forming the acceptor-donor-acceptor compensation pair, which provided a reasonable mechanism for the enhanced visible-light photocatalytic activity of La/N codoped TiO2anatase.
     Part Ⅱ contained the chapter6,7and8. This part took the band structure engineering as the guiding ideology. Based on the lattice match and band match, the narrow-band-gap semiconductors were composited with the wide-band-gap semicondutors to fabricate the heterojunction photocatalysts. The visible-light response of heterojunction photocatalysts was achieved by the narrow-band-gap semiconductors, and the excited electrons transfered from the narrow-band-gap semiconductors into the attached wide-band-gap semiconductors in the case of proper conduction band potentials, which favored the separation of photoinduced electrons and holes and thus improved the visible-light photocatalytic efficiency of semiconductor heterojunctions dramatically.
     In the sixth chapter, we presented a systematic investigation of the microscopic mechanism of interface interaction, charge transfer and separation, as well as their influence on the photocatalytic activity of heterojunctions by a combination of theoretical calculations and experimental techniques for the g-C3N4ZnWO4composite. HRTEM results and DFT calculations mutually validated each other to indicate the reasonable existence of g-C3N4(001)/ZnWO4(010) and g-C3N4(001)/ZnWO4(011) interfaces. The g-C3N4/ZnWO4heterojunctions showed higher photocatalytic activity for degradation of MB than pure g-C3N4and ZnW04under visible-light irradiation. Moreover, the heterojunctions significantly enhanced the oxidation of phenol in contrast to pure g-C3N4, the phenol oxidation capacity of which was weak, clearly demonstrating a synergistic effect between g-C3N4and ZnWO4. Based on the theoretical calculations, we found that electrons in the upper valence band can be directly excited from g-C3N4to the W5d orbital of ZnWO4, under visible-light irradiation, which should yield well-separated electron-hole pairs.
     In the seventh chapter, efficient g-C3N4/Zn2Ge04photocatalysts with effective interfaces were designed by controlling the surface charges of the two individual materials inside the same aqueous dispersion medium, making use of the electrostatic attraction between oppositely charged particles. The g-C3N4/Zn2Ge04heterojunction with opposite surface charge (OSC) showed higher visible-light photocatalytic activity for degradation of methylene blue than those of pure g-C3N4, pure Zn2GeO4, and the g-C3N4/Zn2GeO4with identical surface charge (ISC). The investigation of the light absorption spectrum, adsorption ability, and photocurrent responses revealed that the improved separation of photogenerated carriers was the main reason for the enhancement of the OSC g-C3N4/Zn2Ge04sample's photocatalytic activity. By combining with theoretical calculations, the microscopic mechanisms of interface charge transfer was that the photogenerated electrons in the g-C3N4N2p states directly excited into the Zn4s and Ge4s hybrid states of Zn2GeO4.
     In the eighth chapter, we designed and synthesized two models of BiOI/BiOCl heterojunction photocatalysts with different interfaces, denoted as BiOI(001)/BiOCl(001) and BiOI(001/BiOCl(010), via the combination of heterojunction nanostructure construction and crystal facet engineering. Due to the formation of heterojunctions that can significantly reduce the recombination and speed up the separation rate of photogenerated charge carriers, both of the BiOI(001/BiOCl(001) and BiOI(001)/BiOCl(010) heterojunctions were photocatalytically more active than the three individual components. Though BiOI(001)/BiOCl(001) had the better lattice match, the visible-light photocatalytic activity of BiOI(001)/BiOCl(010) was superior to that of BiOI(001)/BiOCl(001) heterojunctions. The BiOI(001)/BiOCl(001) showed the same ηsep with the BiOI(001)/BiOCl(010), because of the similar band-match situations. While, since the self-induced internal electric fields of BiOCl slabs in BiOI(001)/BiOCl(001) and BiOI(001/BiOCl(010) heterojunctions were perpendicular and parallel to these two heterojunctions, respectively, the ηinj of BiOI(001)/BiOCl(010) was higher than that of BiOI(001)/BiOCl(001) by optimizing the separated electrons transfer pathway. This was the main factor answering for the higher visible-light photocatalytic activity of BiOI(001/BiOCl(010)heterojunction.
     In the last chapter, we summarized the conclusions and innovative points of this dissertation, and preview the further studies.
引文
[1]. Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis, Chem. Rev.,1995,95,69-96.
    [2]. Hagfeldt, A.; Gratzel, M. Chem. Light-induced redox reactions in nanocrystalline systems, Chem. Rev.,1995,95,49-68.
    [3]. Fox, M. A.; Dulay, M. T. Heterogeneous photocatalysis, Chem. Rev.,1993,93, 341-357.
    [4]. Muller, H. D.; Steinbach, F. Decomposition of isopropyl alcohol photosensitized by zinc oxide, Nature,1970,225,728-729.
    [5]. Steinbach, F. Influence of metal support and ultraviolet irradiation on the catalytic activity of nickel oxide, Nature,1969,221,657-658.
    [6]. Doerfler, W.; Hauffe, K. Heterogeneous photocatalysis II. The mechanism of the carbon monoxide oxidation at dark and illuminated zinc oxide surfaces, J. Catal, 1964,3,171-178.
    [7]. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode, Nature,1972,238,37-38.
    [8]. Carey, J. H.; Lawrence, J.; Tosine, H. M. Photodechlorination of PCB's in the presence of Ti-tanium dioxide in aqueous suspensions, Bull. Environ. Contam. Toxicol,1976,16,697-701.
    [9]. Franck, S. N.; Bard, A. J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder, J. Am. Chem. Soc.,1977,99, 303-304.
    [10]. Franck, S. N.; Bard, A. J. Semiconductor electrodes.12. Photoassisted oxidations and photoelectrosynthesis at polycrystalline titanium dioxide electrodes, J. Am. Chem. Soc.,1977,99,4667-4675.
    [11]. Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M. Watanabe, T. Light-induced amphiphilic surfaces, Nature,1997, 388,431-432.
    [12]. Hashimoto, K.; Irie, H.; Fujishima, A. TiO2 photocatalysis:a historical overview and future prospects,Jpn. J. Appl. Phys.,2005,44,8269-8285.
    [13]. Roy, S. C.; Varghese, O. K.; Paulose, M.; Grimes, C. A. Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons, ACS Nano,2010,4, 1259-1278.
    [14]. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides, Science,2001,293,269-271.
    [15]. In, S.; Orlov, A.; Berg, R.; Garcia, F.; Pedrosa-Jimenez, S.; Tikhov, M. S.; Wright, D. S.; Lambert, R. M. Effective visible light-activated B-doped and B, N-codoped TiO2 photocatalysts, J. Am. Chem. Soc.,2007,129,13790-13791.
    [16]. Hu, C. C.; Teng, H. S. Structural features of p-type semiconducting NiO as a co-catalyst for photocatalytic water splitting, J. Catal.,2010,272,1-8.
    [17]. Li, Q. Y.; Kako, T.; Ye, J. H. WO3 modified titanate network film:highly efficient photo-mineralization of 2-propanol under visible light irradiation, Chem. Commun.,2010,46,5352-5354.
    [18]. Jang, J. S.; Choi, S. H.; Park, H.; Choi, W.; Lee, J. S. A composite photocatalyst of CdS nanoparticles deposited on TiO2 nanosheets, J. Nanosci, Nanotechno.,2006, 6,3642-3646.
    [19]. Feng, J. M.; Han, J. J.; Zhao, X. J. Synthesis of CuInS2 quantum dots on TiO2 porous films by solvothermal method for absorption layer of solar cells, Prog. Org. Coat.,2009,64,268-273.
    [20]. Dibbell, R. S.; Youker, D. G.; Watson, D. F. Excited-state electron transfer from CdS quantum dots to TiO2 nanoparticles via molecular linkers with phenylene bridges,J. Phys. Chem. C,2009,113,18643-18651.
    [21]. Nakahira, T.; Inoue, Y.; Iwasaki, K.; Tanigawa, H.; Kouda, Y.; Iwabuchi, S.; Kojima, K.; Gratzel, M. Visible light sensitization of platinized TiO2 photocatalyst by surface-coated polymers derivatized with ruthenium tris(bipyridyl), Makromol. Chem.-Rapid,1988,9,13-17.
    [22]. Nakahira, T.; Gratzel, M. Visible light sensitization of platinized TiO2 photocatalyst by surface-adsorbed poly (4-vinylpyridine) derivatized with ruthenium trisbipyridyl complex, Markromol. Chem.-Rapid,1985,6,341-347.
    [23]. Wagner, F. T.; Somorjai, G A. Photocatalytic hydrogen production from water on Pt-free SrTiO3 in alkali hydroxide solutions, Nature,1980,285,559-560.
    [24]. Domen, K.; Naito, S.; Soma, M.; Onishi, T.; Tamaru, K. Photocatalytic decomposition of water vapour on an NiO-SrTiO3 catalyst, J. Chem. Soc. Chem. Comm.,1980,543-544.
    [25]. Reiche, H.; Dunn, W. W.; Bard, A. J. Heterogeneous photocatalytic and photosynthetic deposition of copper on TiO2 and WO3 powders, J. Phys. Chem., 1979, 83,2248-2251.
    [26]. Ouyang, S. X.; Kikugawa, N.; Zou, Z. G; Ye, J. H. Effective decolorizations and mineralizations of organic dyes over a silver germanium oxide photocatalyst under indoor-illumination irradiation,Appl. Catal. A-Gen.,2009,366,309-314.
    [27]. Ouyang, S. X. Kikugawa, N.; Chen, D.; Zou, Z. G; Ye, J. H. A systematical study on photocatalytic properties of AgMO2 (M=Al, Ga, In):effects of chemical compositions, crystal structures, and electronic structures, J. Phys. Chem. C,2009, 113,1560-1566.
    [28]. Li, X. K.; Ouyang, S. X.; Kikugawa, N.; Ye, J. H. Novel Ag2ZnGe04 photocatalyst for dye degradation under visible light irradiation, Appl. Catal. A-Gen.,2008,334,51-58.
    [29]. Ouyang, S. X.; Zhang, H. T.; Li, D. F.; Yu, T.; Ye, J. H.; Zou, Z. G Electronic structure and photocatalytic characterization of a novel photocatalytst AgA102, J. Phys. Chem. B,2006,110,11677-11682.
    [30]. Tang, J. W.; Zou, Z. G; Ye, J. H. Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation, Angew. Chem. Int. Ed, 2004,43,4463-4466.
    [31]. Ye, J. H.; Zou, Z. G.; Matsushita, A. A novel series of water splitting photocatalysts NiM2O6(M=Nb, Ta) active under visible light, Int. J. Hydrogen Energ.,2003,28,651-655.
    [32]. Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO4 (M=Mn, Fe, Co, Ni and Cu) photocatalysts, J. Photoch. Photobio. A,2002,148,65-69.
    [33]. Zou, Z. G.; Ye, J. H.; Arakawa, H. Surface characterization of Nanoparticles of NiOx/In0.9Ni0.1TaO4:effects on photocatalytic activity, J. Phys. Chem. B,2002, 106,13098-13101.
    [34]. Zou, Z. G.; Arakawa, H.; Ye, J. H. Substitution effect of Ta5+ by Nb5+ on photocatalytic, photophysical and structural properties of BiTa1-xNbxO4 (0≤x≤1.0), J. Mater. Res.,2002,17,1446-1454.
    [35]. Ye, J. H.; Zou, Z. G.; Oshikiri, M.; Matsushita, A.; Shimoda, M.; Imai, M.; Shishido, T. A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation, Chem. Phys. Lett.,2002,356,221-226.
    [36]. Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, Nature,2001, 414,625-627.
    [37]. Kako, T.; Zou, Z. G.; Katagiri, M.; Ye, J. H. Decomposition of organic compounds over NaBiO3 under visible light irradiation, Chem. Mater.,2007,19,198-202.
    [38]. Osterloh, F. E. Inorganic materials as catalysts for photochemical splitting of water, Chem. Mater.,2008,20,35-54.
    [39]. Wang, X. C.; Maeda, K.; Thomas, A. Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater,2009,8,76-80.
    [40]. Li, Q. Y.; Yue, B.; Iwai, H.; Kako, T.; Ye, J. H. Carbon nitride polymers sensitized with N-doped tantalic acid for visible light-induced photocatalytic hydrogen evolution, J. Phys. Chem. C.,2010,114,4100-4105.
    [41]. Kamat, P. V. Meeting the clean energy demand:nanostructure architectures for solar energy conversion, J. Phys. Chem. C,2007,111,2834-2860.
    [42]. Chen, D.; Ye, J. H. SrSnO3 nanostructures:synthesis characterization and photocatalytic properties, Chem. Mater.,2007,19,4585-4591.
    [43]. Zeng, H. B.; Liu, P. S.; Cai, W. P.; Yang, S. K.; Xu, X. X. Controllable Pt/ZnO porous nanocages with improved photocatalytic activity, J. Phys. Chem. C,2008, 112,19620-19624.
    [44]. Chen, X.; Mao, S. S. Titanium dioxide nanomaterials:synthesis, properties, modifications, and applications, Chem. Rev.,2007,107,2891-2959.
