用户名: 密码: 验证码:
甜菜夜蛾Spodoptera exigua H(?)bner迁飞的生态机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从80年代中后期开始,甜菜夜蛾连续多年在我国各省份爆发成灾,成为农业生产上的一种灾难性害虫。已有研究报道甜菜夜蛾是一种远距离迁飞害虫,但尚未定论;对甜菜夜蛾飞行的生理、生态机制以及遗传因素对其飞行能力的影响,至今仍知之甚少。本文从甜菜夜蛾的迁飞特性入手,对其生态适合度、抗寒和越冬能力、生殖、遗传和环境因子对其飞行能力及再迁飞能力的影响、虫源性质及迁飞轨迹分析、飞行能源物质的代谢酶等方面进行了系统研究,获得如下结果:
     通过组建甜菜夜蛾在5种温度下(20℃、23℃、26℃、29℃、32℃)的实验种群生命表,得出甜菜夜蛾在不同温度下的生态适合度。结果表明:在20-32℃,甜菜夜蛾的发育速率随着温度的升高而加快,并符合Logistic模型;甜菜夜蛾卵、幼虫、蛹、产卵前期及世代的发育起点温度分别为13.73℃、15.68℃、15.09℃、12.83℃和15.06℃,有效积温分别为37.9、126.3、73.8、29.2和265.60日·度;甜菜夜蛾在26℃时世代存活率和种群增长指数最高,分别为55.2%和205.9,20℃时不利于种群增长;在26℃和29℃时,甜菜夜蛾的平均产卵量最高,分别为604.7和611.4粒/雌,26℃是甜菜夜蛾最适宜交配的温度,交配率为84.9%,平均精包数为2.46个/雌;高温条件下,甜菜夜蛾的成虫寿命、产卵前期和产卵期均缩短;甜菜夜蛾的世代存活率(S)和种群趋势指数(I)与温度(t)的关系可用二次抛物线表示:S=-0.5056t~2+27.652t-326.02(r=0.91),I=-3.2532t~2+178.45t-2270.40(r=0.94)。
     测定了河北隆荛、湖南衡阳和江苏南京三个地理种群甜菜夜蛾的过冷却点和结冰点,并进行了埋蛹越冬试验。结果表明,甜菜夜蛾蛹的过冷却点最低,过冷却现象也最明显,因而蛹是甜菜夜蛾最适宜越冬的虫态。三个地理种群中,以湖南衡阳的抗寒能力最强,其次为河北隆荛和江苏南京。连续两年的田间埋蛹越冬试验表明,甜菜夜蛾不大可能在南京越冬。
     通过室内卵巢逐日解剖试验,将甜菜夜蛾卵巢发育进度分为五级,即乳白透明期(Ⅰ)、卵黄沉积期(Ⅱ)、成熟待产期(Ⅲ)、产卵盛期(Ⅳ)和产卵末期(Ⅴ)。卵巢发育进度与日产卵量呈明显的相关性。与其他迁飞性昆虫相比,甜菜夜蛾的卵巢发育比较快,在蛹末期已发育为二级,羽化第二天,三级卵巢所占比例为65%。甜菜夜蛾产卵前期比较短,27℃下,补充营养和未补充营养的甜菜夜蛾的产卵前期无显著差
    
    甜菜夜蛾迁飞的生态机制研究
    异,分别为2.40士1 .06d和2.58士1 .24 d.
     生殖隔离条件下,不同日龄甜菜夜蛾的飞行能力存在一定差异。初羽化时,甜菜
    夜蛾就具有一定的飞行能力,3、4日龄时其飞行能力最强。但未交配的雌虫卵巢发育
    特别缓慢,并且产卵量非常少,羽化第2、3天,其卵巢发育级别均为三级;羽化第4
    天,三级卵巢比例仍在90%以上,且尚未产卵;羽化第5、6天,三、四级卵巢比例
    各占50%左右,有少数卵产出。自然交配条件下,以2日龄和7日龄蛾的飞行能力较
    强。交配后,卵巢迅速发育。羽化第2天,三级卵巢比例为80.”%;羽化第3、4
    天,四级卵巢比例分别为50%和68%,许多卵已产出;羽化第5、6天,五级卵巢比
    例上升;习习化第7天,五级卵巢比例已达80%。此时,大部分蛾子已排完卵.这说明
    交配能刺激雌蛾卵巢发育。
     同一日龄交配和未交配条件下,除4、7日龄的平均飞行时间存在差异外,其余
    日龄的飞行能力均没有显著差异。说明交配并不能影响成虫的飞行能力,而且雌蛾的
    怀卵量与飞行能力也不存在显著相关。因此,甜菜夜蛾不存在其他迁飞昆虫所具有的
     ,’9尸子发生与飞行共扼”现象。
     饲养期间光周期的长短和3一5日龄幼虫周期性饥俄对甜菜夜蛾飞行能力没有显
    著影响。不同饲养温度(20℃一30℃)对甜菜夜蛾飞行持续时间和飞行距离有显著影
    响,饲养温度越高,飞行能力越强。
     根据飞行持续时间(吊飞12h)将甜菜夜蛾种群划分为居留型(<5 omin)、迁飞
    型(>somin)、强迁飞型(》25omin)和再迁飞型(第二次吊飞飞行持续时间仍>
    50min):在所有吊飞个体(684头)中,供试虫的起飞比率为43.6%(298头),起飞
    个体中的再迁飞比例为503%(150头)。5日龄蛾在生殖隔离和自然交配条件下的迁
    飞型比率存在显著差异(U二1.9800,P<0.05),但其他日龄的迁飞型比率均未达到显
    著差异(U二0.4320,1 .5389,0.5868,P>0.05)。甜菜夜蛾的迁飞型个体均最多可进
    行4次再迁飞,其再迁飞型比率随着再迁次数的增多而逐渐降低,且强飞个体表现较
    强的再飞能力;不同日龄间的再迁飞型比例存在一定差异,生殖隔离和自然交配种群
    随着龄期的增加,其再迁飞型比率并没显著下降。
     通过田间调查、灯诱和性诱资料表明,甜菜夜蛾在江苏丰县一年可发生五代;四
    月初黑光灯下始见越冬代蛾,十月下旬终见末代蛾;从三代开始出现世代重叠。幼虫
    以三四代为害最为严重;田间卵峰日通常比蛾峰日落后2一3天;成幼虫喜欢在幼嫩
    植林上产卵、取食且卵块多位于叶片背面,特别是趋向在丰县主栽蔬菜一芦笋上产卵。
    
    甜菜夜蛾迁飞的生态机制研究.中文摘要
     气候资料分析表明,甜菜夜峨在江苏丰县基本上不能越冬,即使个别暖冬年?
