生活垃圾填埋场渗滤液在黄土层渗漏过程中的复合生态毒理效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垃圾渗滤液(以下简称“渗滤液”)是生活垃圾卫生填埋场在运行过程中产生的一种高浓度有机废水。早期的填埋场大多不符合卫生填埋的标准要求,场下未添加衬垫或只是简单压实土层作为天然衬垫,极易导致渗滤液渗漏发生;而新建填埋场虽然使用了粘性土或人工复合材料作防渗衬垫,并设置了渗滤液的收集和排泄系统,但随着时间的推移,这些设施由于机械和自然作用以及渗滤液的腐蚀等被破坏,也会导致渗漏发生。因此,在各填埋场的运营或封场管理过程中,均会发生不同程度的渗滤液渗漏,对周边生态环境造成严重的污染。
     目前关于渗滤液的工作多是围绕渗滤液原液的化学组成分析和生态毒理研究,但是渗滤液进入地下环境后并不是简单的渗漏,同时会伴随着污染物在土壤层中的迁移转化环境行为。跟踪监测渗漏过程中氧化还原灵敏性物质的变化,渗滤液在地下渗漏过程中可能会出现顺序氧化还原带,如产甲烷区、硫酸盐还原区、铁锰还原区、硝酸盐还原区和氧还原区,且不同氧化还原分带渗滤液的特征污染物种类和形态分布都存在差异。这一结果提示,污染物在土壤层中的环境行为可能会影响渗滤液的生态毒性变化。因此,仅仅围绕渗滤液原液展开的生态毒性研究,忽视了上述迁移转化过程可能造成的毒性变化,其结果不能客观反映渗滤液进入地下环境后的生态毒理效应,直接影响垃圾填埋场对周边生态环境全面、真实的风险评价。
     由此提出本论文的研究,以黄土高原地区山沟型垃圾卫生填埋场为背景,研究渗滤液污染物在地下环境渗漏过程中的迁移转化规律,通过两种生物系统探讨在此过程中的复合生态毒性变化,进而建立二者相关关系,并解析黄土层渗漏过程中氧化还原环境的变化导致污染物迁移转化与生态毒性差异的机制。
     1.本论文通过建立渗滤液黄土柱渗漏模型,考察不同渗漏距离(12cm,24cm,36cm,48cm,60cm,72cm,84cm)渗滤液出水的理化特性。结果表明,pH、电导率、COD、氨氮均随渗漏距离增加而降低,而重金属Cu、Zn、Ni、Mn、Pb、Cd等含量随渗漏距离呈先升后降趋势,其中12-24cm处含量最高,在36-48cm开始下降,48cm之后含量迅速降低。不同渗漏距离出水GC-MS分析结果还表明有机物形态及分布在渗漏过程中也发生了变化,其中部分重金属和有机物(尤其是含氧/含硫/含氮的芳香族化合物)的变化可能与渗滤液毒性差异有关。
     2.为了进一步考察渗滤液在黄土层渗漏过程中的复合毒性效应变化,本论文采用不同渗漏距离的渗滤液出水对大麦幼苗进行暴露染毒,探讨出水对大麦幼苗生长、叶绿素水平、脂质过氧化作用、蛋白质损伤以及抗氧化酶活性的影响。结果表明:(1)渗滤液渗漏出水显著抑制大麦幼苗生长,影响叶绿素水平,引起植物叶片脂质过氧化产物丙二醛(MDA)和蛋白质损伤产物蛋白羰基(PCO)含量显著升高,诱导抗氧化酶SOD、CAT和POD活性。发现毒性效应随距离呈先升后降变化规律,在12-24cm达到最高,36-48cm处缓慢降低,60cm后毒性不显著。(2)通过对渗滤液污染物迁移转化过程中的理化特性与复合毒性变化进行相关性统计分析,表明不同距离渗漏出水对大麦生理、生化水平的影响与其中COD、电导率及重金属Ni、Mn、Cd的变化显著相关。(3)分析出水有机物组成,发现渗漏过程植物毒性的差异可能与其中含氮/含硫/含氧芳环类污染物的变化有关,多数污染物具有内分泌干扰效应。对不同出口的水质进行分析,发现48cm后有机成分种类最多,所含微生物数量也相应最高,推断毒性变化可能与微生物的生物氧化过程引起污染物形态转化有关。
     3.渗滤液原液对斑马鱼表现出一定的急性和慢性毒性,雌鱼对渗滤液污染物胁迫要比雄鱼敏感,而渗滤液原液的成分检测和Ohpf和24hpf斑马鱼胚胎暴露实验都表明渗滤液对斑马鱼产生显著的发育毒性。为了验证渗滤液渗漏到地下环境的内分泌干扰效应及其变化规律,本论文通过斑马鱼胚胎染毒技术,考察不同渗漏距离渗滤液出水对Ohpf和24hpf胚胎染毒后,出现凝结、血流循环、孵化、水肿以及脊柱畸形等毒性终点的影响。结果表明:(1)不同距离渗漏出水均显著增加斑马鱼胚胎凝结率、抑制胚胎发育过程(眼点发育、主动活动、血流循环和孵化),且毒性随渗漏距离逐渐降低,表现出时间依赖性。(2)不同渗漏距离出水可显著诱导胚胎出现心包水肿和脊柱畸形的发生率,且随距离呈下降趋势,84cm处出水仍表现出一定的致畸作用。0hpf与24hpf胚胎染毒结果表明,渗滤液渗漏过程出水对卵裂期胚胎发育毒性较强。(3)通过对渗漏过程的胚胎毒性变化与理化特性进行相关性统计分析,表明渗漏出水斑马鱼胚胎毒性与其中有机物、氨氮、重金属(Ni、Cd、Mn)和电导率等多个因素显著相关。将不同渗漏距离出水稀释到相同COD浓度进行染毒后,胚胎毒性也随渗漏距离呈现下降趋势,提示渗滤液污染物在黄土层渗漏过程中的形态转化是导致生态毒性差异的重要原因。
     4.本论文通过追踪渗滤液氧化还原灵敏物质的在渗漏过程中的分布规律,发现黄土高原山沟型生活垃圾填埋场在渗漏过程中出现了三个明显的氧化还原环境,依次为:产甲烷带、铁还原带和硝酸盐还原带。为了进一步探讨不同氧化还原环境对渗滤液污染物迁移转化过程及其复合毒性效应的影响,我们通过添加不同氧化还原环境最终电子受体,建立了强化氧化还原环境渗漏模型,考察不同氧化还原环境下污染物的形态含量分布,测定不同出水对斑马鱼胚胎发育毒性终点的LC50(IC50/EC50)。结果表明:(1)渗滤液主要污染物在黄土层渗漏过程中的分布规律为:产甲烷带>铁还原带>硝酸盐还原带。且铁还原带污染物衰减较慢,硝酸盐还原带衰减较快,表明硝酸盐还原带在渗滤液渗漏过程中污染物降解起主要作用。(2)斑马鱼胚胎毒性实验结果发现,渗滤液在三种氧化还原环境下出水均影响胚胎发育,其中硝酸盐还原带毒性较低,而产甲烷带与铁还原带毒性均较强,二者毒性之间无显著差异。通过对不同氧化还原分带出水的有机成分分析,结果发现硝酸盐带出水胚胎致畸效应可能与其中邻苯二甲酸酯类、噻唑类、菊酯类等内分泌干扰物有关。(3)通过对渗漏过程各分带的理化指标与胚胎毒性进行相关性统计分析,不同氧化还原分带出水毒性与其中COD、氨氮、电导率、Ni、Mn显著相关,推断渗滤液渗漏过程中胚胎毒性可能是由渗滤液中EDCs和重金属复合暴露所引起的。
     本论文的研究着重阐明了黄土高原山沟型垃圾填埋场渗滤液在地下渗漏过程中的复合生态毒性变化,探讨了随着渗漏距离的增加渗滤液对大麦幼苗和斑马鱼胚胎的毒性变化,同时考察了渗滤液污染物在黄土层渗漏过程中的迁移转化规律,通过相关性统计分析确立了渗滤液在黄土层地下环境的复合毒性特征变化与污染物迁移转化的相关关系;并在此基础上,跟踪渗漏过程中的氧化还原灵敏物质分布,确定并模拟渗滤液在黄土层地下环境中的氧化还原分带,深入讨论了各分带的特征污染物的形态分布与复合生态毒性的关系。本论文的研究结果从生态毒理角度为阐明渗滤液对周边地下环境的污染特征与生态风险提供了基础性实验数据和理论依据。