    [45]. Chen, D.; Ye, J. H. Selective-synthesis of high-performance single-crystalline Sr2Nb2O7 nanoribbon and SrNb2O6 nanorod photocatalysts, Chem. Mater.,2009, 27,2327-2333.
    [46]. Tong, H. Ye, J. H. Building niobate nanoparticles with hexaniobate lindqvist ions, Eur. J. Inorg. Chem.,2010,1473-1480.
    [47]. Xi, C. G.; Yue, B.; Cao, J. Y.; Ye, J. H. General synthesis of hybrid TiO2 mesoporous "french fries" toward improved photocatalytic conversion of CO2 into hydrocarbon fuel:a case of TiO2/ZnO, Chem. Eur J.,2011,17,9057-9061.
    [48]. Chen, D.; Ye, J. H. Hierarchical WO3 hollow shells:dendrite sphere dumbbell and their photocatalytic properties, Adv. Funct. Mater.,2008,18,1922-1928.
    [49]. Xi, C. G.; Ye, J. H. Synthesis of hierarchical macro-/mesoporous solid-solution photocatalysts by a polymerization-carbonization-oxidation route:the case of Ceo.49Zro.37Bio.1401.93, Chem. Eur. J.,2010,16,8719-8725.
    [50]. Zeng, H. B.; Cai, W. P.; Liu, P. S.; Xu, X. X.; Zhou, H. J.; Klingshirn, C. ZnO-based hollow nanoparticles by selective etching:elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis,ACS Nano,2008,2,1661-1670.
    [51]. Scaife, D. E. Oxide semiconductors in photoelectrochemical conversion of solar energy, Solar Energy,1980,25,41-54.
    [52]. Maeda, K.; Domen, K. Solid solution of GaN and ZnO as a stable photocatalyst for overall water splitting under visible light, Chem. Mater.,2010,22,612-623.
    [53]. Yi, Z. G.; Ye, J. H. Band gap tuning of Na1-xLaxTa1-xCrxO3 for H2 generation from water under visible light irradiation, J. Appl. Phys.,2009,106,074910.
    [54]. Wang, D. F.; Kako, T.; Ye, J. H. New series of solid-solution semiconductors (AgNbO3)1-x(SrTiO3)x with modulated band structure and enhanced visible-light photocatalytic activity, J. Phys. Chem. C,2009,113,3785-3792.
    [55]. Li, G Q.; Kako, T.; Wang, D. F.; Zou, Z. G.; Ye, J. H. Enhanced photocatalytic activity of La-doped AgNbO3 under visible light irradiation, Dalton T.,2009, 2423-2427.
    [56]. Wang, D. F.; Kako, T.; Ye, J. H. Efficient photocatalytic decomposition of acetaldehyde over a solid-solution perovskite (Ago.75Sro.25)(Nbo.75Tio.25)03 under visible-light irradiation, J. Am. Chem. Soc.,2008,130,2724-2725.
    [57]. Li, X. K.; Kikugawa, N.; Ye, J. H. Nitrogen-doped lamellar niobic acid with visible light responsive photocatalytic activity, Adv. Mater.,2008,20,3816-3819.
    [58]. Wang, D. F.; Ye, J. H.; Kako, T.; Kimura, T. Photophysical and photocatalytic properties of SrTiO3 doped with Cr cations on different sites, J. Phys. Chem. B, 2006,110,15824-15830.
    [59]. Tong, H.; Umezawa, N.; Ye, J. H. "Visible light photoactivity from a bonding assembly of titanium oxide nanocrystals, Chem. Commun.,2011,47,4219-4221.
    [60]. Tong, H.; Umezawa, N.; Ye, J. H.; Ohno, T. Electronic coupling assembly of semiconductor nanocrystals:self-narrowed band gap to promise solar energy utilization, Energy Environ. Sci.,2011,4,1684-1689.
    [61]. Li, Q. Y.; Kako, T.; Ye, J. H. PbS/CdS nanocrystal-sensitized titanate network films:enhanced photocatalytic activities and super-amphiphilicity, J. Mater. Chem.,2010,20,10187-10192.
    [62]. Chen, X. Q.; Li, P.; Tong, H.; Kako, T.; Ye, J. H. Nanoarchitectonics of a Au nanoprism array on WO3 film for synergistic optoelectronic response, Sci. Technol. Adv. Mat.,2011,12,044604.
    [63]. Chen, X. Q.; Ye, J. H.; Ouyang, S. X.; Kako, T.; Li, Z. S.; Zou, Z. G. Enhanced incident photo-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design, ACS Nano,2011,5,4310-4318.
    [64]. Yang, Y.; Zhong, H.; Tian, C. X. Photocatalytic mechanisms of modified titania under visible light, Res. Chem. Intermediat.,2011,37,91-102.
    [65]. Rauf, M. A.; Ashraf, S. S. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution, Chem. Eng. J.,2009, 151,10-18.
    [66]. Fujishima, A.; Zhang, X. T.; Tryk, D. A. TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep.,2008,63,515-582.
    [67]. Chong, M. N.; Jin, B.; Chow, C. W. K.; Saint, C. Recent developments in photocatalytic water treatment technology:a review, Water Research,2010,44, 2997-3027.
    [68]. Ahmed, S.; Rasul, M. G.; Martens, W. N.; Brown, R.; Hashib, M. A. Heterogeneous photocatalytic degradation of phenols in wastewater:a review on current status and developments, Desalination,2010,261,3-18.
    [69]. Maeda, K.; Domen, K. Photocatalytic water splitting:recent progress and future challenges,J.Phys. Chem. Lett.,2010,1,2655-2661.
    [70]. Kitano, M.; Hara, M. Heterogeneous photocatalytic cleavage of water, J. Mater. Chem.,2010,20,627-641.
    [71]. Ji, P. F.; Takeuchi, M.; Cuong, T. M.; Zhang, J. L.; Matsuoka, M.; Anpo, M. Recent advances in visible light-responsive titanium oxide-based photocatalysts, Res. Chem. Intermediat.,2010,36,327-347.
    [72]. Hernandez-Alonso, M. D.; Fresno, F.; Suarez, S.; Coronado, J. M. Development of alternative photocatalysts to TiO2:challenges and opportunities, Energ. Environ. Sci.,2009,2,1231-1257.
    [73]. Morris, A. J.; Meyer, G. J.; Fujita, E. Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels, Accounts Chem. Res.,2009,42, 1983-1994.
    [74]. Yamashita, H.; Ichihashi, Y.; Takeuchi, M.; Kishiguchi, S.; Anpo, M. Characterization of metal ion-implanted titanium oxide photocatalysts operating under visible light irradiation, J. Synchrotron Radiat.,1999,6,451-452.
    [75]. Herrmann, J. M.; Disdier, J.; Pichat, P. Effect of chromium doping on the electrical and catalytic properties of powder titania under UV and visible illumination, Chem. Phys. Lett.,1984,108,618-622.
    [76]. Borgarello, E.; Kiwi, J.; Gratzel, M.; Pelizzetti, E.; Visca, M. Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles, J. Am. Chem. Soc.,1982,104,2996-3002.
    [77]. Karakitsou, K. E.; Verykios, X. E. Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage, J. Phys. Chem.,1993,97, 1184-1189.
    [78]. Mu, W.; Herrmann, J. M.; Pichat, P. Room temperature photocatalytic oxidation of liquid cyclohexane into cyclohexanone over neat and modified TiO2, Catal. Lett., 1989,3,73-84.
    [79]. Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K. Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations, J. Phys. Chem. Solids, 2002,63,1909-1920.
    [80]. Nishikawa, T.; Shinohara, Y.; Nakajima, T.; Fujita, M.; Mishima, S. Prospect of activating a photocatalyst by sunlight-a quantum chemical study of isomorphically substituted titania, Chem. Lett.,1999,28,1133-1134.
    [81]. Choi, W.; Termin, A.; Hoffmann, M. R. The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem.,1994,98,13669-13679.
    [82]. Kato, H.; Kobayashi, H.; Kudo, A. Role of Ag+ in the band structures and photocatalytic properties of AgMO3 (M:Ta and Nb) with the perovskite structure, J. Phys. Chem. B,2002,106,12441-12447.
    [83]. Kako, T.; Ye, J. H. Comparison of photocatalytic activities of two kinds of lead magnesium niobate for decomposition of organic compounds under visible-light irradiation, J. Mater. Res.,2007,22,2590-2597.
    [84]. Li, X. K.; Kako, T.; Ye, J. H.2-propanol photodegradation over lead niobates under visible light irradiation, Appl. Catal. A-Gen.,2007,326,1-7.
    [85]. Tang, J. W.; Zou, Z. G.; Ye, J. H. Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation, Catal. Lett.,2004,92, 53-56.
    [86]. Kudo, A.; Omori, K.; Kato, H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties, J. Am. Chem. Soc.,1999,121,11459-11467.
    [87]. Kim, H. G.; Hwang, D. W.; Lee, J. S. An undoped, single-phase oxide photocatalyst workong under visible light, J. Am. Chem. Soc.,2004,126, 8912-8913.
    [88]. Saadi, S.; Bouguelia, A.; Trari, M. Photocatalytic hydrogen evolution over CuCrO2, Solar Energy,2006,80,272-280.
    [89]. Saadi, S.; Bouguelia, A.; Derbal, A.; Trari, M. Hydrogen photoproduction over new catalyst CuLaO2, J. Photochem. Photobio. A,2007,187,97-104.
    [90]. Hosogi, Y.; Shimodaira, Y.; Kato, H.; Kobayashi, H.; Kudo, A. Role of Sn2+ in the band structure of SnM2O6 and Sn2M2O7 (M=Nb and Ta) and their photocatalytic properties, Chem. Mater.,2008,20,1299-1307.
    [91]. Hosogi, Y. Kato, H. Kudo, A. Photocatalytic activities of layered titanates and niobates ion-exchanged with Sn2+ under visible light irradiation, J. Phys. Chem. C, 2008,112,17678-17682.
    [92]. Li, H.; Zhang, X.; Huo, Y.; Zhu, J. Supercritical preparation of a highly active S-doped TiO2 photocatalytst for methylene blue mineralization, Environ. Sci. Technol.,2007,41,4410-4414.
    [93]. Yu, J. C.; Ho, W.; Yu, J. Yip, H.; Wong, P. K.; Zhao, J. Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania, Environ. Sci. Technol.,2005,39,1175-1179.
    [94]. Shi, Q.; Yang, D.; Jiang, Z.; Li, J. Visible-light photocatalytic regeneration of NADH using P-doping TiO2 nanoparticles, J. Mol. Catal. B:Enzym.,2006,43, 44-48.
    [95]. Khan, S. U. M.; Al-Shahry, M.; Jr. Ingler, W. B. Efficient photochemical water splitting by a chemically modified n-TiO2, Science,2002,297,2243-2245.
    [96]. Gu, D. E.; Lu, Y.; Yang, B. C.; Hu, Y D. Facile preparation of mocro-mesoporous carbon-doped TiO2 photocatalysts with anatase crystalline walls under template-free condition, Chem. Commun.,2008,2453-2455.
    [97]. Hong, X. T. Wang, Z. P.; Cai, W. M.; Lu, F.; Zhang, J. Yang, Y. Z.; Ma, N. Liu, Y J. Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide, Chem. Mater.,2005,17,1548-1552.
    [98]. Liu, G.; Sun, C. H.; Yan, X. X.; Cheng, L.; Chen, Z. G.; Wang, X. W.; Wang, L. Z.; Smith, S. C.; Lu, G. Q.; Cheng, H. M. Iodine doped anatase TiO2 photocatalyst with ultra-long visible light response:correlation between geometric/electronic structures and mechanisms, J. Mater. Chem.,2009,19,2822-2829.
    [99].程恒,龙明策,徐俊,蔡伟民,可见光响应的氯掺杂TiO2的制备、表征及其 光催化活性,催化学报,2006,27,890-894.
    [100]. Yang, K. S.; Dai, Y.; Huang, B. B.; Whangbo, M.-H. Density functional characterization of the band edges, the band gap states, and the preferred doping sites of halogen-doped TiO2, Chem. Mater.,2008,20,6528-6534.
    [101]. Gai, Y. Q.; Li, J. B.; Li, S. S.; Xia, J. B.; Wei, S. H. Design of narrow-gap TiO2: apassivated codoping approach for enhanced photoelectrochemical activity, Phys. Rev. Lett.,2009,102,0364021-0364024.
    [102], Zhang, J. Pan, C. X.; Fang, P. F.; Wei, J. H.; Xiong, R. Mo+C codoped TiO2 using thermal oxidation for enhancing photocatalytic activity, Appl. Mater. Interfaces,2010,2,1173-1176.
    [103]. Di Valentin, C.; Finazzi, E.; Pacchioni, G Density functional theory and electron paramagnetic resonance study on the effect of N-F codoping of TiO2, Chem. Mater,2008,20,3706-3714.
    [104]. Du, X.; He, J. H.; Zhao, Y. Q. Facile preparation of F and N codoped pinecone-like titania hollow microparicles with visible light photocatalytic activity, J. Phys. Chem. C,2009,113,14151-14158.
    [105]. Long, R.; English, N. J. First-principles calculation of nitrogen-tungsten codoping effects on the band structure of anatase-titania, Appl. Phys. Lett.,2009, 94,132102.