The beet armyworm, Spodoptera exigua (Hubner), is a polyphagous pest with worldwide distribution mainly in tropical and subtropical regions. In recent years, the beet armyworm has risen to the status of an economically important pest of many kinds of crops in China, especially in the northern part of the country. The long distance migration of the beet armyworm has been reported based on some indirect evidences. Our understandings on the genetic, physiological and ecological factors affecting flight capacity of the moths are still very poor.. In this paper, the ecological mechanisms of beet armyworm migration were explored, including population status, ecological fitness, cold hardiness and overwintering, reproduction and flight syndrome, re-emigration capacity, genetics of flight capacity and activities of enzymes in energy metabolism. The results were summarized as follows.
    Life tables of laboratory population at five different temperatures were constructed. The results showed that the developmental rate increased with temperature from 20# to 32#, and the relationship could be simulated by a logistic model. The developmental temperature thresholds and sum of degree-day accumulation required for egg, larva, pupa, preoviposition stages and generation were 13.73#, 15.68#, 15.09#, 12.83#, 15.06#, and 37.9, 126.3, 73.8, 29.2, 265.6 degree day respectively. Survival rate of immature stage, mating rate of adults and population trend index were the highest at 26#. Mean egg productions at 26# and 29# were 604.7 and 611.4 respectively. Adult longevity, preoviposition and ovipositon periods declined at high temperature. Relationship between generation survival rate (5), population trend index (I) and temperature (t) could be descried by the equations: S= -0.5056 t2+ 27.652 t - 326.02, I= -3.2532 t2+ 178.45t - 2270.40.
    Supercooling points and freezing points at different developmental stages of the beet armyworm for different geographical populations were measured with a thermocouple. Supercooling points of pupae were the lowest and its supercooling phenomenon was also the most obviously, so pupa is the most possible stage for overwintering. Cold hardiness of the population from Hengyang, Hunan Province was the most powerful, followed by Longrao population (Hebei Province) and Nanjing population (Jiangsu Province).
    
    
    Overwintering survival rate estimated by field trials with pupae burying suggests that the beet armyworm could not possibly overwinter in Nanjing.
    Ovarian development of beet armyworm was classified by ovarian dissection, including transparent stage (grade I, before 5-days old pupae stage), vitellogenesis stage (grade II, late pupae and newly emerged moths), matured stage (grade III, the 2nd and 3rd day after emergence), egg-laying stage (grade IV, the 4th and 5th day after emergence), late egg-laying stage (grade V, since the 6th day after emergence). There was obvious correlation between ovarian development and the amount of egg-laid. The ovarian development of beet armyworm is characteristic of a quite short preoviposition stage (2.40 +1.06d). The second grade would be seen in the late stage of pupae and 80% of the individuals emerged in the second day after emergence would be with mature eggs (grade III and IV), among which 15% of the moths with the 4th grade ovary had laid their eggs.
    Flight capacity of the virgin moths at different ages was significantly different. The maximum flight activity were performed by 3 and 4 days old moths, although the newly emerged moths could also flight a while, Ovarian development of virgin females was slowly and no eggs were laid until the 5th and 6th day after emergence when a few eggs were laid. But mated moths showed quick ovarian development that more than 50% of the females had laid eggs at 3 days old, meanwhile, the strongest flight capacity appeared on the 2nd and 3rd day after emergence. The tethered tests demonstrated that flight ability of virgin and copulated moths at the same ages showed no difference, and that there were no significant correlations b
引文
1. 曹雅忠,罗礼智,李光博.粘虫飞翔能源物质及其消耗.昆虫学报,1995,38(3):290-295.
    2. 陈剑,李恩才.甜菜夜蛾幼虫空间格局分析.陕西农业科学,1998,(3):5-6.
    3. 陈若篪.脂类作为褐飞虱飞行能量来源的研究.昆虫学报,1983,26(1):42-48.
    4. 陈若篪,丁锦华,谈涵秋.迁飞昆虫学.北京:中国农业出版社,1989.
    5. 陈若篪,程遐年,杨联民,等.褐飞虱卵巢发育及其与迁飞的关系.昆虫学报,1979,22(3):280-288.
    6. 陈永兵.寄主植物对甜菜夜蛾生长发育的影响.昆虫知识,1999,36(6):332-334.