Landfill leachate (hereinafter referred to as "leachate") was found with higher concentration organic pollutants, being generated from the operation process in the municipal sanitary landfill. Most of the early landfill was built without liner protection or with simply compacted soil as a natural liner. They were not accordance with the standard requirements of the sanitary landfill and can easily lead to leachate leakage. Some new landfill made cohesive soil or artificial complex impermeable as liner protection. Some landfill used special leachate collection and excretory system. But these facilities can also lead to seepage leakage because of the mechanical and natural corrosion as time goes on. Therefore, it is inevitable that the leachate leakage occured when the operating and managing processes of the landfill, which could cause serious pollution to the surrounding ecological environment.
     Up to the present much works was centered on the chemical analysis of leachate composition and the toxicological study of raw leachate. It was not comprehensive and enough impressive for the risk assessment of the landfill leachate. This was mainly because the penetrating process through the underground environment was often accompanied by transportation and transformation of leachate contaminants. Tracking changes of sensitive redox material during penetrating process, the underground penetrating process of leachate may pass through the different redox zone, namely aerobic respiration, nitrate reduction, iron and manganese reduction, sulfate reduction and methanogenesis etc. This reminded us that the environmental behavior of contaminants in the soil layer may affect leachate ecotoxicity change. As a result, ecological toxicity studies of leachate can not ignored the attenuation of pollutants in the soil layer and we should do some works to more objectively reflect the ecotoxicological effects of leachate in addition to studies on the raw landfill leachate.
     This dissertation was carried out for the above propose. Lots of work was taken on the changes of complex eco-toxic effects during the penetrating process in the loess soil column. The contaminants attenuation was also determined with the same column. Three different redox zones were observed in the penetrating process via monitoring the changes of sensitive redox material in the loess soil. The correlation analysis between the above two results were performed to explore the mechanism of eco-toxic effects of landfill leachate in the underground environment.
     1. A loess soil column was established to simulate the underground environment and leachate leakage happened on this soil column. There were several out-flowing ports set on the different penetrating distance (12cm,24cm,36cm,48cm,60cm,72cm, and84cm). The out-flowing leachates were sampled from the different ports and collected for the analysis of physical and chemical characteristics. The results showed that the pH, conductivity, COD and ammonia nitrogen decreased with the penetrating distance. The content of heavy metals such as Cu, Zn, Ni, Mn, Pb and Cd, etc. displayed an upward trend before48cm port, reached the highest value at12-24cm ports, and quickly declined after the36-48cm ports. GC-MS analysis and element analysis of leachate sample on the neighboring48cm port suggested that some heavy metals and organic compounds (especially oxygen-, sulfur-or nitrogen-containing phenyl compounds) should be responsible for the changes of complex ecotoxic effects in the penetrating process.