    [106]. Long, R.; English, N. J. Band gap engineering of (N, Ta)-codoped TiO2:a first-principles calculation, Chem. Phys. Lett.,2009,478,175-179.
    [107]. Jia, L. C.; Wu, C. C.; Han, S.; Yao, N. A.; Li, Y. Y; Li. Z. B.; Chi, B.; Pu, J. A.; Jian, L. Theoretical study on the electronic and optical preperties of (N, Fe)-codoped anatase TiO2 photocatalyst, J. Alloy. Compd.,2011,509,6067-6071.
    [108]. Kim, H. G.; Borse, P. H.; Choi, W.; Lee, J. S. Photocatalytic nanodiodes for visible-light photocatalysis, Angew. Chem. Int. Ed.,2005,44,4585-4589.
    [109]. Zou, Z. G.; Ye, J. H.; Arakawa, H. Surface characterization of nanoparticles of NiOx/In0.9Ni0.1TaO4:effects on photocatalytic activity, J. Phys. Chem. B,2002, 106,13098-13101.
    [110]. Chen, Y.; Crittenden, J. C.; Hackney, S.; Sutter, L.; Hand, D. W. Preparation of a novel TiO2-based p-n junction nanotube photocatalyst, Environ. Sci. Technol., 2005,39,1201-1208.
    [111]. Li, J. L.; Liu, L.; Yu, Y Tang, Y. W.; Li, H. L.; Du, F. P. Preparation of highly photocatalytic active nano-size TiO2-Cu2O particle composites with a novel electrochemical method, Electrochem. Commun.,2004,6,940-943.
    [112]. Senevirathna, M. K. I.; Pitigala, P. K. D. D. P.; Tennakone, K. Water photoreduction with Cu2O quantum dots on TiO2 nano-particles, J. Photochem. Photobiol. A; Chem.,2005,171,257-259.
    [113]. Xu, Y. H.; Liang, D. H.; Liu, M. L.; Liu, D. Z. Preparation and characterization of Cu2O-TiO2:efficient photocatalytic degradation of methylene blue, Mater. Res. Bull.,2008,43,3474-3482.
    [114]. Long, M. C.; Cai, W. M.; Cai, J.; Zhou, B. X.; Chai, X. Y.; Wu, Y. H. Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation, J. Phys. Chem. B,2006,110,20211-20216.
    [115]. Deo, M.; Shinde, D.; Yengantiwar, A.; Jog, J.; Hannoyer, B.; Sauvage, X.; More, M.; Ogale, S. Cu2O/ZnO hetero-nanobrush:hierarchical assembly, field emission and photocatalytic properties, J. Mater. Chem.,2012,22,17055-17062.
    [116]. Wang, Y.; Li, S. C.; Shi, H.; Yu, K. Facile synthesis of p-type Cu2O/n-type ZnO nano-heterojunctions with novel photoluminescence properties, enhanced field emission and photocatalytic activities, Nanoscale,2012,4,7817-7824.
    [117]. Li, P.; Zhao, X.; Jia, C.-J.; Sun, H. G.; Sun L. M.; Xiu, F. C.; Liu, L.; Fan, W. L. ZnWO4/BiOI heterostructures with highly efficient visible light photocatalytic activity:the case of interface lattice and energy level match, J. Mater. Chem. A, 2013,1,3421.
    [118]. Reddy, K. H.; Martha, S.; Parida, K. M. Fabrication of novel p-BiOI/n-ZnTiO3 heterojunction for degradation of rhodamine 6G under visible light irradiation, Inorg. Chem.,2013,52,6390-6401.
    [119]. Tada, H.; Mitsui, T.; Kiyonaga, T.; Akita, T.; Tanaka, K. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system, Nature Mater., 2006,5,782-786.
    [120]. Maeda, K.; Teramura, K.; Lu, D.; Saito, N.; Inoue, Y; Domen, K. Noble-metal/Cr2O3 core/shell nanoparticles as a cocatalyst for photocatalytic overall water splitting, Angew. Chem. Int. Ed.,2006,45,7806-7809.
    [121]. Li, S.-K.; Huang, F.-Z.; Wang, Y.; Shen, Y.-H.; Qiu, L.-G.; Xie, A.-J.; Xu, S.-J. Magnetic Fe3O4@C@Cu2O composite with bean-like core/shell nanostructures:synthesis, properties and application in recyclable photocatalytic degradation of dye pollutants, J. Mater. Chem.,2011,21,7459-7466.
    [122]. Zhang, J.; Li, L. P.; Huang, X. S.; Li, G. S. Fabrication of Ag-CeO2 core-shell nanospheres with enhanced catalytic performance due to strengthening of the interfacial interactions, J. Mater. Chem.,2012,22,10480-10487.
    [123]. Pan, C. S.; Xu, J.; Wang, Y. J.; Li, D.; Zhu, Y. F. Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly, Adv. Funct. Mater.,2012,22,1518-1524.
    [124]. Cushing, S. K.; Li, J. T.; Meng, F.; Senty, T. R.; Suri, S.; Zhi, M. J.; Li, M.; Bristow, A. D.; Wu, N. Q. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor, J. Am. Chem. Soc.,2012,134, 15033-15041.
    [125]. Li, J. T.; Cushing, S. K.; Bright, J.; Meng, F.; Senty, T. R.; Zheng, P.; Bristow, A. D.; Wu, N. Q. Ag@Cu2O core-shell nanoparticels as visible-light plasmonic photocatalyst, ACS Catal.,2013,3,47-51.
    [126]. Serpone, N.; Maruthamuthu, P.; Pichat, P.; Pelizzetti, E.; Hidaka, H. Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol:chemical evidence for electron and hole transfer between coupled semiconductors, J. Photochem. Photobiol. A:Chem., 1995,85,247-255.
    [127]. Bessekhouad, Y. Robert, D.; Weber, J. V. Bi2S3/Ti02 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant, J. Photochem. Photobiol. A:Chem.,2004,163,569-580.
    [128]. Sakthivel, S.; Geissen, S-U.; Bahnemann, D. W.; Murugesan, V.; Vogelpohl, A. Enhancement of photocatalytic activity by semiconductor heterojunctions: a-Fe2O3, WO3 and CdS deposited on ZnO, J. Photochem. Photobiol. A:Chem., 2002,148,283-293.
    [129]. Li, G H.; Gray, K. A. The solid-solid interface:explaining the high and unique photocatalytic reactivity of TiO2-based nanocomposite materials, Chem. Phys., 2007,339,173-187.
    [130]. Zachariah, A.; Baiju, K. V.; Shukla, S.; Deepa, K. S.; James, J.; Warrier, K. G K. Synergistic effect in photocatalysis as observed for mixed-phase nanocrystalline titania processed via sol-gel solvent mixing and calcinations, J. Phys. Chem. C,2008,112,11345-11356.
    [131]. Sun, B.; Vorontsov, A. V. Smirniotis, P. G Role of platinum deposited on TiO2 in phenol photocatalytic oxidation, Langmuir,2003,19,3151-3156.
    [132]. Ozawa, T.; Iwasaki, M.; Tada, H.; Akita, T.; Tanaka, K.; Ito, S. Low-temperature synthesis of anatase-brookite composite nanocrystals:the junction effect on photocatalytic activity, J. Colloid. Interf. Sci.,2005,281, 510-513.
    [133]. Ardizzone, S.; Bianchi, C. L.; Cappelletti, G.; Gialanella, S.; Pirola, C.; Ragaini, V. Tailored anatase/brookite nanocrystalline TiO2. The optimal particle features for liquid-and gas-phase photocatalytic reactions, J. Phys. Chem. C,2007,111, 13222-13231.
    [134]. Brahimi, R.; Bessekhouad, Y.; Bouguelia, A.; Trari, M. Improvement of eosin visible light degradation using PdS-sensititized TiO2, J. Photochem. Photobiol. A: Chem.,2008,194,173-180.
    [135]. Zhou, W. J.; Yin, Z. Y.; Du, Y. P.; Huang, X.; Zeng, Z. Y.; Fan, Z. X.; Liu, H.; Wang, J. Y.; Zhang, H. Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities, small,2013,9, 140-147.
    [136]. Wang, C.; Wang, X. M.; Xu, B. Q.; Zhao, J. C.; Mai, B. X.; Peng, P. A.; Sheng, G Y.; Fu, J. M. Enahnced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation, J. Photochem. Photobiol. A:Chem.,2004,168,47-52.
    [137]. Lin, X. P.; Xing, J. C.; Wang, W. D.; Shan, Z. C.; Xu, F. F.; Huang, F. Q. Photocatalytic activities of heterojunction semiconductors Bi2O3/BaTiO3:a strategy for the design of efficient combined photocatalysts, J. Phys. Chem. C, 2007,111,18288-18293.
    [138]. Cui, Y. M.; Sun, W. Z. Degradation of BPB in photocatalysis enhanced by photosensitizer, Rare Metals,2006,25,138-143.
    [139]. Xia, H. L.; Zhuang, H. S.; Zhang, T.; Xiao, D. C. Photocatalytic degradation of acid blue 62 over CuO-SnO2 nanocomposite photocatalyst under simulated sunlight,J. Environ. Sci.,2007,19,1141-1145.
    [140]. Hu, X. X.; Hu, C.; Qu, J. H. Photocatalytic decomposition of acetaldehyde and Escherichia coli using NiO/SrBi2O4 under visible light irradiation, Appl. Catal B: Environ.,2006,69,17-23.
    [141]. Li, D.; Haneda, H. Photocatalysis of sprayed nitrogen-containing Fe2O3-ZnO and W03-ZnO composite powders in gas-phase acetaldehyde decomposition, J. Photochem. Photobiol. A:Chem.,2003,160,203-212.
    [142]. Jiang, B. J.; Tian, C. G.; Zhou, W.; Wang, J. Q.; Xie, Y.; Pan, Q. J.; Ren, Z. Y.; Dong, Y. Z.; Fu, D.; Han, J. L.; Fu, H. G. In situ growth of TiO2 in interlayers of expanded graphite for the fabrication of TiO2-graphene with enhance photocatalytic activity, Chem.-Eur. J.,2011,17,8379-8387.
    [143]. Wang, Y. J.; Wang, Z. X.; Muhammad, S.; He, J. Graphite-like C3N4 hybridized ZnWO4 nanorods:synthesis and its enhanced photocatalysis in visible light, CrystEngComm,2012,14,5065-5070.
    [144]. Zong, X.; Yan, H. J.; Wu, G P.; Ma, G J.; Wen, F. Y; Wang, L.; Li, C. Enhancement of photocatalytic H2 evolution of CdS by loading MoS2 as cocatalyst under visible light irradiation, J. Am. Chem. Soc.,2008,130, 7176-7177.
    [145]. Niu, M.; Huang, F.; Cui, L. F.; Huang, P.; Yu, Y. L.; Wang, Y. S. Hydrothermal synthesis structural characteristics, and enhanced photocatalysis of SnO2/α-Fe2O3 semiconductor nanoheterostructures, ACS Nano,2010,4,681-688.
    [146]. Li, Q. Y; Kako, T.; Hua, J. H. PdS/CdS nanocrystal-sensitized titanate network films:enhanced photocatalytic activities and super-amphiphilicity, J. Mater. Chem.,2010,20,10187-10192.
    [147]. Ge, L.; Han, C. C.; Liu, J. Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange, Appl. Catal. B:Environ.,2011,108-109,100-107.
    [148]. Li, C. J.; Zhang, P.; Lv, R.; Lu, J. W.; Wang, T.; Wang, S. P.; Wang, H. F.; Gong, J. L. Selective deposition of Ag3PO4 on monoclinic BiVO4 (040) for highly efficient photocatalysis, small,2013,9,3951-3956.
    [149]. Yang, M.-Q.; Weng, B.; Xu, Y.-J. Improving the visible light photoactivity of In2S3-graphene nanocomposite via a simple surface charge modification approach, Langmuir,2013,29,10549-10588.
    [150]. Zhang, J. Xu, Q.; Feng, Z. C.; Li, M. J.; Li, C. Importance of the relationship between surface phases and photocatalytic activity of TiO2, Angew. Chem. Int. Ed., 2008,47,1766-1769.
    [151]. Li, G.; Gray, K. A. The solid-solid interface:explaining the high and unique photocatalytic reactivity of TiO2-based nanocomposite materials, Chem. Phys., 2007,339,173-187.
    [152]. Long, M. C.; Cai, W. M. Photocatalytic and photoelectrochemical properties of p-n heterojunction composites, Catello G K. Handbook of photocatalysts: preparation, structure and applications, New York, Nova Publisher,2009.
    [1]. Hohenberg, P. C.;Kohn, W. Inhomogneneous electron gas, Phys. Rev. B,1964,136, 864-871.
    [2]. Kohn, W.; Sham, L. J. Quantum density oscillations in an inhomogneneous electron gas, Phys. Rev. A,1965,137,1697-1705.
    [3]. Cances, E.; Garcia-Cervera, J. C.; Wang, Y. A. Density function theory: fundamentals and applications in condensed matter theory, North Holland,1985.
    [4]. Sham, L. Density function theory and computational materials physics, Kluwer Academic Publishers,1996.