    7. 陈永年.三种重要蔬菜害虫幼虫分龄标记探讨.长江蔬菜,1994,2:17-18
    8. 戴淑慧,杨亚萍.甜菜夜蛾生物学特性及防治研究.植物保护,1993,19(2):20-21.
    9. 戴率善,李宗冠.徐州地区甜菜夜蛾的发生规律及治理策略,经济作物有害生物防治研究进展,2001,297-301
    10.董双林.中国甜菜夜蛾性激素及其应用的研究.中国科学院博士学位论文,1999,34-44.
    11.董元利,倪方进,张文强.胶东地区甜菜夜蛾在大葱上发生为害规律初.植保技术与推广,1997,17(1):22.
    12.杜建光,王群,程遐年.褐飞虱翅发育的组织学研究.南京农业大学学报,1998,21(1):121-124
    13.封传红,翟保平,张孝羲.褐飞虱的再迁飞能力.[J] 中国水稻科学,2001,15(2):125-130.
    14.封传红.我国北方稻区稻飞虱大发生种群的形成机制.南京农业大学硕士学位论文,2000,15.
    15.冯殿英.甜菜夜蛾越冬蛹的抗寒能力测定.中国植物保护研究进展.北京:中国科学技术出版社,1997,262.
    16.张孝羲,张建新,耿济国.昆虫生态及预测预报实验指导.北京:中国农业出版社.1991.
    17.韩兰芝,翟保平,张孝羲.不同温度下的甜菜夜蛾实验种群生命表.昆虫学报,2003,46(2):184~189.
    18.韩兰芝,翟保平,张孝羲.甜菜夜蛾在太仓菜田的发生及危害特征.昆虫知识,2003,40(2):136—140
    19.菏泽地区植保站,甜菜夜蛾预测预报和防治技术研究.
    20.江幸福,刘悦秋,罗礼智,胡毅.高温对粘虫未成熟期生长发育的影响.北京农学院学报,1998,13(2):20-26.
    21.江幸福.甜菜夜蛾越冬、飞行及生殖的变异.中国农科院硕士学位论文.1999.
    22.江幸福,罗礼智.甜菜夜蛾飞行能力与蛾龄的关系.植物保护21世纪展望,北京:中国
    
    科技出版社.1999,568-571.
    23.江幸福,罗礼智.甜菜夜蛾爆发原因及防治对策.植物保护,1999,25(3):32-33
    24.江幸福,罗礼智,胡毅.饲养温度对粘虫飞行和生殖能力的影响.生态学报,2000,20(2):288-292.
    25.江幸福,罗礼智.幼虫食物对甜菜夜蛾飞行和生殖的影响.植物保护学报,2000,274:327-332.
    26.江幸福,罗礼智,胡毅.成虫期营养对甜菜夜蛾飞行和生殖的影响.植物保护学报,2000,27(4):328-332.
    27.江幸福,甜菜夜蛾抗寒与越冬能力研究.生态学报,2001,21(10):1575-1582.
    28.江幸福,罗礼智,李克斌等.温度对甜菜夜蛾飞行能力的影响.昆虫学报,2002,45(2):275-278.
    29.江幸福,罗礼智,胡毅.甜菜夜蛾的迁飞研究.面向21世纪的植物保护发展战略,北京:中国科技出版社.2001,371-375
    30.李典谟,王莽莽.快速估计发育起点温度及有效积温的研究.昆虫知识,1986,23(4):184-186.
    31.李惠明,潘月化.上海地区甜菜夜蛾发生规律及测报防治技术.长江蔬菜,1995,(5):17-18.
    32.李克斌,罗礼智.粘虫飞行肌中与能量代谢有关的酶活性研究.昆虫学报,1999,42(1):37-43.
    33.刘庆年,刘俊展,金宗亭等.大豆田甜菜夜蛾幼虫空间分布型及抽样技术初探.植保技术与推广,2000,20(3):35.
    34.刘万才,姜玉英,汤金仪,姜京宇,王睿文.我国甜菜夜蛾的发生现状及对策.中国农学通报,1998,14(3):41-42.
    35.刘效明.甜菜夜蛾生物学特性及防治技术.植物保护,1995,21(6):29-30.
    36.陆均天.2002年我国天气气候特点.气象,2003,29(4):32-36
    37.陆致平,甜菜夜蛾的发生规律极其防治研究.中国植物保护研究进展,北京:中国科技出版社,1995.
    38.罗礼智,李光博,胡毅.粘虫飞行与产卵的关系.昆虫学报,1995,38(3):284-289
    39.罗礼智.粘虫蛾飞行肌的发育:超微结构特征分析.昆虫学报,1996,39(4):366-374
    40.罗礼智,曹卫菊,钱坤,胡毅.甜菜夜蛾交配行为和能力.昆虫学报,2003,46(4):494-499.
    41.马骏,陈永年.甜菜夜蛾的空间分布型及其序贯抽样技术.湖南农业科学,1994,4:34-36.
    42.马骏.甜菜夜蛾生物学研究.湖南农业大学硕士学位论文,1997,19.
    
    
    43.马骏,柏连阳,陈永年.甜菜夜蛾生态学特性研究.植物保护学报,2000,27(3):215-220.
    44.沈晋良,吴益东.棉铃虫抗药性及其治理.北京:中国农业出版社.1995,91-94.