     2. The phytotoxic effects of landfill leachate were investigated on the barley seedlings. The results showed that the complex phytotoxic effects of leachate samples changed with penetrating process in loess soil column, demonstrated that:(1) Landfill leachate inhibited the growth and chlorophyll levels, elevated the levels of lipid peroxidation and protein oxidation, and stimulated the antioxidant enzymes'activities of barley seedlings. The effects generally displayed a peak value at12-24cm, slowly declined at36-48cm, and then rapidly decreased with penetrating distance in column.(2) Via statistical correlation analysis between the properties of leachate and the biotoxic effects observed, COD, conductivity and heavy metals (esp. Ni, Mn, Cd) were considered to be responsibly correlated to the variation of biotoxicity, instead of pH and ammonia.(3) The analysis of the organic matter composition found the phytotoxic differences during penetrating process may be related to the changes of nitrogen/sulfur/oxygen-containing phenyls, and the majority of these pollutants were confirmed with endocrine disrupting effects.
     3. Endocrine disrupters were founded within the landfill leachate, and sexual differences were also displayed on the acute and chronic toxicity of zebrafish. The developmental toxicity of landfill leachate were investigated on the Ohpf and the24hpf zebrafish embryos. The results showed that the condensation blood flow cycle, hatching, edema, and spinal deformity effects of other toxic endpoints were observed when Ohpf and 24hpf embryos were exposed to leachate samples with penetrating process in loess soil column. The detailed results were demonstrated:(1) Landfill leachate can significantly increase zebra fish embryos condensation rate, and inhibit the development of embryonic development process (eye point initiative activities, blood circulation and incubators). The toxicity gradually decreased with a time-dependent and penetrating distance-dependent manner.(2) The out-flowing leachates even after84cm port all can significantly induced teratogenic effects such as pericardial edema and spinal deformity. The visible blastocysts toxicity on Ohpf and24hpf embryos was seen strong and downward with the penetrating process in soil layer.(3) Via statistical correlation analysis between the properties of leachate and embryonic toxcity, COD, ammonia, Ni, Cd, Mn and conductivity were considered to be responsibly correlated to the variation of embryotoxicity. The microbial activity of outflowing leachate sampled from48cm port was significantly higher than the activity from the later ports, and types of contaminants also increased in the outflowing leachate from the same port. This implied that the change of leachate toxicity may be related to biogeochemical role in the penetrating process.
     4. Only three distinct redox zones (methanogenesis, iron and nitrate reduction zone) were found within the loess soil column. To further explore the correlation between the transportation and transformation of leachate pollutants and its complex toxic, we established the strengthen redox models via adding the electron acceptors to the loess soil column. The leachate were sampled from the different zones and collected for chemical analysis and embryo-toxic endpoint (LC50, meaning as IC50/EC50). The results showed that:(1) The major pollutants of leachate were distributed in the methanogenesis, and then in the iron and nitrate reduction zone. The attenuation in the methanogenesis and iron reduction zones were slower than that in the nitrate reduction zone, indicating that the degradation in nitrate reduction zone could play a major role during penetrating process.(2) The out-flowing leachates from three redox zones all can affect the developmental abnormalities of zebrafish embryos. The toxicity in the nitrate reduction zone was lower than that in the other two redox zones. Chemical analysis suggested that the embryonic teratogenic effects may be associated with phthalate esters, thiazoles, pyrethroids and other endocrine disruptors.(3) The correlation analysis between the properties of leachate and embryonic toxcity showed that the toxic effects of out-flowinig samples from different redox zones was significantly associated which COD, ammonia, conductivity, Ni, Mn. It can be inferred that the changes of teratogenic effects of leachate in penetrating process may be induced by the joint action of endocrine disruptors and heavy metals.
     The leachate used in this paper were sampled and collected from the ravine-like sanitary landfill in the Loess Plateau. And the soil columns were all established with loess soil to simulating the field conditions. Main contribution of this paper was the illustration on the change of complex eco-toxic effects of leachate during the penetrating process and their possible mechanisms in that. The toxicity of leachate on barley seedlings and zebrafish embryos decreased in a non-linear distance-dependent manner. The transportation and transformation of leachate pollutants in the soil column could be observed to be responsible to the eco-toxicity changes via correlation analyses between them. The further studies found the attenuation process of leachate pollutants in soil column may be divided in to three redox zones according to tracking the sensitive redox materials in the leachate. The above findings of this paper clarify the polluting characteristics for landfill leachate when penetrating in soil column and provided guidance for polluting control and risk assessment of landfill leachate.
引文
[1]周北海,松藤康司.中国垃圾填埋场的问题与改善方法.环境科学研究,1998,3:22-24.
    [2]Elliott P, Richardson S, Abellan JJ, et al. Geographic density of landfill sites and risk of congenital anomalies in England. Occup Environ Med,2009,66(2):81-89.
    [3]薛红琴,速宝玉,盛金昌,等.垃圾填埋场的防渗措施和地下水的污染防护. 安全与环境科学,2002,2(4):18-24.
    [4]郑曼英,李丽桃,刑益和,等.垃圾浸出液对填埋场周围水环境污染的研究.重庆环境科学,1998,6(3):17-20.
    [5]Kloppenborg SCh, Brandt UK, Gulis G, et al. Risk of congenital anomalies in the vicinity of waste landfills in Denmark:an epidemiological study using GIS. Cent Eur J Public Health,2005,13(3):137-143.
    [6]Christensen TH, Kjeldsen P, Bjerg PL, et al. Biogeochemistry of landfill leachate plumes. Applied Geochem,2001,16(7-8):659-718.
    [7]Renou S, Givaudan JG, Poulain S, et al. Landfill leachate treatment:Review and opportunity. J Hazard Mater,2008,150(3):468-93.
    [8]胡和平,黄少斌.垃圾填埋场渗滤液特性及处理方法.环境卫生工程,2001,2(3):132-135.
    [9]陈现明,王成伟,董云峰.垃圾填埋场渗滤液的组成和处理方法.舰船防化,2008,3:27-33.
    [10]张宏忠,方少明,松全元,等.北神树垃圾填埋场渗滤液水质分析.安全与环境学报,2005,5(5):63-66.