    [5]. Yang, W. Direct calculation of electron density in density-functional theory, Phys. Rev. Lett.,1991,66,1438-1441.
    [6]. Beck, A. D. Density functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A,1988,38,3098-3100.
    [7]. Segall, M. D.; Lindan, P. J. D.; Probert, M. J. First-principles simulation:ideas illustrations and the CASTEP code, J. Phys.:Condens. Matter,2002,14,717-743.
    [1]. Linsebigle, A. L.; Lu, G. Q.; Yates, J. T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results, Chem. Rev.,1995,95,735-758.
    [2]. Yu, C. L.; Yu, J. C.; Chan, M. Sonochemical fabrication of fluorinated mesoporous titanium dioxide microsphers, J. Solid State Chem.,2009,182,1061-1069.
    [3]. Yu, C. L.; Yu, J. C. A simple way to prepare C-N-codoped TiO2 photocatalyst with visible light activity, Catal Lett.,2009,129,462-470.
    [4]. Herrmann, J. M.; Disdier, J.; Pichat, P. Effect of chromium doping on the electrical and catalytic properties of powder titania under UV and visible illumination, Chem. Phys. Lett.,1984,108,618-622.
    [5]. Choi, W.; Termin, A.; Hoffmann, M. R. The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics,J. Phys. Chem.,1994,98,13669-13679.
    [6]. Couselo, N.; Einschlag, F. G.; Candal, R. J.; Jobbagy, M. Tungsten-doped TiO2 vs pure TiO2 photocatalysts:effects on photobleaching kinetics and mechanism, J. Phys. Chem. C,2008,112,1094-1100.
    [7]. Yang, Y.; Wang, H. Y.; Li, X.; Wang, C. Electrospun mesoporous W6+-doped TiO2 thin films for efficient visible-light photocatalysis, Mater. Lett.,2009,63,331-333.
    [8]. Long, R.; Dai, Y.; Huang, B. B. Geometric and electronic properties of Sn-doped TiO2 from first-principles calculations, J. Phys. Chem. C.,2009,113,650-653.
    [9]. Long, R.; Dai, Y.; Huang, B. B. Sun X. Q. First-principles study of heavily B-doped silicon, Comput. Mater. Sci.,2008,42,161-167.
    [10]. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides, Science,2001,293,269-271.
    [11]. Irie, H.; Watanabe, Y.; Hashimoto, K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders, J. Phys. Chem. B,2003,107, 5483-5486.
    [12]. Umebayashi, T.; Yamaki, Y.; Itoh, H.; Asai, K. Band gap narrowing of titanium dioxide by sulfur doping, Appl. Phys. Lett.,2002,81,454.
    [13]. Chen, D. M.; Yang, D.; Wang, Q.; Jiang, Z. Y. Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles, Ind. Eng. Chem. Res.,2006,45,4110-4116.
    [14]. Sakthivel. S.; Kisch, H. Daylight photocatalysis by carbon-modified titanium dioxide, Angew. Chem., Int. Ed.,2003,42,4908-4911.
    [15]. Zhao, X.; Zhu, Y. F. Synergetic degradation of rhodamine B at a porous ZnWO4 film electrode by combined electro-oxidation and photocatalysis, Environ. Sci. Technol.,2006,40,3367-3372.
    [16]. Lin, J.; Lin, J.; Zhu, Y. F. Controlled synthesis of the ZnWO4 nanostructure and effects on the photocatalytic performance, Inorg. Chem.,2007,46,8372-8378.
    [17]. Fu, H. B.; Lin, J.; Zhang, L. W.; Zhu, Y. F. Photocatalytic activities of a novel ZnWO4 catalyst prepared by a hydrothermal process, Appl. Catal. A,2006,306, 58-67.
    [18]. Huang, G. L.; Zhu, Y. F. Enhanced photocatalytic activity of ZnWO4 catalyst via fluorine doping,J. Phys. Chem. C,2007,111,11952-11958.
    [19]. Huang, G. L.; Zhang, S. C.; Xu, T. G.; Zhu, Y. F. Fluorination of ZnWO4 photocatalyst and influence on the degradation mechanism for 4-chlorophenol, Environ. Sci. Technol.,2008,42,8516-8521.
    [20]. Chen. S. H.; Sun, S. X.; Sun, H. G.; Fan, W. L.; Zhao, X.; Sun, X. Experimental and theoretical studies on the enhanced photocatalytic activity of ZnWO4 nanorods by fluorine doping, J. Phys. Chem. C,2010,114,7680-7688.
    [21]. Sun. H. G.; Fan, W. L.; Li, Y. L.; Cheng, X. F.; Li, P.; Zhao, X. Origin of improved photo-catalytic activity of F-doped ZnWO4:a quantum mechanical study, J. Solid State Chem.,2010,183,3052-3057.
    [22]. Srinivasan, S. S.; Wade, J.; Stefanakos, E. K.; Goswami, Y. Synergistic effects of sulfation and co-doping on the visible light photocatalysis of TiO2, J. Alloy. Compd.,2006,424,322-326.
    [23]. Cong, Y.; Zhang, J. L.; Chen. F.; Anpo. M.; He. D. N. Preparation, photocatalytic activity, and mechanism of nano-TiO2 codoped with nitrogen and iron (III), J. Phys. Chem. C,2007,111,10618-10623.
    [24]. Mi, L.; Xu, P.; Shen, H.; Wang, P. N.; Shen, W. D. First-principles calculation of N:H codoping effect on energy gap narrowing of TiO2, Appl. Phys. Lett.,2007,90, 171909.
    [25]. In, S.; Orlov, A.; Berg, R.; Garcia, F.; Pedrosa-Jimenez, S.; Tikhov, M. S.; Wright, D. S.; Lambert, R. M. Effective visible light-activated B-doped and B, N-codoped TiO2 photocatalysts, J. Am. Chem. Soc.2007,129,13790-13791.
    [26]. Gombac, V.; De Rogatis, L.; Gasparotto, A.; Vicario, G.; Montini, T.; Barreca, D.; Balducci, G; Fornasiero, P.; Tondello, E.; Graziani, M. TiO2 nanopowders doped with boron and nitrogen for photocatalytic applications, Chem. Phys.,2007,339, 111-123.
    [27]. Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Visible-light-driven N-F-codoped TiO2 photocatalysts.1. Synthesis by spray pyrolysis and surface characterization, Chem. Mater.,2005,17,2588-2595.
    [28]. Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Visible-light-driven N-F-codoped TiO2 photocatalysts.2. Optical characterization, photocatalysis, and potential application to air purification, Chem. Mater.,2005,17,2596-2602.
    [29]. Li, D.; Ohashi, N.; Hishita, S.; Kolodiazhnyi, T.; Haneda, H. Origin of visible-light-driven photocatalysis:a comparative study on N/F-doped and N-F-codoped TiO2 powders by means of experimental characterizations and theoretical calculations, J. Solid State Chem.,2005,178,3293-3302.
    [30]. Cong, Y.; Chen, F.; Zhang, J. L.; Anpo, M. Carbon and nitrogen-codoped TiO2 with high visible light photocatalytic activity, Chem. Lett.,2006,35,800-801.
    [31]. Di Valentin, C.; Finazzi, E.; Pacchioni G.; Selloni, A.; Livraghi, S.; Czoska, A. M.; Paganini, M. C.; Giamello, E. Density functional theory and electron paramagnetic resonance study on the effect of N-F codoping of TiO2, Chem. Mater.,2008,20,3706-3714.
    [32]. Di Valentin, C.; Pacchioni, G.; Onishi, H.; Kudo, A. Cr/Sb co-doped TiO2 from first principles calculations, Chem. Phys. Lett.,2009,469,166-171.
    [33]. Long, R.; English, N. J. First-principles calculation of nitrogen-tungsten codoping effects on the band structure of anatase-titania, Appl. Phys. Lett.,2009,94, 132102.
    [34]. Long, R.; English, N. J. Band gap engineering of (N, Ta)-codoped TiO2:a first-principles calculation, Chem. Phys. Lett.,2009,478,175-179.
    [35]. Dvoranova, D.; Brezova, V.; Mazur, M.; Malati, M. A. Investigations of metal-doped titanium dioxide photocatalysts, Appl. Catal. B,2002,37,91-105.
    [36]. Yong, L.; Fu, P. F.; Dai, X. G.; Du, Z. W. Effects of metal ion dopants on TiO2 photocatalysis progress in chemistry, Prog. Chem.2004,16,738.
    [37]. Khan, S. U. M.; Al-shahry, M.; Ingler, W. B. Jr. Efficient photochemical water splitting by a chemically modified n-TiO2, Science,2002,297,2243-2245.
    [38]. Huang, D. G.; Liao, S. J.; Liu, J. M.; Dang, Z.; Petrik, L. Preparation of visible-light responsive N-F-codoped TiO2 photocatalyst by a sol-gel-solvothermal method,J. Photochem. Photobiol. A:Chem.,2006,184,282-288.
    [39]. Muruganandham, M.; Kusumoto, Y. Synthesis of N, C codoped hierarchical porous microsphere ZnS as a visible light-responsive photocatalyst, J. Phys. Chem. C,2009,113,16144-16150.
    [40]. Sun, H. G.; Zhao, X.; Zhang, L.; Fan, W. L. Origin of the enhanced visible photocatalytic activity in (N, C)-codoped ZnS studied from density functional theory,J. Phys. Chem. C,2011,115,2218-2227.
    [41]. Bergman, P.; Ying, G.; Monemar, B.; Holta, P. O. Time-resolved spectroscopy of Zn-and Cd-doped GaN, J. Appl. Phys.,1987,61,4589.
    [42]. Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-principles simulation:ideas, illustrations and the CASTEP code,J.Phys.:Condens. Matter.,2002,14,2717.
    [43]. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces:applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B, 1992,46,6671-6687.
    [44]. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple, Phys. Rev. Lett.,1996,77,3865-3868.
    [45]. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B,1990,41,7892-7895.
    [46]. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations, Phys. Rev. B,1976,13,5188-5192.
    [47]. Lin, J,; Lin, J.; Zhu, Y. F. Controlled synthesis of the ZnWO4 nanostructure and effects on the photocatalytic performance, Inorg. Chem.,2007,46,8372-8378.
    [48]. Martin, R. M. Electronic Structure:Basic Theory and Practical Methods, Cambridge University Press:Cambridge, England,2004.
    [49]. Gai, Y. Q.; Li, J. B.; Li, S. S.; Xia, J. B.; Wei, S. H. Design of narrow-gap TiO2:a passivated codoping approach for enhanced photoelectrochemical activity, Phys. Rev. Lett.,2009,102,036402.
    [1]. Fujishima, A.; Honda, K. Elelctrochemical photolysis of water at a semiconductor electrode, Nature,1972,238,37-38.
    [2]. Linsebiger, A. L.; Lu, G. Q.; Yates, J. T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results, Chem. Rev.,1995,95,735-758.
    [3]. Herrmann, J. M.; Disdier, J.; Pichat, P. Effect of chromium doping on the electrical and catalytic properties of powder titania under UV and visible illumination, Chem. Phys. Lett.,1984,108,618-617.
    [4]. Choi, W.; Termin, A.; Hoffmann, M. R. The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics,J. Phys. Chem.,1994,98,13669-13679.
    [5]. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides, Science,2001,293,269-271.
    [6]. Umebayashi, T.; Yamaki, Y.; Itoh, H.; Asai, K. Band gap narrowing of titanium dioxide by sulfur doping, Appl. Phys. Lett.,2002,81,454-456.
    [7]. Sakthivel, S.; Kisch, H. Daylight photocatalysis by carbon-modified titanium dioxide, Angew. Chem., Int. Ed.,2003,42,4908-4911.
    [8]. (a) Irie, H.; Watanabel, Y; Hashimoto, K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders, J. Phys. Chem. B,2003107, 5483-85486. (b) Irie, H.; Watanabe, Y.; Hashimoto, K. Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst, Chem. Lett.,2003,32,772-773.
    [9]. Gole, J. L.; Stout, J. D.; Burda, C.; Lou, Y. B.; Chen, X. B. Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale, J. Phys. Chem. B,2004,108,1230-1240.
    [10]. Chen, D. M.; Yang, D.; Wang, Q.; Jiang, Z. Y Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles, Ind. Eng. Chem. Res.,2006,45,4110-4116.
    [11]. Couselo, N.; Garcia, F. G.; Candal, R. J.; Jobbagy, M. J. Tungsten-doped TiO2 vs pure TiO2 photocatalysts:effects on photobleaching kinetics and mechanism, J. Phys. Chem. C,2008,112,1094-1100.
    [12]. (a) Long, R.; Dai, Y.; Huang, B. B.; Sun, X. Q. First-principles study of heavily B-doped silicon, Comput. Mater. Sci.,2008,42,161-167. (b) Long, R.; Dai, Y.; Huang, B. B. Geometric and electronic properties of Sn-doped TiO2 from first-principles calculations, J. Phys. Chem. C,2009,113, 650-653.
    [13]. Yang, Y.; Wang, H. Y.; Li, X.; Wang, C. Electrospum mesoporous W6+-doped TiO2 thin films for efficient visible-light photocatalysis, Mater. Lett.,2009,63,331-333.