    45.宋国清,于迎春.山东省甜菜夜蛾的发生危害及防治.植物保护21世纪展望,1998,572-574
    46.苏建亚.甜菜夜蛾的迁飞及在我国的发生.昆虫知识,1998,35(1):55-57
    47.苏占平.江苏棉区四代棉铃虫猖獗因素及五代种群动态模拟的研究.南京农业大学硕士学位论文,1999,36-40.
    48.王宏晟,徐洪富,崔峰,许永玉,周真.温度对甜菜夜蛾生殖行为及生殖力的影响.生态学报,2004,24(1):162—166.
    49.王宏晟,徐洪富,崔峰.成虫期营养对甜菜夜蛾生殖力及卵巢发育的影响.西南农业学报,2004,17(1):34-37.
    50.王就光主编.蔬菜病虫防治及杂草防除.北京:中国农业出版社,1990.
    51.王群,杜建光,程遐年.褐飞虱翅型分化遗传规律的研究.昆虫学报,1997,40(4):343-348.
    52.王晓容.甜菜夜蛾研究进展.仲恺农业技术学院学报,1995,8(2):87-93
    53.王宪辉,徐洪富.甜菜夜蛾雌性生殖系统发育及分级的研究.山东农业大学硕士学位论文,2001,42-46.
    54.王宗舜,欧阳迎春.东方粘虫飞行初期糖类的动用和消耗.昆虫学报,1995,38(2):146-152.
    55.汪远昆.白背飞虱的迁飞生物学和田间种群动态.南京农业大学硕士学位论文,2002.
    56.吴坤君,陈玉平,李明辉.温度对棉铃虫实验种群生长的影响.昆虫学报,1980,23(4):358-367.
    57.忻介六(译).甜菜夜蛾冬眠的特性与抗寒能力.昆虫学译报,1956,4:44-4
    58.徐金汉,关雄,黄志鹏.不同温度对甜菜夜蛾实验种群的影响.植物保护学报,1999,26(1):20-24.
    59.徐金汉,关雄,黄志鹏,余朝勤.不同温湿度组合对甜菜夜蛾生长发育及繁殖力的影响.应用生态学报,1999,10(3):335-337.
    60.徐金汉,王兆守,关雄.光周期对甜菜夜蛾生长发育状况的影响.福建农林大学学报,2002,31(2):177-180.
    61.姚青.迁飞昆虫的翅振模式与翅形特征.中国农科院硕士学位论文,2000.
    62.伊仁国,欧阳本友,刘爱媛.甜菜夜蛾生物学特性研究.昆虫知识,1994,31(1):7-10.
    63.翟保平,张孝羲.昆虫迁飞场的数值模拟.浙江农业大学学报,1994,20:628-633.
    64.翟保平,张孝羲.迁飞过程中昆虫的行为:对风温场的适应与选择.生态学报,1993,13:356-363.
    
    
    65.翟保平等.昆虫迁飞行为的参数化.Ⅰ行为分析.生态学报,1997,17:7-17.
    66.翟保平,张孝羲.昆虫迁飞行为的参数化.Ⅱ模式与检验.生态学报,1997,17:190-199.
    67.翟保平,商晗武,程家安.稻水象甲卵巢发育程度的分级及其应用.中国水稻科学,1999,13:109-113.
    68.翟保平.区域尺度的昆虫迁飞行为与害虫间歇性猖獗.生态学杂志,1999,18(4):42-45.
    69.章士美,赵永祥.中国农林昆虫地理分布.北京:中国农业出版社,1996,260-261.
    70.张孝羲,陆自强,耿济国等.稻纵卷叶螟迁飞途径的研究.昆虫学报,1980,23(2):130-140.
    71.张孝羲,耿济国,周威君.稻纵卷叶螟迁飞的生态机制研究.南京农学院学报,1981,4:1-12.
    72.张孝羲,程遐年.中国迁飞昆虫研究进展.江苏昆虫学会论文集,2000,12-18.
    73.张孝羲主编.昆虫生态及预测预报.北京:中国农业出版社,2001,45-50.
    74.张志涛.昆虫迁飞与昆虫迁飞场.植物保护,1992,18(1):48-50.
    75.郑允等.中华农业研究,1985,34(33):315-322.
    76.郑祖强,张孝羲,谢俊英,等.棉铃虫的飞行能力及兼性迁飞.应用生态学报,2000,11(4):603-608.
    77.周传金,徐学芹.甜菜夜蛾生物学特性及防治研究.中国甜菜,1993,1:24-27.
    78.朱树勋.甜菜夜蛾抗药性测定及田间抗性检测.昆虫知识,1996,33(2):82-85.
    79. Ali A, Gaylor M J. Effects of temperature and larval dietson development of the beet armyworm. Enviro. Entoraol. 1992, 21(4): 780-786.
    80. Beenakkers A M Th. Carbohydrate and fat as a fuel for insect flight: a comparative study. J. Insect. Physiol., 1969, 15: 353-361.
    81. Beenakkers A M Th., Van den Brock A. T. M. and De Ronde T. J. A. Development of catabolic pathways in insect flight muscle: a comparative study. J. lnsect. Physiol., 1975, 21: 849-859.
    82. Beenakkers A M Th., Van der Horst D. J. and Van Marresijk W, J. A. Insect fuscle metabolism. Insect Biochem. 1984, 14: 243-260.
    83. Bradford M. M. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of proein-dye binding. Analytical Biochemistry, 1976, 72: 248-254.
    84. Brower L. P. New perspective on the migration biology of the monarch butterfly, Danaus plexippus. In: Rankin M. A.(eds). Migration: mechanisms and adaptive significance. Contrib Mar Sci Suppl. 1985, 27: 748-785.