    [11]Esmail A, Rahim S, Wan W.Y., et al. Leachate Composition and Groundwater Pollution at Municipal Solid Waste Landfill of Ibb City, Yemen. Sains Malaysiana, 2009,38(3):295-304.
    [12]Ehrig HJ. Quality and quantity of sanitary landfill leachate. Waste Manag Res.1983, 1(1):53-68.
    [13]张兰英,韩静,安胜姬,等.垃圾渗滤液中有机污染物的污染及去除.中国环境科学,1998,18(2):184-188.
    [14]Cecilia O, Per-Ake H. Identification of organic compounds in municipal landfill leachates. Environ Pollut.1993,80(3):265-271.
    [15]Akio Y, Hiroaki S, Masataka N, et al. Organic components in leachates from hazardous waste disposal sites. Waste Manage Res,1999,17:186-197.
    [16]Slack RJ, Gronow JR, Voulvoulis N. Household hazardous waste in municipal landfills:contaminants in leachat. Sci of Total Environ,2005,337:119-137.
    [17]Swati M, Rema T, Kurian J. Hazardous organic compounds in urban municipal solid waste from a developing country. J Hazard Mater,2008,160:213-219.
    [18]Peter K, Morton A, Alix P, et al. Present and Long-Term Composition of MSW Landfill Leachate:A Review. Crit Rev Env Sci Technol,2002,32(4):297-336.
    [19]Thomas H, Peter K, Poul L, et al. Biogeochemistry of landfill leachate plumes. Appl Geoche,2001,16(7-8):659-718.
    [20]董春松,樊耀波,李刚,等.我国垃圾渗滤液的特点和处理技术探讨.中国给水排水,2005,21(12):27-31.
    [21]Kulikowska D, Ewa K. The Effect of Landfill Age on Municipal Leaehate Composition. Biores Tech,2008,99 (13):5981-5985.
    [22]Boris M, Wilfred FM, Jacobus G, et al. Biogeochemistry and isotope geochemistry of a landfill leachate plume. J Contam Hydro,2003,65:245-268.
    [23]Grant WF. Chromosome Aberration Assays in Allium:A report of the U.S. Environmental Protection Agency Gene-Tox program. Mutat Res,1982,99:273-291.
    [24]Ma TH. Vicia cytogenetic tests for environmental mutagens, A report of the US, Environmental Protection Agency Gene-Tox Program. Mutat Res,1982,99:257-271
    [25]Plewa MJ. Specific-locus Mutation assays in Zea mays, A Report of the US, Environmental Protection Agency Gene-Tox program. Mutat Res,1982,99:317-337.
    [26]Dave G, Nilsson E. Increased reproductive toxicity of landfill leachate after degradation was caused by nitrite. Aquat Toxicol,2005,73:11-30.
    [27]Wik A, Dave G. Acute toxicity of leachates of tire wear material to Daphnia magna-Variability and toxic components. Chemos,2006,64:1777-1784.
    [28]Chen CM, Liu MC. Ecological risk assessment on a cadmium contaminated soil landfill a preliminary evaluation based on toxicity tests on local species and site-specific information. Sci Total Environ,2006,359:120-129.
    [29]Pivato A, Gaspari L. Acute toxicity test of leachates from traditional and sustainable landfills using luminescent bacteria. Waste Manage,2006,26:1148-1155.
    [30]刘婷,陈朱蕾,唐素琴,等.不同填埋时间、不同季节的垃圾渗滤液生物毒性.2010,31(2):541-546.
    [31]Feng S, Wang X, Wei G, et al. Leachates of municipal solid waste incineration bottom ash from Macao:Heavy metal concentrations and genotoxicity. Chemos,2007,67: 1133-1137.
    [32]Sang N, Li GK. Genotoxicity of municipal landfill leachate on root tips of Vicia faba. Muta Res,2004,560:159-165.
    [33]肖瑜,张敏,章波,等.垃圾渗滤液对黑麦草和高羊茅种子萌发的影响.环境科学与技术,2010,33(2):23-27.
    [34]Osaki K, Kashiwada S, Tatarazako N, et al. Toxicity testing of leachate from waste landfills using medaka (Oryzias latipes) for monitoring environmental safety. Environ Monit Assess,2006,117(1-3):73-84.
    [35]Linderoth M, Norman A, Noaksson E, et al. Steroid biosynthetic enzyme activities in leachate-exposed female perch (Perca fluviatilis) as biomarkers for endocrine disruption. Sci Total Environ,2006,366(2-3):638-648.
    [36]Li GK, Sang N, Wang Q. Oxidative damage induced in brains and livers of mice by landfill leachate. Ecotoxicol Environ Saf,2006,65(1):134-139.
    [37]Sang N, Li GK. Chromosomal aberrations induced in mouse bone marrow cells by municipal landfill leachate. Environ Toxicol Pharmacol,2005,20(1):219-224.
    [38]程树培.环境生物技术.南京,南京大学出版社,1994.
    [39]徐立红,张甬元,陈宜瑜.分子生态毒理学研究进展及其在水环境保护中的意义.水生生物学报,1995,19(2):171-184.
    [40]Chapelle FH, McMahon PB, Dubrovsky NM, et al. Deducing the distribution of terminal electron-accepting processes in hydrologically diverse groundwater systems. Wat Resour Res,1995,31(2):359-372.
    [41]樊冬玲,朱志国,赵勇胜,等.渗滤液污染地下氧化还原环境与污染物衰减研究.环境污染与防治,2007,29(7):495-501.
    [42]董军,张晶,赵勇胜,等.渗滤液污染物在地下环境中的生物地球化学作用.吉林大学学报(地球科学版),2007,37(3):587-591.
    [43]Christensen JB, Jensen DL, Christensen TH. Effect of dissolved organic carbon on the mobility of cadmium, nickel and zinc in leachate polluted groundwater. Wat Res, 1996,30(12):3037-3049.