    [14]. Mrowetz, M.; Balcerski, W.; Colussi, A. J.; Hoffmann, M. R. Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination, J. Phys. Chem. B, 2004,108,17269-17273.
    [15]. Tachikawa, T.; Takai, Y.; Tojo, S.; Fujitsuka, M.; Irie, H.; Hashimoto, K.; Majima, T. Visible light-induced degradation of ethylene glycol on nitrogen-doped TiO2 powders,J. Phys. Chem. B,2006,110,13158-13165.
    [16]. Beranek, R.; Neumann, B.; Sakthivel, S.; Janczarek, M.; Dittrich, T.; Tributsch, H.; Kisch, H. Exploring the electronic structure of nitrogen-modified TiO2 photocatalysts through photocurrent and surface photovoltage stucies, Chem. Phys.,2007,339,11-19.
    [17]. (a) Long, R.; English, N. J. First-principles calculation of nitrogen-tungsten codoping effects on the band structure of anatase-titania, Appl. Phys. Lett.,2009, 94,132102. (b) Long, R.; English, N. J. Band gap engineering of (N, Ta)-codoped TiO2:a first-principles calculation, Chem. Phys. Lett.,2009,478,175-179.
    [18]. Gai, Y Q.; Li, J. B.; Li, S. S.; Xia, J. B.; Wei, S. H. Design of narrow-gap TiO2:a passovated codoping approach for enhanced photoelectrochemical activity, Phys. Rev. Lett.,2009,102,036402.
    [19]. (a) Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Visible-light-driven N-F-codoped TiO2 photocatalysts.1. Synthesis by spray pyrolysis and surface characterization, Chem. Mater.,2005,17,2588-2595. (b) Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Visible-light-driven N-F-codoped TiO2 photocatalysts.2. Optical characterization, photocatalysis, and potential application to air purification, Chem. Mater.,2005,17,2596-2602. (c) Li, D.; Ohashi, N.; Hishita, S.; Kolodiazhnyi, T.; Haneda, H. Origin of visible-light-driven photocatalysis:a comparative study on N/F-doped and N-F-codoped TiO2 powders by means of experimental characterizations and theoretical calculations, J. Solid State Chem.,2005,178,3293-3302.
    [20]. Cong, Y.; Chen, F.; Zhang, J. L.; Anpo, M. Carbon and nitrogen-codoped TiO2 with high visible light photocatalytic activity, Chem. Lett.,2006,35,800-801.
    [21]. Mi, L.; Xu, P.; Shen, H.; Wang, P. N.; Shen, W. D. First-princples calculation of N:H codoping effect on energy gap narrowing of TiO2, Appl. Phys. Lett.,2007,90, 171909.
    [22]. In, S.; Orlov, A.; Berg, R.; Garcia, F.; Pedrosa-Jimenez, S.; Tikhov, M. S.; Wright, D. S.; Lambert, R. M. Effective visible light-activated B-doped and B, N-codoped TiO2 photocatalysts,J. Am. Chem. Soc.,2007,129,13790-13791.
    [23]. Di Valentin, C.; Finazzi, E.; Pacchioni, G.; Selloni, A.; Livraghi, S.; Czoska, A. M.; Paganini, M. C.; Giamello, E. Density functional theory and electron paramagnetic resonance study on the effect of N-F codoping of TiO2, Chem. Mater.,2008,20,3706-3714.
    [24]. Sun, H. G.; Zhao, X.; Zhang, L.; Fan, W. L. Origin of the enhanced visible photocatalytic activity in (N, C)-codoped ZnS studied from density functional theory, J. Phys. Chem. C,2011,115,2218-2227.
    [25]. Sun, L. M.; Zhao, X.; Cheng, X. F.; Sun, H. G.; Li, Y. L.; Li, P.; Fan, W. L. Evaluating the C, N, and F pairwise codoping effect on the enhanced photoactivity of ZnWO4:the charge compensation mechanism in donor-acceptor pairs, J. Phys. Chem. C,2011,115,15516-15524.
    [26]. Bergman, P.; Ying, G.; Monemar, B.; Holta, P. O. Time-resolved spectroscopy of Zn-and Cd-doped GaN, J. Appl. Phys.,1987,61,4589-4592.
    [27]. Huang, G L.; Zhu, Y. F. Enhanced photocatalytic activity of ZnWO4 catalyst via fluorine doping,J.Phys. Chem. C,2007,111,11952-11958.
    [28]. (a) Chen, S. H.; Sun, S. X.; Sun, H. G.; Fan, W. L.; Zhao, X.; Sun, X. Experimental and theoretical studies on the enhanced photocatalytic activity of ZnWO4 nanorods by fluorine doping, J. Phys. Chem. C,2010,114,7680-7688. (b) Li, P.; Zhao, X.; Li, Y. L.; Sun, H. G; Sun, L. M.; Cheng, X. F.; Hao, X. P.; Fan, W. L. Effects of surface chemistry on the morphology transformation of ZnWO4 nanocrystals:investigated from experiment and theoretical calculations, CrystEngComm,2012,14,920-928.
    [29]. Zhao, X.; Zhu, Y. F. Synergetic degradation of phodamine B at a porous ZnWO4 film electrode by combined electro-oxidation and photocatalysis, Environ. Sci. Technol.,2006,40,3367-3372.
    [30]. Lin, J.; Lin, J.; Zhu, Y. F. Controlled synthesis of the ZnWO4 nanostructure and effects on the photocatalytic performance, Inorg. Chem.,2007,46,8372-8378.
    [31]. Lin, S.; Chen, J. B.; Wen, X. L.; Yang, L. Y.; Chen, X. Q. Fabrication and photocatalysis of mesoporous ZnW04 with PAMAM as a template, Mater. Res. Bull.,2009,44,1102-1105.
    [32]. Huang, G L.; Zhang, S. C.; Xu, T. G.; Zhu, Y. F. Fluorination of ZnWO4 photocatalyst and influence on the degradation mechanism for 4-chlorophenol, Environ. Sci. Technol.,2008,42,8516-8521.
    [33]. Sun, H. G.; Fan, W. L.; Li, Y. L.; Cheng, X. F.; Li, P.; Zhao, X. Origin of the improved photo-catalytic activity of F-doped ZnWO4; a quantum mechanical study, J. Solid State Chem.,2010,183,3052-3057.
    [34]. (a) Wu, G S.; Wen, J. L.; Nigro, S.; Chen, A. C. One-step synthesis of N-and F-codoped mesoporous TiO2 photocatalysts with high visible light activity, Nanotechnology,2010,21,085701. (b) Wu, Y. M.; Xing, M. Y; Tian, B. Z.; Zhang, J. L.; Chen, F. Preparation of nitrogen and fluorine co-doped mesoporous TiO2 microsphere and photodegradation of acid orange 7 under visible light, Chem. Eng. J.,2010,162, 710-717. (c) Xu, J.; Yang, B. F.; Wu, M.; Fu, Z. P.; Lv, Y.; Zhao, Y X. Novel N-F-codoped TiO2 inverse opal with a hierarchical meso-/macroporous structure:synthesis, characterization, and photocatalysis, J. Phys. Chem. C,2010,114,15251-15259. (d) Li, X. H.; Zhang, H. D.; Zheng, X. X.; Yin, Z. Y.; Wei, L. Visible light responsive N-F-codoped TiO2 photocatalysts for the degradation of 4-chlorophenol, J. Environ. Sci.-China,2011,23,1919-1924. (e) Hojamberdiev, M.; Zhu, G. Q.; Sujaridworakun, P.; Jinawath, S.; Liu, P.; Zhou, J. P. Visible-light-driven N-F-codoped TiO2 powders derived from different ammonium oxofluorotitanate precursors, Powder Technol.,2012,218,140-148.
    [35]. Segall, M. D,; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-principles simulation:ideas, illustrations and the CASTEP code, J. Phys.:Condens. Matter,2002,14,2717-2744.
    [36]. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces:applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B, 1992,46,6671-6687.
    [37]. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple, Phys. Rev. Lett.,1996,77,3865-3868.
    [38]. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B,1990,41,7892-7895.
    [39]. Monkhorst, H. J.; Pack, J. Special points for brillouin-zone integrations, Phys. Rev. B,1976,13,5188-5192.
    [40]. Martin, R. M. Electronic structure:basic theory and practical methods, Cambridge University Press:Cambridge, England,2004.
    [1]. O'Regan, B.; Gratzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991,353,737-740.
    [2]. Linsebigler, A. L.; Lu, G.; Yates, J. T., Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results, Chem. Rev.,1995,95,735-758.
    [3]. Hadjiivanov, K. I.; Klissurski, D. G., Surface chemistry of titania (anatase) and titania-supported catalysts, Chem. Soc. Rev.,1996,25,61-69.
    [4]. Xing, M. Y.; Zhang, J. L.; Chen, F.; Tian, B. Z. An economic method to prepare vacuum activated photocatalysts with high photo-activities and photosensitivities, Chem. Commum.,2011,47,4947-4949.
    [5]. Sato, S. Photocatalytic activity of NOx-doped TiO2 in the visible light region, Chem. Phys. Lett.,1986,123,126-128.
    [6]. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides, Science,2001,293,269-271.
    [7]. Irie, H.; Watanabe, Y.; Hashimoto, K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders, J. phys. Chem. B,2003,107, 5483-5486.
    [8]. Park, J. H.; Kim, S.; Bard, A. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting, J. Nano Lett.,2006,6,24-28.
    [9]. Cong, Y; Xiao, L.; Zhang, J. L.; Chen, F.; Anpo, M. Preparation and characterization of nitrogen-doped TiO2 photocatalyst in different acid environments, Res. Chem. Intermed.,2006,32,717-724.
    [10]. Ho, W. K.; Yu, J. C.; Lee, S. Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity, Chem. Commum.,2006,10, 1115-1117.
    [11]. Cong, Y.; Zhang, J. L.; Chen, F.; Anpo, M. Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity, J. Phys. Chem. C,2007,111,6976-6982.
    [12]. Li, H. X.; Zhang, X. Y.; Huo, Y N.; Zhu, J. Supercritical preparation of a highly active S-doped TiO2 photocatalyst for methylene blue mineralization, Environ. Sci. Technol.,2007,41,4410-4414.
    [13]. Emeline, A.; Kuznetsov, V.; Rybchuk, V.; Serpone, N. Visible-light-active titania photocatalysts:the case of N-doped TiO2s-properties and some fundamental issues, Int. J. Photoenergy,2008,2008,258394-1-19.
    [14]. Xing, M. Y.; Li, W. K.; Wu, Y. M.; Zhang, J. L.; Gong, X. Q. Formation of new structures and their synergistic effects in boron and nitrogen codoped TiO2 for enhancement of photocatalytic performance, J. Phys. Chem. C,2011,115, 7858-7865.
    [15]. Hong, A. P.; Bahnemann, D. W.; Hoffmann, M. R. Cobalt(II) tetrasulfophthalocyanine on titanium-dioxide-a new efficient electron relay for the photocatalytic formation and depletion of hydrogen-peroxide in aqueous suspensions, J. Phys. Chem.,1987,91,2109-2117.
    [16]. Mao, Y.; Schoneich, C.; Asmus, K. D. Identification of organic acids and other intermediates in oxidative degradation of chlorinated ethanes on titania surfaces en route to mineralization:a combined photocatalytic and radiation chemical study, J. Phys. Chem.,1991,95,10080-10089.
    [17]. Ranjit, K. T.; Willner, I.; Bossmann, S. H.; Braun, A. M. Lanthanide oxide-doped titanium dioxide photocatalysts:novel photocatalysts for the enhanced degradation of p-chlorophenoxyacetic acid, Environ. Sci. Technol,2001,35,1544-1549.
    [18]. Peng, T. Y.; Zhao, D.; Song, H. B.; Yan, C. H. Preparation of lanthana-doped titania nanoparticles with anatase mesoporous walls and high photocatalytic activity, J. Mol. Catal. A,2005,238,119-126.
    [19]. Choi, W.; Termin, A.; Hoffmann M. R. The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics,J. Phys. Chem.,1994,98,13669-13679.
    [20]. Ma, Y. F.; Zhang, J. L.; Tian, B. Z.; Chen, F.; Wang, L. Z. Synthesis and characterization of thermally stable Sm, N co-doped TiO2 with highly visible light activity,J. Hazard. Mater,2010,182,386-393.
    [21]. Cong, Y.; Tian, B. Z.; Zhang, J. L. Improving the thermal stability and photocatalytic activity of nanosized titanium dioxide via La3+ and N co-doping, Appl Catal. B:Environ.,2011,101,376-381.
    [22]. Zhang, X. T.; Zhou, G. W.; Zhang, H. Y; Wu, C. C.; Song, H. B. Characterization and activity of visible light-driven TiO2 photocatalysts co-doped with nitrogen and lanthanum, Transition Met. Chem.,2011,36,217-222.
    [23]. Xu, A. W.; Gao, Y.; Liu, H. Q. The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles,J.Catal.,2002, 207,151-157.
    [24]. Choi, J.; Park, H.; Hoffmann, M. R. Effects of sigle metal-ion doping on the visible-light photoreactivity of TiO2, J. Phys. Chem. C,2010,114,783-792.