    85. Bush G. L. & Neck R. W. Ecological genetics of the screwworm fly and its bearing on the
    
    quality control of mass-rearing insects. Environ. Entomol., 1976, 5: 821-826.
    86. Caldwell R. L. et al. Heritability of flight duration in the milkweed bug, Lygaeus kalmii. Nature, 1969, 223: 91-92.
    87. Caron R E, Bradley J R, Pleasants R. h.. Over-wintering survival of Heliothis zea produced on lately panted corn in North Carolina. Enviro Entomol., 1978, 7: 193-196.
    88. Cole L. C. The population consequences of life history phenomena. Q. Rev. Biol., 1954, 29: 103-137.
    89. Colvin J & Gatehouse A, Migration and prereproductive period of Heliothis armigera. Heredity, 1993, 70: 407-413.
    90. Commonwealth Agricultural Bureau. Distribution Maps of Pests Series(Agriculture). London: Henry Ling Ltd., 1972. Maps no. 302.
    91. Commonwealth Agricultural Bureaux Distribution maps of pests. Series A(Agriculture). London: HenryLing Ltd., 1972, Maps. no. 302.
    92. Denno R. F., Dingle H.. Considerations for the development of a more general life history theory. In: Denno R. F., Dingle H.(eds). Insect life history patterns: habitat and geographic variation. Springer, Berlin Heidelberg New York, 1981, 1-8.
    93. Denno R. F., Douglas L. W., Jacobs D. Crowding and host plant nutrition: environmental determinants of wing form in Prokelisia marginata. Ecology. 1985, 66: 1588-1596.
    94. Dingle H. The influence of environment and heredity on flight activity in the milkweed bug. J. Exp. Biol. 1968a, 48: 175-184.
    95. Dingle H. Migration strategies of insects. Science. 1972, 175: 1327-1335.
    96. Dingle H. The ecology and evolution of migration, ln: S. A. Gauthreaux, ed Animal Migration, Orientation, and Navigation. Academic Press, New York. 1980, 1-101.
    97. Dingle H. Evolution and genetics of insect migration. In: lnsect Flight: Dispersal and Migration,(eds. Danthamarayana W.). Springer-Verlag, Berlin, Heidelberg, 1986, 11-26.
    98. Dingle H. Quantitative genetics of hife history evolution in a migrant insect. In Population Genetics and Evolution(eds. Jong G. D.). Springer-Verlag, Berlin, Heidelberg, 1986b, 83-93.
    99. Dingle H. Evolutionary and genetics of animal migration. Am. Zool. 1991, 31, 253-264.
    100. Dingle H. Genetic analyses of animal migration. In: C. R. B. Boake, ed. Quantitative Genetics Studies of Behavioral Evolution. University Chicago Press, Chicago, 1994, 145-164.
    101. Dingle H. Evolutionary Genetics of Migration. In: H. Dingle, ed. Migration.Oxford University Press, New York. 1996, 353-381.
    102. Drake V. A. & Fallow R. A. The influence of atmospheric structure and motions on insect
    
    migration. Ann. Rev. Ent., 1988, 33: 356-363.
    103. Drake V. A. et al. Insect migration: a holistic conceptual model. In: Drake V. A. & Gatehouse A. G.(eds) Insect Migration: tracking resourcest through space and time. U K: Cambridge University Press, 1995, 427-457.
    104. Eanes W. F. The monarch butterfly as a paradigm of genetic structure in a highly dispersive species. In: R. L. Rabb & Kennedy G. G. Movement of highly mobile insects: Concepts and Methodology in Research. North Carolina State University. 1979, 88-102.
    105. Eger J E, Sterling W L, Hartstack A. W.. Winter survival ofHeliothis viresecens and Heliothis zea in collage station, Texas. Enviro. Entomol. 1983, 12: 970-975.
    106. Eger J E, Witz J, Hartstack A W, Stering W. L.. Survival of pupae of Heliothis viresecens and Heliothis zea at low temperature. Can. Entomol., 1982, 14: 289-300.
    107. Fairbrain D. J. & Butler T. C. Correlated traits for migration in the Gerridae(Hemiptera, Heteroptera): a field test. Ecol. Entomol., 1990, 15: 131-142.
    108. Falconer D. S. Introduction to Quantitative Genetic, 2nd eds, Longman, London. 1981.
    109. Falconer D. S. Introduction to Quantitative Genetics, 3rd ed. Longman, London, 1989.
    110. Feng H Q, Wu K M, Cheng D F, Guo Y Y. Radar observation of the autumn migration of the beet armyworm, Spodoptera exigua, and other moths in northern China. Bul. of Entomol. Res., 2003, 93: 115~12.
    111. French R A. Migration of Laphygma exigua to the Brith .Isles in relation to Large-Seale Weather System. J. Anim. Ecol. 1968, 38: 199-210.
    112. Futuyma D. J. Evolutionary Biology. Sinauer Associates, Inc., Saunderland, Massachusetts. 1986.
    113. Fey R E, Carranza R L. Cotton pest: overwintering of three Lepidoptera species in Arizona. J. Econ. Entomol.. 1973, 66: 657-659.
    114. Fey R E. Pupation preferences of bollworms, tobacco budworms and beet armyworms and impact on mortality resulting from cultivation of irrigated cotton. J. Econ. Entomol. 1978, 71: 570-572.