    [44]Thornton SF, Tellam JH, Lerner DN. Attenuation of landfill leachate by UK Triassic sandstone aquifer materials 1. Fate of inorganic pollutants in laboratory columns.J Contam Hydrol,2000,43(3-4):327-354.
    [45]Thornton SF, Tellam JH, Lerner DN. Attenuation of landfill leachate by UK Triassic sandstone aquifer materials 2. Sorption and degradation of organic pollutants in laboratory columns. J Contam Hydrol,2000,43(3-4):355-383.
    [46]董军,赵勇胜,王翊虹,等.北天堂垃圾污染场地氧化还原分带及污染物自然衰减研究.环境科学,2008,29(11):3265-3269.
    [47]刘莹莹,赵勇胜,董军,等.岩性对垃圾渗滤液渗漏过程中污染物衰减的影响.环境科学与技术,2006,29(9):4-5.
    [48]何品晶,潘修疆,吕凡,等.pH值对有机垃圾厌氧水解和酸化速率的影响.中国环境科学,2006,1:57-61.
    [49]姜必亮,王伯荪,蓝崇钰,等.不同质地土壤对填埋场渗滤液的吸收净化效能.环境科学,2000,21(5):32-7.
    [50]魏复盛.《水与废水监测分析方法》(第四版).北京,中国科学出版社,2002.
    [51]杨志,汪蘋,张月琴,等GC-MS法对垃圾渗滤液生物处理前后微量有机物的研究.环境污染与防治,2005,27(3):218-222.
    [52]楼紫阳,柴晓利,赵由才,等.生活垃圾填埋场渗滤液性质随时间变化关系研究.环境科学学报,2007,27(6):987-992.
    [53]王宝贞,王琳.城市固体废物渗滤液处理与处置.北京,化学工业出版社,2005.
    [54]Jensen DL, Ledin A, Chrestensen TH. Speciation of heavy metals in landfill-leachate polluted groundwater. Wat Res,33(11):2642-2650.
    [55]Tawach P, Preeda P, Chettiyappan V. Assessment of heavy metal contamination and its mobilization from municipal solid waste open dumping site. J Hazard Mater, 2008,156:86-94.
    [56]Kaschl, A, Romheld, V, Chen, Y. Cadmium binding by fractions of dissolved organic matter and humic substances from municipal solid waste compost. J Environ Qual, 2002,31:1885-1892.
    [57]Asakura H, Matsuto T, Tanaka N. Analytical study of endocrine-disrupting chemicals in leachate treatment process of municipal solid waste landfill sites. Environ Sci, 2007,14(2):79-87.
    [58]Zheng Z, He PJ, Shao LM, et al. Phthalic acid esters in dissolved fractions of landfill leachates. Wat Res,2007,41(20):4696-702.
    [59]Kawagoshi Y, Fujita Y, Kishi I, et al. Estrogenic chemicals and estrogenic activity in leachate from municipal waste landfill determined by yeast two-hybrid assay.J Environ Monit,2003,5(2):269-74.
    [60]Svenson A, Sjoholm S, Allard AS, et al. Antiestrogenicity and estrogenicity in leachates from solid waste deposits. Environ Toxicol,2011,26(3):233-239.
    [61]Lu F, Zhang H, Chang CH, et al. Dissolved organic matter and estrogenic potential of landfill leachate. Chemos,2008,72(9):1381-1386.
    [62]Zhang H, Chang CH, Lii F, et al. Estrogenic activity of fractionate landfill leacahte. Sci Total Environ,2009,407(2):879-886.
    [63]Li GK, Yun Y, Sang N. Effect of landfill leachate on cell cycle, micronucleus, and sister chromatid exchange in Triticum aestivum. J Hazard Mater,2008,155(1-2): 10-16.
    [64]王如意,何品晶,邵立明,等.渗滤液灌溉对香根草胁迫及抗氧化系统的影响.中国环境科学,2005,25(2):155-159.
    [65]Xiong L, Zhu JK. Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ,2002,25:131-139.
    [66]李合生.现代植物生理学.北京,高等教育出版社,2002.
    [67]Akbulut M, Cakir S. The effects of Se phytotoxicity on the antioxidant systems of leaf tissues in barley (Hordeum vulgare L.) seedlings. Plant Physiol Biochem,2010,48: 160-166.
    [68]Mohan M, Patnaik AR, Panda BB. Oxidative biomarkers in leaf tissue of barley seedlings in response to aluminum stress. Ecotoxicol Environ Saf,2012,75:16-26.
    [69]Dong YR, Zhang JT. Testing the genotoxicity of coking wastewater using Vicia faba and Hordeum vulgare bioassays. Ecotoxicol nviron Saf,2010,73:944-948.
    [70]Jin CX, Chen QY, Sun RL, et al. Eco-toxic effects of sulfadiazine sodium, sulfamonomethoxine sodium and enrofloxacin on wheat, Chinese cabbage and tomato. Ecotoxicol,2009,18(7):878-885.
    [71]张义贤,李晓玲.三种有机磷农药对大麦毒性效应的研究.农业环境科学学报,2003,6:754-757.
    [72]王大卫,李欣,张江林.废弃泥浆对农作物毒性影响研究.油气田环境保护,2000,10(4):16-18.
    [73]Bakare AA, Mosuro AA, Osibanjo O. Effect of simulated leachate on chromosomes and mitosis in roots of Allium cepa (L.). J Environ Biol,2000,21:251-260.
    [74]Wong MH, Leung CK. Landfill leachate as irrigation water for tree and vegetable crop. Waste Manage Res,1989,7:311-324.
    [75]Shrive SC, McBride RA, Gordon AM. Photosynthetic and growth responses of two broad-leaf tree species to irrigation with municipal landfill leachate. J Environ Qual, 1994,23:534-542.
    [76]Chan Y, Wong MH, Whitton BA. Effect of landfill leachate on growth and nitrogen fixation of two leguminous trees (Acacia confusa, Leucaena leucocephala). Water Air Soil Pollut,1999,113:29-40.