    [25]. Parida, K. M.; Sahu, N. Visible light induced photocatalytic activity of rare earth titania nanocomposites, J. Mol. Catal. A:Chem.,2008,287,151-158.
    [26]. Stengl, V.; Bakardjieva, S.; Murafa, N. Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles, Mater. Chem. Phys.,2009,114,217-226.
    [27]. K Hashimoto, K.; Irie, H.; Fujishima, A. TiO2 photocatalysis:a historical overview and future prospects, Jpn. J. Appl. Phys.,2005,44,8269-8285.
    [28]. Lazzeri, M.; Vittadini, A.; Selloni, A. Structure and energetics of stoichiometric TiO2 anatase surfaces, Phys. Rev. B,2001,63,155409.
    [29]. Segall, M.; Lindan, P.; Probert, M.; Pickard, C.; Hasnip, P.; Clark, S.; Payne, M. First-principles simulation:ideas, illustrations and the CASTEP code, J. Phys.: Condens. Matter,2002,14,2717-2744.
    [30]. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces:applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B, 1992,46,6671-6687.
    [31]. Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B,1992,45,13244-13249.
    [32]. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B,1990,41,7892-7895.
    [33]. Cheng, H. Z.; Selloni, A. Surface and subsurface oxygen vacancies in anatase TiO2 and differences with rutile, Phys. Rev. B,2009,79,092101.
    [34]. Monkhorst, H. J.; Pack, J. Special point for Brillouin-zone integrations, Phys. Rev. B,1976,13,5188-5192.
    [35]. Ortega, Y.; Hernandez, N. C.; Menendez-Proupin, E.; Graciani, J.; Sanz, J. F. Nitrogen/gold codoping of the TiO2 (101) anatase surface. A theoretical study based on DFT calculations, Phys. Chem. Chem. Phys.,2011,13,11340-11350.
    [36]. Finazzi, E.; Di Valentin, C.; Selloni, A.; Pacchioni, G. First principles study of nitrogen doping at the anatase TiO2 (101) surface, J. Phys. Chem. C,2007,111, 9275-9282.
    [37]. Burdett, J. K.; Hughbanks, T.; Miller Jr., G. J.; Richardson, J. W.; Smith, J. V. Structural-electronic relationships in inorganic solid:powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295K,J. Am. Chem. Soc.,1987,109,3639-3646.
    [38]. Ranjit, K. T.; Willner, I.; Bossmann, S. H.; Braun, A. M. Lanthanide oxide-doped titanium bioxide photocatalysts:novel photocatalysts for the enhanced degradation of p-chlorophenoxyacetic acid, Environ. Sci. Technol.,2001,35,1544-1549.
    [39]. Ganduglia-Pirovano, M.; Hofmann, A.; Sauer, J. Oxygen vacancies in transition metal and rare earth oxides:current state of understanding and remaining challenges, Surf. Sci, Rep.,2007,62,219-270.
    [40]. Muscat, J.; Wander, A.; Harrison, N. M. On the prediction of band gaps from hybrid functional theory, Chem. Phys. Lett.,2001,342,397-401.
    [41]. Di Valentin, C.; Pacchioni, G; Selloni, A. Electronic structure of defect states in hydroxylated and reduced rutile TiO2 (110) Surfaces, Phys. Rev. Lett.,2006,97, 166803.
    [42]. Calzado, C. J.; Hernandez, N. C.; Sanz, J. F. Effect of on-site coulomb repulsion term U on the band-gap states of the reduced rutile (110) TiO2 surface, Phys. Rev. B,2008,77,045118.
    [43]. Di Valentin, C.; Finazzi, E.; Pacchioni, G.; Selloni, A.; Livraghi, S.; Paganini, M. C.; Giamello, E. N-doped TiO2:theory and experiment, Chem. Phys.,2007,339, 44-56.
    [44]. Finazzi, E.; Di Valentin, C.; Selloni, A.; Pacchioni, G First principles study of nitrogen doping at the anatase TiO2 (101) surface, J. Phys. Chem. C,2007,111, 9275-9282.
    [1]. Fujishima, A.; Honda,K. Electrochemical photolysis of water at a semiconductor electrode, Nature,1972,238,37-38.
    [2]. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis, Chem. Rev.,1995,95,69-96.
    [3]. Papp, J.; Soled, S.; Dwight, K.; Wold, A. Surface acidity and photocatalytic activity of TiO2,WO3/TiO2, and MoO3/TiO2 photocatalysts, Chem. Mater.,1994,6, 496-500.
    [4]. Serpone, N.; Maruthamuthu, P.; Pichat, P.; Pelizzetti, E.; Hidaka, H. Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlor ophenol:chemical evidence for electron and hole transfer between coupled semiconductors, J. Photochem. Photobiol. A:Chem.,1995, 85,247-255.
    [5]. Sadeghi, M.; Liu, W.; Zhang, T. G.; Stavropoulos, P.; Levy, B. Role of photoinduced charge carrier separation distance in heterogeneous photocatalysis:oxidative degradation of CH3OH vapor in contact with Pt/TiO2 and cofumed TiO2-Fe2O3, J. Phys. Chem.,1996,100,19466-19474.
    [6]. Shiyanovskaya, I.; Hepel, M. Decrease of recombination losses in bicomponent WO3/TiO2 filems photosensitized with cresyl violet and thionine, J. Electrochem. Soc.,1998,145,3981-3985.
    [7]. Yu, J. C.; Lin, J.; Kwok, R. W. M. Ti1-xZrxO2 solid solutions for the photocatalytic degradation of acetone in air, J. Phys. Chem. B,1998,102,5094-5098.
    [8]. Vidal, H.; Kaspar, J.; Pijolat, M.; Colon, G.; Bernal, S.; Cordon, A.; Perrichon, V.; Fally, F. Redox behavior of CeO2-ZrO2 mixed oxides:II. Influence of redox treatments on low surface area catalysts, Appl. Catal. B:Environ.,2001,30,75-85.
    [9]. Georgieva, J.; Armyanov, S.; Valova, E.; Poulios, I.; Sotiropoulos, S. Enhanced photocatalytic activity of electrosynthesised tungsten-titanium dioxide bi-layer coating under ultraviolet and visible light illumination, Electrochem. Commun., 2007,9,365-370.
    [10]. Zhang, X.; Zhang, L. Z.; Xie, T. F.; Wang, D. J. Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures, J. Phys. Chem. C,2009,113,7371-7378.
    [11]. Jiang, J.; Zhang, X.; Sun, P. B.; Zhang, L. Z. ZnO/BiOI heterostructures: photoinduced charge-transfer property and enhanced visible-light photocatalytic activity,J. Phys. Chem. C,2011,115,20555-20564.
    [12]. Li, Y. Y.; Wang, J. S.; Yao, H. C.; Dang, L. Y.; Li, Z. J. Chemical etching preparation of BiOI/Bi2O3 heterostructures with enhanced photocatalytic activities, Catal. Commun.,2011,12,660-664.
    [13]. Lin, X. P.; Xing, J. C.; Wang, W. D.; Shan, Z. C.; Xu, F. F.; Huang, F. Q. Photocatalytic activities of heterojunction semiconductors Bi2O3/BaTiO3:a strategy for the design of efficient combined photocatalysts, J. Phys. Chem. C, 2007,111,18288-18293.
    [14]. Wen, Y. Y.; Ding, H. M.; Shan, Y. K. Preparation and visible light photocatalytic activity of Ag/TiO2/graphene nanocomposite, Nanoscale,2011,3,4411-4417.
    [15]. Yan, S. C.; Lv, S. B.; Li, Z. S.; Zou, Z. G. Organic-inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities, Dalton Trans.,2010,39,1488-1491.
    [16]. Ge, L.; Han, C. C.; Liu, J. Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange, Appl. Catal. B.Environ., 2011,108-109,100-107.
    [17]. Wang, Y J.; Shi, R.; Lin, J.; Zhu, Y F. Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4, Energy Environ. Sci.,2011,4,2922-2929.
    [18]. Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Muller, J.-O.; Schlogl, R.; Carisson, J. M. Graphitic carbon nitride materials:variation of structure and morphology and their use as metal-free catalysts, J. Mater. Chem.,2008,18, 4893-4908.
    [19]. Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater.,2009,8,76-80.
    [20]. Takanabe, K.; Kamata, K.; Wang, X. C.; Antonietti, M.; Kubota, J.; Domen, K. Photocatalytic hydrogen evolution on dye-sensitized mesoporous carbon nitride photocatalyst with magnesium phthalocyanine, Phys. Chem. Chem. Phys.,2010, 12,13020-13025.
    [21]. Maeda, K.; Wang, X. C.; Nishihara, Y.; Lu, D.; Antonietti, M.; Domen, K. Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light, J. Phys. Chem. C,2009,113,4940-4947.
    [22]. Wang, X. C.; Maeda, K.; Chen, X. F.; Takanabe, K.; Domen, K.; Hou, Y. D.; Fu, X. Z.; Antonietti, M. Polymer semiconductors for artificial photosynthesis:hydrogen evolution by mesoporous graphitic carbon nitride with visible light, J. Am. Chem. Soc.,2009,131,1680-1681.
    [23]. Ding, Z. X.; Chen, X. F.; Antonietti, M.; Wang, X. C. Synthesis of transition metal-modified carbon nitride polymers for selective hydrocarbon oxidation, ChemSusChem,2011,4,274-281.
    [24]. Di, Y.; Wang, X. C.; Thomas, A.; Antonietti, M. Making metal-carbon nitride heterojunction for improved photocatalytic hydrogen evolution with visible ligh, ChemCatChem,2010,2,834-838.
    [25]. Yan, S. C.; Li, Z. S.; Zou, Z. F. Photodegradation performance of g-C3N4 fabricated directly heating melamin, Langmuir,2009,25,10397-10401.
    [26]. Yan, S. C.; Li, Z. S.; Zou, Z. G. Photodegradation of Rhodamine B and Methyl Orange over boron-doped g-C3N4 under visible light irradiation, Langmuir,2010, 26,3894-3901.
    [27]. Zhao, X.; Zhu, Y. F. Synergetic degradation of Rhodamine B at a porous ZnWO4 film electrode by combined electro-oxidation and photocatalysis, Environ. Sci. Technol.,2006,40,3367-3372.
    [28]. Lin, J.; Lin, J.; Zhu, Y. F. Controlled synthesis of the ZnWO4 nanostructure and effects on the photocatalytic performance, Inorg. Chem.,2007,46,8372-8378.
    [29]. Fu, H. B.; Lin, J.; Zhang, L. W; Zhu, Y. F. Photocatalytic activities of a novel ZnWO4 catalyst prepared by a hydrothermal process, Appl. Catal. A:Gen.,2006, 306,58-67.
    [30]. Chen, S. H.; Sun, S. X.; Sun, H. G.; Fan, W. L.; Zhao, X.; Sun, X. Experimental and theoretical studies on the enhanced photocatalytic activity of ZnWO4 nanorods by fluorine doping, J. Phys. Chem. C,2010,114,7680-7688.
    [31]. Li, P.; Zhao, X.; Li, Y. L.; Sun, H. G.; Sun, L. M.; Cheng, X. F.; Hao, X. P.; Fan, W. L. Effects of surface chemistry on the morphology transformation of ZnWO4 nanocrystals:investigated from experiment and theoretical calculations, CrystEngComm,2012,14,920-928.
    [32]. Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P.J.; Probert, M. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP, Z. Kristallogr.,2005,220, 567-570.
    [33]. Ceperley, D. M.; Alder, B. J. Ground state of the electron gas by a stochastic method, Phys. Rev. Lett.1980,45,566-569.
    [34]. Rappe, A. M.; Rabe, K. M.; Kaxiras, E.; Joannopoulos, J. D. Optimized pseudopotentials, Phys. Rev. B,1990,41,1227-1230.
    [35]. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations, Phys. Rev. B,1976,13,5188-5192.
    [36]. Schofield, P. F.; Knight, K. S.; Redfern, S. A. T.; Cressey, G Distortion characteristics across the structural phase transition in (Cu1-xZnx)WO4, Acta Cryst. B,1997,53,102-112.
    [37]. Teter, D. M.; Hemley, R. J. Low-compressibility carbon nitrides, Science,1996, 271,53-55.
    [38]. Matsumoto, S.; Xie, E. Q.; Izumi, F. On the validity of the formation of crystalline carbon nitrides, C3N4, Diamond Relat. Mater.,1999,8,1175-1182.
    [39]. Li, X. F.; Zhang, J.; Shen, L. H.; Ma, Y. M.; Lei, W. W.; Cui, Q. L.; Zou, G. T. Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine, Appl. Phys. A:Mater. Sci. Process.,2009,94,387-392.
    [40]. Zhao, Y. C.; Yu, D. L.; Zhou, H. W.; Tian, Y. J.; Yanagisawa, O. Turbostratic carbon nitride prepared by pyrolysis of melamine, J. Mater. Sci.,2005,40, 2645-2647.
    [41]. Liu, L.; Ma, D.; Zheng, H.; Li, X. J.; Cheng, M. J.; Bao. X. H. Synthesis and characterization of microporous carbon nitride, Microporous Mesoporous Mater., 2008,110,216-222.
    [42]. Zhang, H.; Zong, R. L.; Zhu, Y. F. Photocorrosion inhibition and photoacticity enhancement for zinc oxide via hybridization with monolayer polyaniline, J. Phys. Chem. C,2009,113,4605-4611.