    115. Gatehouse A. G. Migration of the African armyworm, Spodoptera exempta: genetic determination of migratory capacity and a new synthesis. In: W. Danthanarayana, ed. Insect Flight: Dispersal and Migration, Springer-Verlag, Berlin, 1986, 128-144.
    116. Gatehouse A. G. Migration of the African armyworm, Spodoptera exempta: genetic determination of migratory capacity and a new synthesis. In: W. Danthanarayana, ed. Insect Flight: Dispersal and Migration, Springer-Verlag, Berlin, 1986, 128-144.
    
    
    117. Gatehouse A. G. Genes, environment, and insect flight. In Insect Flight(Eds. Goldsworthy, G. J. & Wheeler, C. H.), CRC Press Inc. Boca Raton, Horida. 1989, 115-138.
    118. Graham H M, Fife L C. Overwinter of Heliothis spp. in the Lower Rio Grande valley, Texas. J Econ. Entomol., 1972, 65: 708-711.
    119. Gregg P C, Fitt G P, Zalucki M P and Murray D A H. Insect migration in an arid continent, Ⅱ Helicoverpa spp. in eastern Australia. In: Drake V. A. & Gatehouse A. G.(eds) Insect Migration: tracking resourcest through space and time. U K: Cambridge University Press, 1995, 151-172.
    120. Griswold M J. Responses ofSpodoptera exigua larvae to Light. Enviro. Entomol, 1985, 14(5): 650-653.
    121. GU H. N. The ecology and genetics of flight activity in Epiphyas postvittana. Ph. D thesis of the University of New England. 1991, 189-198.
    122. GU. H. & Danthanarayana W. Quantitative genetic analysis of dispersal in Epiphyas postvittana. Ⅰ. Genetic variation in flight capacity. Heredity. 1991, 68: 53-60.
    123. GU. H. & Danthanarayana W. Quantitative genetic analysis of dispersal in Epiphyas postvittana. Ⅱ Genetic covariations between flight capacity and life-history traits. Heredity. 1992, 68: 61-69.
    124. Gunn A., Gatehouse A. G.. The development of enzymes involved in flight muscle metabolism in Spodoptera exempta and Mythimna separata Comp. Biochem. Physiol., 1988, 91b(2): 315-324.
    125. Gunn, A., Gatehouse A. G. & Woodrow K. P. Trade-off between flight and reproduction in the African armyworm moth, Spodoptera exempta. Physiol. Entomol., 1988, 14: 419-427.
    126. Gunn, A., Gatehouse A. G. The migration syndrome in the African armyworm moth, Spodoptera exempta: allocation of resources to flight and reproduction. Physiol. Entomol., 1993, 18: 149-159.
    127. Hardoe J. The photoperiodic control of wing development in the black bean aphid, Aphis fabae. J. Insect Physiol., 1987, 33: 543-549.
    128. Harrison R. G. Dispersal polymorphisms in insects. Ann. Rev. of Ecol. and Sys. 1980, 11: 95-118.
    129. Hartl D. L. Principles of Population Genetic. Sinauer Associates, Inc., Sauderland, Massachusetts. 1980.
    130. Hegmann J. P. & Dingle H. Phenotypic and genetic covariance structure in milkweed bug life history traits. In Evolution and Genetics of Life Histories(Eds. Dingle H. & Hegmann J P).
    
    Springer-Vedag, New York. 1982, 177-185.
    131. Huffman F R, Mueller A J. Effects of beet armyworm infestation levels on soybean. J Econ Entomol. 1983, 76(4): 744-747.
    132. Jaenike J & Selander R K. On the question of host races in the fall webworm, Hyphantria cunea. Entomol. Exp. Appl. 1980, 27: 31-37.
    133. Johnson C. G. A basis for a general system of insect migration and dispersal by flight. Nature, 1960, 186: 348-350.
    134. Johnson C. G. Physiological factors in insect migration by flight. Nature, 1963, 198: 423-427.
    135. Johnson C. G. Migration and Dispersal of Insects by Flight. London: Mrthuen & Co Ltd, 1969, 763.
    136. Johnson S G. Insect migration in North America: synoptic-scale transport in a highly season environment. In: Drake V. A. & Gatehouse A. G.(eds) Insect Migration: tracking resourcest through space and time. U K: Cambridge University Press, 1995, 31-65.
    137. Kettle H. B. D. A possible genetic explanation and understanding of migration of continuous brooded insects. Nature. 1952, 169: 832-833.
    138. Kennedy J. S. A turning point in the study of insect migration. Nature, 1961, 189: 785-791
    139. Messina F. T. Genetic contribution to the dispersal polymorphism of the cowpea weevil. Ann. Entomol. Soc. Am. 1987, 80: 12-16.
    140. Kareiva P. S. Space: the final frontier for ecological theory. Ecol., 1994, 75: 1.
    141. Kim Y., Song W., Effect of thermoperiod and photoperiod on cold tolerance of Spodoptera exigua. Enviro Emtomol, 2000, 29 (5): 868-873.
    142. Kim Y., Kim N., Cold hardness in Spodoptera exigua. Enviro Emtomolo, 1997, 26(2): 1117-1123.
    143. Kimura S. Immigration of the beet armyworm, Spodoptera exigua, to Northern Coastal Area of Akita Prefecture, 1990, in relation to atomospheric conditions. Ann. Rept. Plant. Prot. North Japan, 1991, 42: 148-151.