    [77]Li GK, Yun Y, Li HY, et al. Effect of landfill leachate on cell cycle, micronucleus, and sister chromatid exchange in Triticum aestivum. J Hazard Mater,2008,155: 10-16.
    [78]李广科,牛静,云洋,等.垃圾填埋场渗滤液污染特性分析.农业环境科学学报,2008,27(1):333-337.
    [79]Sang N, Li GK, Xin XY. Municipal landfill leachate induces cytogenetic damage in root tips of Hordeum vulgare. Ecotoxicol Environ Saf,2006,63:469-473.
    [80]朱广廉,钟海文,张爱琴.植物生理学实验.北京,北京大学出版社,1990.
    [81]Janero DR. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med,1990,9: 515-540.
    [82]Elmoshaty F, Pike SM, Novacky AJ, et al. Lipid peroxidation and superoxide production in cowpea(Vigna unguiculata) leaves infected with tobacco ringspot virus or southern bean mosaic virus. Physiol Mol Plant Pathol,1993,43:109-119.
    [83]Levine RL, Garland D, Oliver CN, et al. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol,1990,186:464-478.
    [84]Bradford MM. A rapid and sensitive method for the quantitation of microgram quantity of protein utilizing the principle of protein-dye binding. Anal Biochem,1976, 72:248-254.
    [85]Han M, Li GK, Sang N, et al. Investigating the bio-toxicity of coking wastewater using Zea mays L. assay. Ecotox Env Saf,2011,74:1050-1056.
    [86]张志良.植物生理学实验指导.北京,高等教育出版社,1990.
    [87]Maehly AC. Plant peroxidase. Methods Enzym,1955,2:801-813.
    [88]Apel, K, Hirt, H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol,2004,55:373-399.
    [89]Halliwell B, Gutteridge J. Free Radicals in Biology and Medicine. Oxford, Clarendon Press,1993.
    [90]Teichler ZD. The effect of manganese on chloroplast structure and photos-ynethetic ability of chlamydomonas reinhardi. Plant Physiol,1969,44:701-710.
    [91]鲁先文,余林,宋小龙.重金属铬对小麦叶绿素合成的影响.农业与技术,2007,27(4):60-63.
    [92]张露洁,兰利琼,卿人韦,等.几种重金属离子对组培盾叶薯蓣叶绿素含量的影响.四川大学学报(自然科学版),2006,43(1):200-205.
    [93]Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci,2002, 7:405-410.
    [94]Cho, UH, Park, JO. Mercury-induced oxidative stress in tomato seedlings. Plant Sci, 2000,156:1-9.
    [95]Sairam RK, Tyagi A. Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci,2004,86:407-421.
    [96]Halliwell B, Gutteridge JMC. Free Radicalsin Biologyand Medicine(Third ed). New York, Oxford Science Publications,1999.
    [97]Pinto E, Sigaud-Kutner T, Leitao M, et al. Heavy metal-induced oxidative stress in algae. JPhycol,2003,39:1008-1018.
    [98]Isabella DD, Ranieri R, Daniela G, et al. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta,2003,329:23-38.
    [99]朱会娟,王瑞刚,陈少良,等.NaCl胁迫下胡杨和群众杨抗氧化能力及耐盐性.生态学报,2007,10:4113-4121.
    [100]Drazkiewicz M, Skorzynska-Polit E, Krupa Z. The redox state and activity of superoxide dismutase classes in Arabidopsis thaliana under cadmium or copper stress. Chemos,2007,67:188-193.
    [101]Qureshi MI, Israr M, Abdin MZ, et al. Responses of Artemisia annua L. to lead and salt-induced oxidative stress. Environ Exp Bot,2005,53:185-193.
    [102]Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol,1981,22:867-880.
    [103]Edjolo A, Laffray D, Guerrier G. The ascorbate-glutathione cycle in the cytosolic and chloroplastic fractions of drought-tolerant and drought-sensitive poplars. J Plant Physiol,2001,158:1511-1517.
    [104]Kuniak E, Sklodowska M. Compartment-specific role of the ascorbate-glutathione cycle in the response of tomato leaf cells to Botrytis cinerea infection. J Exp Bot, 2005,56:921-933.
    [105]Verma S, Dubey RS. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci,2003,164: 645-655.
    [106]Jesus OV, Carlos PB, Orlando D. Relationships between physicochemical parameters and the toxicity of leachates from a municipal solid waste landfill. Ecotoxicol Environ Saf,2008,70:294-299.
    [107]Tawach P, Preeda P, Chettiyappan V. Assessment of heavy metal contamination and its mobilization from municipal solid waste open dumping site. J Hazard Mater, 2008,156:86-94.
    [108]Kaschl A, Romheld V, Chen Y. Cadmium binding by fractions of dissolved organic matter and humic substances from municipal solid waste compost. J Environ Qual, 2002,31:1885-1892.
    [109]Qu X, He PJ, Shao LM, et al. Heavy metals mobility in full-scale bioreactor landfill: initial stage. Chemos,2008,70:769-777.
    [110]Chapelle FH, Haack SK, Adriaens P, et al. Comparison of Eh and H2 measurements for delineating redox processes in a contaminated aquifer. Environ Sci Technol,1996, 30(12):3565-3569.
    [111]Bjerg P L, Rugge K, Pedersen J, et al. Distribution of redox-sensitive groundwater quality parameters downgradiint of a landfill(Grindsted,Denmark). Environ Sci Technol,1995,29(5):1387-1394.
    [112]Jakobsen R, Postma D. In situ rates of sulfate reduction in an aquifer(Romo, Denmark)and applications for the reactivity of organic matter. Geology,1994,22(12): 1101-1106.
    [113]Kimberley SH, Wang YF, Philippe VC. Kinetic modeling of microbially-driven redox chemistry of subsurface environments:coupling transport, microbial metabolism and geochemistry. JHydrol,1998,209 (1-4):53-80.