    [43]. Atuchin, V. V.; Galashov, E. N.; Khyzhun, O. Y; Kozhukhov, A. S.; Pokrovsky, L. D.; Shlegel, V. N. Structural and electronic properties of ZnWO4 (010) cleaved surface, Cryst. Growth Des.,2011,11,2479-2484.
    [44]. Sun, J. X.; Yuan, Y. P.; Qiu, L. G.; Jiang, X.; Xie, A. J.; Shen, Y. H.; Zhu, J. F. Fabrication of composite photocatalyst g-C3N4-ZnO and enhancement of photocatalytic activity under visible light, Dalton Trans.,2012,41,6756-6763.
    [45]. Khan, S. U. M.; Al-Shahry, M.; Ingler Jr, W. B. Efficient photochemical water splitting by a chemically modified n-TiO2, Science,2002,27,2243-2245.
    [46]. Zhang, L. W.; Wang, Y. J.; Cheng, H. Y.; Yao, W. Q.; Zhu, Y. F. Synthesis of porous Bi2WO6 thin films as efficient visible-light-active photocatalysts, Adv. Mater.,2009,21,1286-1290.
    [47]. Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities, Adv. Funct. Mater.,2012,22, 4763-4770.
    [48]. Wang, W. D.; Serp, P.; Kalck, P.; Luis Faria, J. Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol-gel method, Appl. Catal. B:Environ.,2005,56,305-312.
    [49]. Zhang, H.; Lv, X. J.; Li, Y. M.; Wang, Y.; Li, J. H. P25-graphene composite as a high performance photocatalyst, ACS Nano,2009,4,380-386.
    [50]. Yan, H. J.; Yang, H. X. TiO2-g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation,./. Alloys Compd,2011,509, L26-L29.
    [51]. Du, A. J.; Ng, Y H.; Bell, N. J.; Zhu, Z. H.; Amal, R.; Smith, S. C. Hybrid graphene/titania nanocomposite:interface charge transfer, hole doping, and sensitization for visible light response, J. Phys. Chem. Lett.,2011,2,894-899.
    [1]. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode, Nature,1972,238,37-38.
    [2]. Malato, S.; Blanco, J.; Richter, C.; Maldonado, M. Optimization of pre-industrial solar photocatalytic mineralization of commercial pesticides:application to pesticide container recycling, Appl. Catal, B,2000,25,31-38.
    [3]. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides, Science,2001,293,269-271.
    [4]. Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, Nature,2001, 414,625-627.
    [5]. Khodia, A. A.; Sehili, T.; Pilichowski, J. F.; Boule, P. Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions, J. Photochem. Photobiol., A,2001,141,231-239.
    [6]. Rodriguez, M.; Sarria, V.; Esplugas, S.; Pulgarin, C. Photo-fenton treatment of a biorecalcitrant wastewater generated in textile activities:biodegradability of the photo-treated solution,J. Photochem. Photobiol., A,2002,151,129-135.
    [7]. Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev.,2009,38,253-278.
    [8]. Li, M.; Yu, X. F.; Liang, S.; Peng, X. N.; Yang, Z. J.; Wang, Y. L.; Wang, Q. Q. Synthesis of Au-CdS core-shell hetero-nanorods with efficient exciton-plasmon interactions,Adv. Funct. Mater.,2011,21,1788-1794.
    [9]. Li, T. B.; Chen, G.; Zhou, C.; Shen, Z. Y.; Jin, R. C.; Sun, J. X. New photocatalyst BiOCl/BiOI composites with highly enhanced visible light photocatalytic performances, Dalton Trans.,2011,40,6751-6758.
    [10]. Jiang, J.; Zhang, X.; Sun, P. B.; Zhang, L. Z. ZnO/BiOI heterostructures: photoinduced charge-transfer property and enhanced visible-light photocatalytic activity, J. Phys. Chem. C,2011,115,20555-20564.
    [11]. Wen, Y. Y.; Ding, H. M.; Shan, Y. K. Preparation and visible light photocatalytic activity of Ag/TiO2/graphene nanocomposite, Nanoscale,2011,3,4411-4417.
    [12]. An, X. Q.; Yu, J. C.; Wang, Y; Hu, Y. M.; Yu, X. L.; Zhang, G J. WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing, J. Mater. Chem.,2012,22,8525-8529.
    [13]. Reddy, K. H.; Martha, S.; Parida, K. M. Fabrication of novel p-BiOI/n-ZnTiO3 heterojunction for degradation of Rhodamine 6G under visible light irradiation, Inorg. Chem.,2013,52,6390-6401.
    [14]. Wang, J. X.; Wang, P. X.; Cao, Y. T.; Chen, J.; Li, W. J.; Shao, Y.; Zheng, Y.; Li, D. Z. A high efficient photocatalyst AgsVO4/TiO2/graphene nanocomposite with wide spectral response, Appl. Catal, B,2013,136-137,94-102.
    [15]. Guo, J. J.; Ouyang, S. X.; Li, P.; Zhang, Y J.; Kako, T.; Ye, J. H. A new heterojunction AgsPO4/Cr-SrTiO3 photocatalyst towards efficient elimination of gaseous organic pollutants under visible light irradiation, Appl. Catal., B,2013, 134-135,286-292.
    [16]. Li, S.-K.; Huang, F.-Z.; Wang, Y.; Shen, Y.-H.; Qiu, L.-G.; Xie, A.-J.; Xu, S.-J. Magnetic Fe3O4@C@Cu2O composite with bean-like core/shell nanostructures: synthesis, properties and application in recyclable photocatalytic degradation of dye pollutants,J. Mater. Chem.,2011,21,7459-7466.
    [17]. Zhang, J.; Li, L. P.; Huang, X. S.; Li, G. S. Fabrication of Ag-CeO2 core-shell nanospheres with enhanced catalytic performance due to strengthening of the interfacial interactions, J. Mater. Chem.,2012,22,10480-10487.
    [18]. Pan, C. S.; Xu, J.; Wang, Y J.; Li, D.; Zhu, Y F. Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly, Adv. Funct. Mater.,2012,22,1518-1524.
    [19]. Cushing, S. K.; Li, J. T.; Meng, F.; Senty, T. R.; Suri, S.; Zhi, M. J.; Li, M.; Bristow, A. D.; Wu, N. Q. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor, J. Am. Chem. Soc.,2012,134, 15033-15041.
    [20]. Li, J. T.; Cushing, S. K.; Bright, J.; Meng, F.; Senty, T. R.; Zheng, P.; Bristow, A. D.; Wu, N. Q. Ag@Cu2O core-shell nanoparticles as visible-light plasmonic photocatalysts, ACS Catal.,2013,3,47-51.
    [21]. Lopez-Lopez, J. M.; Schmitt, A.; Moncho-Jorda, A.; Hidalgo-Alvarea, R. Stability of binary colloids:kinetic and structural aspects of heteroaggregation processes, Soft Matter,2006,2,1025-1042.
    [22]. Piechowiak, M. A.; Videcoq, A.; Rossignol, F.; Pagnoux, C.; Carrion, C.; Cerbelaud, M.; Ferrando, R. Oppositely charged model ceramic colloids: numerical predictions and experimental observations by confocal laser scanning microscopy, Langmuir,2010,26,12540-12547.
    [23]. Piechowiak, M. A.; Videcoq, A.; Ferrando, R.; Bochicchio, D.; Pagnoux, C.; Rossignol, F. Aggregation kinetics and gel formation in modestly concentrated suspensions of oppositely charged model ceramic colloids:a numerical study, Phys. Chem. Chem. Phys.,2012,14,1431-1439.
    [24]. Siedl, N.; Baumann, S. O.; Elser, M. J.; Diwald, O. Particle networks from powder mixtures:generation of TiO2-SnO2 heterojunctions via surface charge-induced heteroaggregation, J. Phys. Chem. C,2012,116,22967-22973.
    [25]. Sato, J.; Kobayashi, H.; Ikararashi, K.; Saito, N.; Nishiyama, H.; Inoue, Y. Photocatalytic activity for water decomposition of RuO2-dispersed Zn2GeO4 with d10 configuration, J. Phys. Chem. B,2004,108,4369-4375.
    [26]. Huang, J.; Wang, X. C.; Hou, Y. D.; Chen, X. F.; Wu, L.; Fu, X. Z. Degradation of benzene over a zinc germinate photocatalyst under ambient conditions, Environ. Sci. Technol.,2008,42,7387-7391.
    [27]. Liu, Q.; Zhou, Y.; Kou, J. H.; Chen, X. Y.; Tian, Z. P.; Gao, J.; Yan, S. C.; Zou, Z. G. High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel, J. Am. Chem. Soc,2010,132,14385-14387.
    [28]. Huang, J. H.; Ding, K. N.; Hou, Y. D.; Wang, X. C.; Fu, X. Z. Synthesis and photocatalytic activity of Zn2GeO4 nanorods for degradation of organic pollutants in water, ChemSusChem,2008,1,1011-1019.
    [29]. Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Muller, J.-O.; Schlogl, R.; Carisson, J. M. Graphitic carbon nitride materials:variation of structure and morphology and their use as metal-free catalysts, J. Mater. Chem.,2008,18, 4893-4908.
    [30]. Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater.,2009,8,76-80.
    [31]. Maeda, K.; Wang, X. C.; Nishihara, Y.; Lu, D. L.; Antonietti, A.; Domen, K. Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light, J. Phys. Chem. C,2009,113,4940-4947.
    [32]. Wang, X. C.; Maeda, K.; Chen, X. F.; Takanabe, K.; Domen, K.; Hou, Y D.; Fu, X. Z.; Antonietti, M. Polymer semiconductors for artificial photosynthesis:hydrogen evolution by mesoporous graphitic carbon nitride with visible light, J. Am. Chem. Soc.,2009,131,1680-1681.
    [33]. Takanabe, K.; Kamata, K.; Wang, X. C.; Antonietti, M.; Kubota, J.; Domen, K. Photocatalytic hydrogen evolution on dye-sensitized mesoporous carbon nitride photocatalyst with magnesium phthalocyanine, Phys. Chem. Chem. Phys.,2010, 12,13020-13025.
    [34]. Hong, J. D.; Xia, X. Y.; Wang, Y. S.; Xu, R. Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light,J. Mater. Chem.,2012,22,15006-15012.
    [35]. Yan, H. J.; Chen, Y.; Xu, S. M. Synthesis of graphitic carbon nitride by directly heating sulfuric acid treated melamine for enhanced photocatalytic H2 production from water under visible light, Int. J. Hydrogen Energy,2012,37,125-133.
    [36]. Zhang, Y. W.; Liu, J. H.; Wu, G.; Chen, W. Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-drivern photocatalytic hydrogen production, Nanoscale,2012,4,5300-5303.
    [37]. Martha, S.; Nashim, A.; Parida, K. M. Facile synthesis of highly active g-C3N4 for efficient hydrogen production under visible light, J. Mater. Chem. A,2013,1, 7816-7824.
    [38]. Yan, S. C.; Li, Z. S.; Zou,Z. G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine, Langmuir,2009,25,10397-10401.
    [39]. Yan, S. C.; Li, Z. S.; Zou, Z. G. Photodegradation of Rhodamine B and methyl orange over boron-doped g-CsN4 under visible light irradiation, Langmuir,2010, 26,3894-3901.
    [40]. Cui, Y. J.; Ding, Z. X.; Liu, P.; Antonietti, M.; Fu, X. Z.; Wang, X. C. Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants, Phys. Chem. Chem. Phys.,2012,14,1455-1462.
    [41]. Niu, P.; Liu, G.; Cheng, H. M. Nitrogen vacancy-promoted photocatalytic activity of graphitic carbon nitride, J. Phys. Chem. C,2012,116,11013-11018.
    [42]. Li, J. H.; Shen, B.; Hong, Z. H.; Lin,B. Z.; Gao, B. F.; Chen, Y. L. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity, Chem. Commun.,2012,48,12017-12019.
    [43]. Kroke, E.; Schwarz, M.; Horath-Bordon, E.; Kroll, P.; Noll, B.; Norman, A. D. Tri-s-triazine derivatives. Part Ⅰ. From trichloro-tri-s-triazine to graphitic C3N4 structures, New J. Chem.,2002,26,508-512.
    [44]. Wang, X. C.; Chen, X. F.; Thomas, A.; Fu, X. Z.; Antonietti, M. Metal-containing carbon nitride compounds:a new functional organic-metal hybrid material, Adv. Mater.,2009,21,1609-1612.
    [45]. Yan, S. C.; Lv, S. B.; Li, Z. S.; Zou, Z. G. Organic-inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities, Dalton Trans.,2010,39,1488-1491.
    [46]. Chai, B.; Peng, T. Y.; Mao, J.; Li, K.; Zan, L. Graphitic carbon nitride (g-C3N4)-Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation, Phys. Chem. Chem. Phys.,2012,14, 16745-16752.
    [47]. Fu, J.; Tian, Y. L.; Chang, B. B.; Xi, F. N.; Dong, X. P. BiOBr-carbon nitride heterojunctions:synthesis, enhanced activity and photocatalytic mechanism, J. Mater. Chem.,2012,22,21159-21166.