    144. Kimura S. Immigration of the beet armyworm, Spodoptera exigua, to northern coastal area of Akita Prefecture, 1990, in relation to atomospheric conditions. Ann Rept Plant Proc North Japan, 1991, 42: 148-151.
    145. Kisimoto R, Sogawa K. Migration of the brown planthopper Nilaparvata lugens and the white-backed planthopper Sogatella furcifera in East Asia: the role of weather and climate. In: Drake V. A. & Gatehouse A. G.(eds) Insect Migration: tracking resourcest through space and time. U K: Cambridge University Press, 1995, 67-91.
    
    
    146. Klausner E., Miller E. R., Dingle H. Genetic of brachyptery in a lygaeid bug island population. Heredity, 1981, 72: 288-289.
    147. Lakovaara S & Keranen. Variation at the α-Gpdh locus of drosophilids. Hereditas, 1980, 92: 51-258.
    148. Lande R. A quantitative genetic theory of life history evolution. Ecology, 1982b, 63: 607-615.
    149. Lavie B. & Ritte U. The relation between dispersal behavior and reproductive fitness in the flour beetle, Tribolium castaneum. Can. J. Genet. Cytol., 1978, 20: 589-595.
    150. Lee S. D. Effect of temperature on the development of beet armyworm, Spodoptera exigua, Research reports of the rural development administration, 1991, 33(2): 58-62.
    151. Leggett W. C. The role of migration in the life history evolution of fish. In: M. A. Rankin, ed. Migration: Mechanisms and Adaptive Significant. Contrib. Marine Sci. 27(Suppl.), 1985, 277-295.
    152. Luckibill L. S., Grudzien T. A., Rhine E. & Weisman G. The genetic basis of adaptation to selection for longevity in Drosophila melanogaster. Evolut. Ecol., 1989, 3: 31-39.
    153. McDonald G. Insect migration in an arid continent. I The common armyworm Mythimna convecta in eastern Australia. In: Drake V. A. & Gatehouse A. G.(eds) Insect Migration: tracking resourcest through space and time. U K: Cambridge University Press, 1995, 131-150.
    154. Michael G. C., David P. B., Paul C. H. and Henry A. L.. Estimation of the fructose diphosphatase-phosphofructokinase substrate cycle in the flight muscle of Bombus affinis. Biochel. J., 1973, 134: 589-597.
    155. Mitchell E. R., Migration by Spodoptera exigua and S. frugiperda. In: Rabb. R L & Kennedy(eds). Movement of Hight Mible Insects: Concepts and Methodology in Research, Raleigh: North Carolina State University, 1979, 386-393.
    156. Mochizuri F., Shibuya T., Antennal single sensillum responses to sex pheromone in male beet armyworm, Spodoptera exigua. Appl. Ent. Zool., 1991, 26(3): 409-411.
    157. Mochizuri F., Sugi N., Shibuya T. Pheromone sensillum of the beet armyworm, Spodoptera exigua. Appl. Ent. Zool., 1992, 27(4): 547-556.
    158. Mochizuri F., Shibuya T., lhara T., et al. Electrophysiological responses of the male antenna to compounds found in the female sex pheromone gland of Spodoptera exigua. Appl. Entomol. Zool. 1993, 28(4): 489-496.
    159. Mori K, Nakasuji F. Genetic analysis of the wing-form determination of the small brown planthopper. Res. Popul. Ecol., 1990, 32: 279-287.
    160. Padgham D. E. Flight fuels on the brown planthopper, Nilaparvata lugens. J. Insect Physical.,
    
    1983, 29(1): 95-99.
    161. Palmer J. O.. Ecological genetics of wing length, flight propensity, and early fecundity in migratory insect. In Migration: Mechanisms and Adaptive Significance(eds. Rankin M. A.), Contrib. Mar. Sci.(suppl.), 1985, 27: 653-663.
    162. Palmer J. O. & Dingle H. Direct and correlated responses to selection among life history traits in milkweed bugs. Evolution, 1986, 40: 767-777.
    163. Palmer J. O. & Dingle H. Responses to selection on flight behavior in a migratory population of milkweed bugs. Evolution, 1989, 43: 1805-1808.
    164. Pani S. N. & Lasley J. E Genotype and environment interactions in animal. Res. Bul., 1972, 992.
    165. Parker W. E. & Gatehouse A. G. The effect of larval rearing condition on flight performance in female of the African armyworm, Spodoptera exempta. Bull. Entomol. Res., 1985a, 75: 35-47.
    166. Parker W. E. & Gatehouse A. G. Genetic factors in the regulation of migration in the African armyworm moth. Spodoptera exemptao Bull. Entomol. Res.. 1985b, 75: 49-63.
    167. Pledgly D E, Reynolds D R, Tatchell G M. Long-range insect migration in relation to climate and weather: Africa and Europe. In: Drake V. A. & Gatehouse A. G.(eds) Insect Migration: tracking resourcest through space and time. U K: Cambridge University Press, 1995, 3-30.
    168. Rankin M. A., McAnelly M. L. and Bodenhamer J. E. The oogenesis-flight syndrome revisited. In: Dingle H.(eds). Insect Flight: Dispersal and Migration. Springer-Verlag, Berlin, Heidelberg, 1986, 11-26.
    169. Ritchie M. G., Butlin R. K., Hewitt G. M.. Causation, fitness effects and morphology of macropterism in Chorthippus parallelus. Ecol. Entomol., 1987, 12: 209-218.
    170. Ritte U & Lavie B. The genetic basis of dispersal behavior in the flour beetle, Tribolium castaneum. Can. J. Genet. Cytol., 1977, 19: 717-722.