    [114]Lovley DR, Chapelle FH. Deep subsurface microbial processes. Rev Geophys, 1995,33(3):365-382.
    [115]袁丽红.微生物学实验.北京,化学工业出版社,2010.
    [116]Baun A, Reitzel LA, Ledin A, et al. Natural attenuation of xenobiotic organic compounds in a landfill leachate plume (Vejen, Denmark). J Contam Hydrol,2003, 65(3-4):269-291.
    [117]Christonsen TH, Bjerg PL, Banwart SA, et al. Characterization of redox conditions in groundwater contaminant plumes. J Contam Hydrol,2000,45(3-4):165-241.
    [118]Ludvigsen L, Albrechtsen HJ, Heron G, et al. Anaerobic microbial redox processes in a landfill leachate contaminated aquifer (Grindsted, Denmark). J Contam Hydrol, 1998,33(3-4):273-291.
    [119]董军,赵勇胜,张伟红,等.渗滤液中有机物在不同氧化还原带中的降解机理与效率研究.环境科学,2007,28(9):2041-2045.
    [120]Bjerg PL, Rugge K, Pedersen JK, et al. Distribution of redox-sensitive groundwater quality parameters downgradient of a landfill(Grindsted,Denmark). Environ Sci Technol,1995,29(5):1387-1394.
    [121]李晓红,赵瑜,卢义玉.焦斌权城市垃圾填埋场渗滤液的污染及其控制.地下空间与工程学报,2008,4(6):1071-1075.
    [122]Bloor MC, Banks CJ. Acute and sub-lethal toxicity of landfill leachate towards two aquatic macro-invertebrates:Demonstrating the remediation potential of air stripping. Environ Int,2005,31 (8):1114-1122.
    [123]Bloor MC, Banks CJ, Krivtsov V. Acute and sub-lethal toxicity tests to monitor the impact of leachate on an aquatic environment. Environ Int,2005,31(2):269-273.
    [124]Osaki K, Kashiwada S, Tatarazako N, et al. Toxicity testing of leachate from waste landfills using medaka (Oryzias latipes) for monitoring environmental safety. Environ Monit Assess,2006,117(1-3):73-84.
    [125]Li X, Lin L, Luan T, et al. Effects of landfill leachate effluent and bisphenol A on glutathione and glutathione-related enzymes in the gills and digestive glands of the freshwater snail Bellamya purificata. Chemos,2008,70(10):1903-1909.
    [126]Noaksson E, Linderoth M, Tjarnlund U, et al. Toxicological effects and reproductive impairments in female perch (Perca fluviatilis) exposed to leachate from Swedish refuse dumps. Aquat Toxicol,2005,75(2):162-177.
    [127]Noaksson E, Linderoth M, Gustavsson B, et al. Reproductive status in female perch (Perca fluviatilis) outside a sewage treatment plant processing leachate from a refuse dump. Sci Total Environ,2005,340(1-3):97-112.
    [128]Linderoth M, Norman A, Noaksson E, et al. Steroid biosynthetic enzyme activities in leachate-exposed female perch (Perca fluviatilis) as biomarkers for endocrine disruption. Sci Total Environ,2006,366(2-3):638-648.
    [129]Vos JG, Dybing E, Greim HA, et al. Health effects of endocrine-disrupting chemicals on wildlife with special reference to the European situation. Crit Rev Toxicol,2000,30(1):71-133.
    [130]OECD. Guideline for the testing chemicals:Fish Embryo Toxicity (FET) Test. Paris, Organization for Economic Co-operation and Development,2006.
    [131]Segner H. Zebrafish (Danio rerio) as a model organism for investigating endocrine disruption. Comp Biochem Phys C,2009,149(2):187-195.
    [132]徐娟,吴南翔.斑马鱼在环境内分泌干扰物筛选和检测中的应用.国外医学卫生学分册,2009,36(4):229-233.
    [133]Michael JC, Evyn L, Daniel NW, et al. Ethanol effects on the developing zebrafish: neurobehavior and skeletal morphogenesis. Neurotoxicol Terato,2004,26:757-768.
    [134]Nadia G, Melissa GB, Ben SW, et al. Association of valproate-induced teratogenesis with histone deacetylase inhibition in vivo. FASEB J,2005,19:1166-1168.
    [135]王佳佳,徐超,屠云杰,等.斑马鱼及其胚胎在毒理学中的实验研究与应用进展.生态毒理学报,2007,2:123-135.
    [136]Liao T, Jin SW, Yang FX, et al. An enzyme-linked immunosorbent assay for rare minnow (Gobiocypris rarus) vitellogenin and comparison of vitellogenin responses in rare minnow and zebrafish (Danio rerio). Sci Total Environ,2006,364(1-3):284-294.
    [137]朱琳,史淑洁.斑马鱼胚胎发育技术在毒性评价中的应用.应用生态学报,2002,13(2):252-254.
    [138]Lindholst C, Wynne PM, Marriott P, et al. Metabolism of bisphenol A in zebrafish (Danio rerio) and rainbow trout (Oncorhynchus mykiss) in relation to estrogenic response. Comp Biochem Physiol C Toxicol Pharmacol,2003,135(2):169-177.
    [139]Anita J, Tatjana T, Andreja Z. Assessment of landfill leachate toxicity reduction after biological treatment. Arch Environ Contam Toxicol,2012,62(2):210-221.
    [140]Mannarino CF, Ferreira JA, Moreira JC, et al. Assessment of combined treatment of landfill urban solid waste leachate and sewage using Danio rerio and Daphnia similis. Bull Environ Contam Toxicol,2010,85(3):274-278.
    [141]Markovich ML, Rizzuto NV, Brown PB. Diet affects spawning in zebrafish. Zebrafish,2007,4(1):69-74.