    [48]. Suryawanshi, A.; Dhanasekaran, P.; Mhamane, D.; Kelkar, S.; Patil, S.; Gupta, N.; Ogale, S. Doubling of photocatalytic H2 evolution from g-C3N4 via its nanocomposite formation with multiwall carbon nanotubes:electronic and morphological effects, Int. J. Hydrogen Energy,2012,37,9584-9589.
    [49]. Sun, L. M.; Zhao, X.; Jia, C.-J.; Zhou, Y. X.; Cheng,X. F.; Li, P.; Liu, L.; Fan, W. L. Enhanced visible-light photocatalytic activity of g-C3N4-ZnWO4 by fabricating a heterojunction:investigation based on experimental and theoretical studies, J. Mater. Chem.,2012,22,23428-23438.
    [50]. Kumar, S.; Surendar, T.; Baruah, A.; Shanker, V. Synthesis of a novel and stable g-C3N4-Ag3PO4 hybrid nanocomposite photocatalyst and study of the photocatalytic activity under visible light irradiation, J. Mater. Chem. A,2013,1, 5333-5340.
    [51]. Boppana, V. B. R. B.; Hould, N. D.; Lobo, R. F. Synthesis, characterization and photocatalytic properties of novel zinc germanate nano-materials, J. Solid State Chem.,2011,184,1054-1062.
    [52]. Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP, Z. Kristallogr.,2005,220, 567-570.
    [53]. Ceperley, D. M.; Alder, B. J. Ground state of the electron gas by a stochastic method, Phys. Rev. Lett.,1980,45,566-569.
    [54]. Rappe, A. M.; Rabe, K. M.; Kaxiras, E.; Joannopoulos, J. D. Optimized pseudopotentials, Phys. Rev. B:Condens. Matter Mater. Phys.,1990,41, 1227-1230.
    [55]. Teter, D. M.; Hemley, R. J. Low-compressibility carbon nitrides, Science,1996, 271,53-55.
    [56]. Monkhorst, H. J.; Pack, J. Special points for Brillouin-zone integrations, Phys. Rev. B:Solid State,1976,13,5188-5192.
    [57]. Li, X. F.; Zhang, J.; Shen, L. H.; Ma, Y. M.; Lei, W. W.; Cui, Q. L.; Zou, G. T. Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine, Appl. Phys. A:Mater. Sci. Process.,2009,94,387-392.
    [58]. Zhao, Y. C.; Yu, D. L.; Zhou, H. W.; Tian, Y. J.; Yanagisawa, O. Turbostratic carbon nitride preparaed by pyrolysis of melamine, J. Mater. Sci.,2005,40, 2645-2647.
    [59]. Liu, L.; Ma, D.; Zheng, H.; Li, X. J.; Cheng, M. J.; Bao, X. H. Synthesis and characterization of microporous carbon nitride, Microporous Mater.,2008,110, 216-222.
    [60]. Zhang, H.; Lv, X. J.; Li, Y. M.; Wang, Y.; Li, J. H. P25-graphene composite as a high performance photocatalyst, ACS Nano,2010,4,380-386.
    [61]. Ganguly, A.; Sharma, S.; Papakonstantinou, P.; Hamilton, J. Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies, J. Phys. Chem. C,2011,115,17009-17019.
    [62]. Asahi, R.; Morikawa, T. Nitrogen complex species and its chemical nature in TiO2 for visible-light sensitized photocatalysis, Chem. Phys.,2007,339,57-63.
    [63]. Atuchin, V. V. Comment on "particle size and structural control of ZnWO4 nanocrystals via Sn2+ doping for tunable optical and visible photocatalytic properties",J. Phys. Chem. C,2012,116,26106-26107.
    [1]. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode, Nature,1972,238,37-38.
    [2]. Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis, Chem. Rev.,1995,95,69-96.
    [3]. Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, Nature,2001, 414,625-627.
    [4]. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides, Science,2001,293,269-271.
    [5]. Maeda, K.; Teramura, K.; Lu, D. L.; Takata, T.; Saito, N.; Inoue, Y; Domen, K. Photocatalyst releasing hydrogen from water, Nature,2006,440,295-295.
    [6]. Varghese, O. K.; Paulose, M.; LaTempa, T. J.; Grimes, C. A. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels, Nano Lett., 2009,9,731-737.
    [7]. Z. G Yi, J. H. Ye, N. Kikugawa, T. Kako, S. X. Ouyang, H. Stuart-Williams, H. Yang, J. Y. Cao, W. J. Luo, Z. S. Li, Y. Liu, R. L. Withers, Nat. Mater.,2010,9,559.
    [8]. Lii, X. J.; Huang, F. Q.; Mou, X. L.; Wang,Y M.; Xu, F. F. A general preparation strategy for hybrid TiO2 hierarchical spheres and their enhanced solar energy utilization efficiency, Adv. Mater.,2010,22,3719-3722.
    [9]. Wang, Q.; Zhang, M. A.; Chen, C. C.; Ma, W. H.; Zhao, J. C. Photocatalytic aerobic oxidation of alcohols on TiO2:the acceleration effect of a bronsted acid, Angew. Chem., Int. Ed.,2010,49,7976-7979.
    [10]. Zhang, J.; Xu, Q.; Feng, Z.; Li, M.; Li, C. Importance of the relationship between surface phases and photocatalytic activity of TiO2, Angew. Chem. Int. Ed.,2008, 47,1766-1769.
    [11]. Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev.,2009,38,253-278.
    [12]. Hou, Y; Zuo, F.; Dagg,A.; Feng, P. Y. Visible light-driven a-Fe2O3 nanorod/graphene/BiV1-xMoxO4 core/shell heterojunction array for efficient photoelectrochemical water splitting, Nano Lett.,2012,12,6464-6473.
    [13]. Kim, E. S.; Nishimura, N.; Magesh, G.; Kim, J. Y.; Jang,J. W.; Jun, H.; Kubota, J.; Domen, K.; Lee, J. S. Fabrication of CaFe2O4/TaON heterojunction photoanode for photoelectrochemical water oxidation, J. Am. Chem. Soc.,2013,135, 5375-5383.
    [14]. Yan, S. C.; Lv, S. B.; Li, Z. S.; Zou, Z. G. Organic-inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities, Dalton Trans.,2010,39,1488-1491.
    [15]. Liu, X. J.; Pan, L. K.; Lv, T.; Lu, T.; Zhu, G.; Sun, Z.; Sun,C. Q. Microwave-assisted synthesis of ZnO-graphene composite for photocatalytic reduction of Cr(VI), Catal. Sci. Technol.,2011,1,1189-1193.
    [16]. Hong, S. J.; Lee, S.; Jang, J. S.; Lee, J. S. Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation, Energy Environ. Sci.,2011,4, 1781-1787.
    [17]. Ge, L.; Han, C. C.; Liu, J. Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange, Appl. Catal. B,2011, 108-109,100-107.
    [18]. Wang, Y. J.; Shi, R.; Lin, J.; Zhu, Y. F. Enhanced of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4, Energy Environ. Sci.,2011,4,2922-2929.
    [19]. Pan, C. S.; Xu, J.; Wang, Y. J.; Li, D.; Zhu, Y. F. Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly, Adv. Funct. Mater.,2012,22,1518-1524.
    [20]. An, X. Q.; Yu, J. C.; Wang, Y.; Hu, Y. M.; Yu, X. L.; Zhang, G. J. WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing,J. Mater. Chem.,2012,22,8525-8531.
    [21]. Yang, M. Q.; Weng, B.; Xu, Y. J. Improving the visible light photoactivity of In2S3-graphene nanocomposite via a simple surface charge modification approach, Langmuir,2013,29,10549-10558.
    [22]. Zhou, W. J.; Yin, Z. Y.; Du, Y. P.; Huang, X.; Zeng, Z. Y.; Fan, Z. X.; Liu, H.; Wang, J. Y.; Zhang, H. Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities, small,2013,9, 140-147.
    [23]. Zhang, N.; Yang, M. Q.; Tang, Z. R.; Xu, Y J. Toward improving the graphene-semiconductor composite photoactivity via the addition of metal ions as generic interfacial mediator, ACS Nano,2014,8,623-633.
    [24]. Zhang, X.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z. Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X=Cl, Br, I) nanoplate microspheres, J. Phys. Chem. C,2008,112,747-753.
    [25]. Chang, X. F.; Huang, J.; Cheng, C.; Sui, Q.; Sha, W.; Ji, G. B.; Deng, S. B.; Yu, G. BiOX (X=Cl, Br, I) photocatalysts prepared using NaBiO3 as the Bi source: characterization and catalytic performance, Catal. Commun.,2010,11,460-464.
    [26]. Zhang, W. D.; Zhang, Q.; Dong, F. Visible-light photocatalytic removal of NO in air over BiOX (X=Cl, Br, I) single-crystal nanoplates prepared at room temperature, Ind. Eng. Chem. Res.,2013,52,6740-6746.
    [27]. Xiong, J. Y.; Cheng, G.; Li, G. F.; Qin,F.; Chen, R. Well-crystallized square-like 2D BiOCl nanoplates:mannitol-assisted hydrothermal synthesis and improved visible-light-driven photocatalytic performace,.RSC,Adv.,2011,1,1542-1553.
    [28]. Ye, L. Q.; Zan, L.; Tian, L. H.; Peng, T. Y; Zhang, J. J. The{001} facets-dependent high photoactivity of BiOCl nanosheets, Chem. Commun.,2011, 47,6951-6953.
    [29]. Guan, M. L.; Xiao, C.; Zhang, J.; Fan, S. J.; An, R.; Cheng, Q. M.; Xie, J. F.; Zhou, M.; Ye, B. J.; Xie, Y. Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets, J. Am. Chem. Soc.,2013,135, 10411-10417.
    [30]. Fang, Y. F.; Huang, Y. P.; Yang, J.; Wang, P.; Cheng, G. W. Unique ability of BiOBr to decarboxylate D-gulu and D-measp in the photocatalytic degradation of microcystin-LR in water, Environ. Sci. Technol.,2011,45,1593-1600.
    [31]. Zhang, J.; Shi, F. J.; Lin, J.; Chen, D. F.; Gao, J. M.; Huang, Z. X.; Ding, X. X.; Tang, C. C. Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst, Chem. Mater.,2008,20,2937-2941.
    [32]. Ai, Z. H.; Ho, W; Lee, S.; Zhang, L. Z. Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light, Environ. Sci. Technol.,2009,43,4143-4150.
    [33]. Li, Y. Y.; Wang, J. S.; Yao, H. C.; Dang, L. Y.; Li, Z. J. Efficient decomposition of organic compounds and reaction mechanism with BiOI photocatalyst under visible light irradiation, J. Mol. Catal, A,2011,334,116-122.
    [34]. Jiang, J.; Zhao, K.; Xiao, X. Y; Zhang, L. Z. Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets, J. Am. Chem. Soc.,2012, 134,4473.4476.
    [35]. Li, T. B.; Chen, G.; Zhou, C.; Shen, Z. Y.; Jin,R. C.; Sun, J. X. New photocatalyst BiOCl/BiOI composites with highly enhanced visible light photocatalytic, Dalton Trans.,2011,40,6751-6758.
    [36]. Zhang, H. J.; Liu, L.; Zhou, Z. First-principles studies on facet-dependent photocatalytic properties of bismuth oxyhalides (BiOXs), RSC Adv.,2012,2, 9224-9229.
    [37]. Dotan, H.; Sivula, K.; Graetzel, M.; Rothschild, A.; Warren,S. C. Probing the photoelectrochemical properties of hematite (a-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger, Energy Environ. Sci.,2011,4,958-964.
    [38]. Abdi, F. F.; Firet, N.; Van de Krol, R. Efficient BiVO4 thin film photoanodes modified with cobalt phosphate catalyst and W-doping, ChemCatChem,2013,5, 490-496.
    [39]. Jeong, H. W.; Jeon, T. H.; Jang, J. S.; Choi, W.; Park, H. Strategic modification of BiVO4 for improving photoelectrochemical water oxidation performance, J. Phys. Chem. C,2013,117,9104-9112.
    [40]. Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. J.; Refson, K.; Payne, M. C. First principles methods using CSATEP, Z. Kristallogr.,2005,220, 567-570.
    [41]. Ceperley, D. M.; Alder, B. J. Ground state of the electron gas by a stochastic method, Phys. Rev. Lett.,1980,45,566-569.
    [42]. Rappe, A. M.; Rabe, K. M.; Kaxiras, E.; Joannopoulos, J. D. Optimized pseudopotentials, Phys. Rev. B:Condens. Matter Mater:Phys.,1990,41, 1227-1230.
    [43]. Keramidas, K. G.; Voutsas, G. P.; Rentzeperis, P. I. The crystal structure of BiOCl, Z. Kristallogr.,1993,205,35-40.
    [44]. Keller, E.; Kraemer, V. A strong deviation from vegard's rule:X-ray powder investigations of the three quasi-binary phase systems BiOX-BiOY (X, Y=Cl, Br, I), Z. Naturforsch., B,2005,60,1255-1263.
    [45]. Monkhorst, H. J.; Pack, J. Special points for Brillouin-zone integrations, Phys. Rev. B:Solid State,1976,13,5188-5192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700