    171. Robert D. The biomechanics of insect flight. Princeton University Press, New Jersey. 1999.
    172. Roff D. A. Spatial heterogeneity and the persistence of population. Oecologia. 1974a, 15: 245-258.
    173. Roff D. A. The analysis of a population model demonstrating the importance of dispersal in a heterogeneity environment. Oecologia. 1974b, 15: 259-275.
    174. Roff D. A. Dispersal in dipterans: its costs and consequences. J. Anim Ecol., 1977: 46: 443-456.
    175. Roff D. A. The cost of being able to fly: a study of wing polymorphism in two species of crickets. Oecologia. 1984, 63: 30-37.
    
    
    176. RoffD. A. The evolution of wing dimorphism in insects. Evolution, 1986, 40: 1009-1020.
    177. Roff D. A. Antagonistic pleiotropy and the evolution of wing dimorphism in the sand cricket, Gryllusfirmus. Heredity, 1990, 65: 169-177.
    178. Rosenberg L. J., Magor J. I. Prediction wind borne displacements of the the brown planthopper, Nilaparvata lugens, from synoptic weather data. I Long distance displacements in the northeast monsoon. J. Anita. Ecol., 1987, 56(1): 39-51.
    179. Rosenberg L. J., Magor J. I. Flight duration of the brown planthopper, Nilaparvata lugens. Ecol. Ent., 1983, 8: 341-350.
    180. Rygg T. D. Flight of Oscinella frit, female in relation to age and ovary development. Entomol. Exp. Appl., 1966, 9: 74-84.
    181. Rummel D. R., Neece K. C., Arnold M. D., Lee B. A.. Over-wintering survival and spring emergence of Heliothis zea in the Texas southern high plain, Southwest Entomol., 1986, 11: 1-9.
    182. Schaefer G. W. Rader observation of insect flight. Syrup. R. Ent. Soc. Lond., 1976, 7: 157-197.
    183. Slosser J E, Phillips J. R., Herzog G. A. Over-wintering survival and spring emergence of the bollworm in Arkansas. Enviro. EntomoL, 1975, 4: 1015-1024.
    184. Smits P. H., Van D. W., Vrie M., Vlak J. M. Oviposition of beet armyworm on greenhouse crops. Enviro. Entomol., 1986, 15(6): 1189-1191.
    185. Solbreck C & Anderson D. B. Wing reduction: its control and consequences in a iygaeid bug, Spilostethus pandurus. Hereditas, 1989, 111: 1-6.
    186. Southwood T. R. E. Migration of terrestrial arthropods in relation to habitat. Biol. Rev. 1962, 37: 171-214.
    187. Southwood T. R. E. Habitat, the templet for ecological strategies? J. Anita. Ecol. 1977, 46: 337-365.
    188. Suenaga H., Tanaka A. Jpn. J. Appl Entomol. Zool. 1997, 41(1): 17-25.
    189. Tanaka S. Wing polymorphism, egg production and adult longevity in Pteronemobius taprobanenis. Kontyau. 1976, 44: 327-333.
    190. Tauber M. J., Tauber C. A., Nyrop J. P., Villani M. G.. Moisture, a vital but neglected factor in the seasonal ecology of insects: hypotheses and tests of mechanism. Environ. Entomol., 1998, 27(3): 523-530.
    191. Thomas W. S. and Showers W. Reproductive maturity, mating status, and long-duration flight behavior of Agrotis ipsilon and the conceptual misuse of the oogenesis-flght syndrome by entomologists. Enviro. Entomo., 1992, 21(4): 677-688.
    192. Tucker V. A. Energetic cost of locomotion in animals. Comp. Biochem. Physiol. 1970, 34:
    
    841-846
    193. Vepsalainen K. Wing dimorphism and diapause in Gerris: determination and adaptive significance. In: H. Dingle, ed. Evolution of Insect Migration and Diapause. Springer, New York, 1978, 218-253.
    194. Wakamura S. Mating behivior of beet armyworm moth Spodoptera exigua. Jpn J Appl Ent Zool., 1989, 33(1): 31-33.
    195. Wakamura S.. Reproduction of beet armyworm moth Spodoptera exigua and influence of delayed mating. Jpn J Appl Ent Zool., 1990, 34(1): 43-48.
    196. Walden K J. Insect migration in an arid continent. Ⅲ. The Australian plague locust Chortoicetes terminifera and the native budworm Helicoverpa punctigera in Western Australia. In: Drake V. A. & Gatehouse A. G.(eds) Insect Migration: tracking resourcest through space and time. U K: Cambridge University Press, 1995, 173-190.
    197. Weis-Fogh T. Respiration and tracheal ventilation in locusts and other flying insects. J Exp. Biol. 1967, 47: 561-587.
    198. Wolf W. Wo, Sparks A. N., Pairs S. D., et. al, Insect Flight: Dispersal and Migration. Sping-Verlag, Berlin. Heidelberh, 1986, 221-234.
    199. Wolfgang W. W. & Christian B. Body colour and genetic variation in winged morph production in the pea aphid. Entomol. Experi. Appli, 2001, 99: 217-223.
    200. Wu A. Life history traits correlated with emigration in flour beetle population. Ph. D. Thesis, University of Illinois. 1981.
    201. Yoshida H. A., Parrella M. P. Chrysanthemum cultivar preferences exhibited by Spodoptera exigua. Enviro. Emtomol., 1991, 20(1): 160-165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700