    [142]Miklosi A, Andrew RJ. The zebrafish as a model for behavioral studies. Zebrafish, 2006,3(2):227-234.
    [143]刘红玲,于红霞,姜威,等.联苯胺类化合物对斑马鱼胚胎发育毒性的初步研究.生态毒理学报,2007,2(1):94-99.
    [144]Strmac M, Braunbeck T. Effects of triphenyltin acetate on survival, hatching success, and liver ultrastructure of early life stages of zebrafish (Danio rerio). Ecotoxicol Environ Saf,1999,44(1):25-39.
    [145]Hassoun E, Kariya C, Williams FE. Dichloroacetate-induced developmental toxicity and production of reactive oxygen species in zebrafish embryos.J Biochem Mol Toxicol,2005,19(1):52-58.
    [146]Anita J, Tatjana T, Andreja Z. Assessment of landfill leachate toxicity reduction after biological treatment. Arch Environ Contam Toxicol,2012,62(2):210-221.
    [147]闫志明,张昱,苑宏英,等.北方城市污水再生处理工艺出水中青鳉鱼胚胎毒性变化研究.环境科学学报,2011,6:1298-1303.
    [148]胡晓晴,李卫华,金泰廪,等.镉对斑马鱼胚胎发育毒性的研究进展.实验动物与比较医学,2010,30(1):73-76.
    [149]Cristina I. Toxicity and developmental defects of different sizes and shape nickel nanoparticles in zebrafish. Environ Sci Technol,2009,43(16):6349-6356.
    [150]Ribeyre F, Amiard TC, Boudou A, et al. Experimental study of interactions between five trace elements-Cu, Ag, Se, Zn, Hg-toward their bioaccumulation by fish (Brachydanio Rerio) from the direct route. Ecotoxicol Environ Saf,1995,32(1):1-11.
    [151]Islam J, Singhal N. A laboratory study of landfill-leachate transport in soils. Wat Res, 2004,38(8):2035-2042.
    [152]Renou S, Givaudan JG, Poulain S, et al. Landfill leachate treatment:Review and opportunity. J Hazard Mater,2008,150(3):468-493.
    [153]Esplugas S, Bila D, Krause L, et al. Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and Pharmaceuticals and personal care products (PPCPs) in water effluents. J Hazard Mater,2007,149 (3):631-642.
    [154]Asakura H, Matsuto T, Tanaka N. Analytical study of endocrine-disrupting chemicals in leachate treatment process of municipal solid waste landfill sites. Environ Sci,2007,14(2):79-87.
    [155]Zheng Z, He PJ, Shao LM, et al. Phthalic acid esters in dissolved fractions of landfill leachates. Wat Res,2007,41(20):4696-4702.
    [156]林玲,王玉柱,丁训诚,等.邻苯二甲酸二丁酯对斑马鱼胚胎发育毒性的研究.卫生研究.2008,37(3):278-280.
    [157]Mukhi S, Pan X, Cobb GP, et al. Toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine to larval zebrafish (Danio rerio). Chemos,2005,61(2):178-185.
    [158]Kuster E. Cholin-and carboxylesterase activities in developing zebrafish embryos (Danio rerio) and their potential use for insecticide hazard assessment. Aquat Toxicol, 2005,75(1):76-85.
    [159]王坤英,赵俊伟,李宁宁,等.噻嗪酮对黑斑蛙胚胎发育和蝌蚪生长的影响及血细胞DNA损伤效应.河南师范大学学报(自然科学版),2007,35(4):203-206.
    [159]Liu Y, Qi SZ, Zhang W, et al. Acute and Chronic Toxicity of Buprofezin on Daphnia Magna and the Recovery Evaluation. Bull Environ Contam Toxicol,2012,89: 966-969.
    [160]Haendel MA, Tilton F, Bailey GS, et al. Developmental toxicity of the dithiocarbamate pesticide sodium metam in zebrafish. Toxicol Sci,2004, 81(2):390-400.
    [161]Wheelock CE, Miller JL, Miller MJ, et al. Influence of container adsorption upon observed pyrethroid toxicity to Ceriodaphnia dubia and Hyalella azteca. Aquat Toxicol,2005,74(1):47-52.
    [162]Dwyer FJ, Mayer FL, Sappington LC, et al. Assessing contaminant sensitivity of endangered and threatened aquatic species:part Ⅰ. Acute toxicity of five chemicals. Arch Environ Contam Toxicol,2005,48(2):143-154.
    [163]Dwyer FJ, Hardesty DK, Henke CE, et al. Assessing contaminant sensitivity of endangered and threatened aquatic species:part Ⅲ. Effluent toxicity tests. Arch Environ Contam Toxicol,2005,48(2):174-183.
    [164]Paul EA, Simonin HA, Tomajer TM. A comparison of the toxicity of synergized and technical formulations of permethrin, sumithrin, and resmethrin to trout. Arch Environ Contam Toxicol,2005,48(2):251-259.
    [165]Gonzalez M, Pena E, Barrueco C, et al. Stage sensitivity of medaka (Oryzias latipes) eggs and embryos to permethrin. Aquat Toxicol,2003,62(3):255-268.
    [166]Sawyer SJ, Gerstner KA, Callard GV. Real-time PCR analysis of cytochrome P450 aromatase expression in zebrafish:gene specific tissue distribution, sex differences, developmental programming, and estrogen regulation. Gen. Comp. Endocrinol,2006, 147(2):108-117.
    [167]Stromqvist M, Tooke N, Brunstrom B. DNA methylation levels in the 5' flanking region of the vitellogenin Ⅰ gene in liver and brain of adult zebrafish (Danio rerio): sex and tissue differences and effects of 17alpha-ethinylestradiol exposure. Aquat. Toxicol,2010,98:275-281.
    [168]Gellert G, Hernrichsdorff J. Effect of age on the susceptibility of zebrafish eggs to industrial wastewater. Water Res,2001,35(15):3754-3757.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700