粘虫和甜菜夜蛾保幼激素、能源物质及相关酶活力与飞行关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以粘虫Mythimna separata(Walker)为对象,本论文研究了成虫飞行与能源物质利用、保幼激素滴度及酶活力的关系:并对甜菜夜蛾Spodoptera exigua(Hb.)能源物质积累及其飞行能耗动态进行了相应的比较研究。主要研究结果如下:
     粘虫成虫飞行对甘油酯的恢复、保幼激素(JH)的滴度及飞行肌降解有不同影响,研究结果表明,不同日龄粘虫的飞行活动对其能源物质的积累及保幼激素的分泌产生的影响不同。1日龄蛾的飞行对粘虫这两方面产生的影响最大,其飞行个体能源物质的积累明显高于未飞行的对照个体:3日龄飞行的能源物质恢复与对照相当;但5日龄的飞行处理则很难达到对照的水平。1日龄飞行处理咽侧体活性在36h后明显高于对照,60h后已是对照的10倍,在108h达到其峰值;3日龄飞行个体咽侧体的活性稍高于对照,但差别不显著。5日龄飞行处理的咽侧体活性稍低于对照。不同日龄的飞行对飞行肌的降解也产生不同的影响。1日龄飞行处理的粘虫飞行肌干重在飞行后6d已经明显低于对照处理。3、5日龄的飞翔活动对其飞行肌降解的影响不明显。因此推测,粘虫咽侧体活化的关键时期可能在羽化后的1-3d之间。
     对3日龄粘虫雌蛾飞行过程中不同酶活性的研究结果表明,在室内饲养条件下,粘虫在飞行过程中其能量代谢有以下特点:在飞行的前5min,所有与糖代谢和脂肪代谢相关的酶活性都快速升高,这段时期脂肪代谢的酶活性也完全被活化,HOAD活性明显增强;但在5-60min持续飞行期间与能量代谢有关的酶活性都有所下降,表明此时飞行活性趋于平稳。飞行中的粘虫具有极高的有氧代谢能力,也具备一定的无氧代谢能力。飞行过程中GAPDH∶HOAD接近于1,但稍大于1,说明粘虫飞行过程中能源物质利用属于混合型,但动用脂肪比糖类稍多。
     用HPLC方法对粘虫成虫体内保幼激素进行了研究,并摸索出HPLC分离条件,明确了粘虫成虫体内主要有2种保幼激素,即JHI和JHII。不同日龄飞行对保幼激素的滴度影响不同,但总的来看,飞行会刺激JH的分泌。1日龄飞行12h后雌蛾的JHII滴度在饲养1d以后达到一个峰值,稍稍回落后再继续升高,表现出飞行对咽侧体活性的激活作用。从飞行后两种JH的衍生物(即JHI和JHII)达到峰值的时间来看,JHII比JHI要早1d,JHII在飞行后4d(5日蛾龄)达到较高值,而JHI则在飞行后5d达到。由1日龄飞行激活咽侧体活性、JH有明显升高这种现象,推断1日龄飞行会刺激粘虫的生殖行为。但JHI和JHII与生殖的相关性尚待明确。3日龄飞行也会刺激咽侧体分泌保幼激素,JHI或者JHII在飞行后6d左右(即7日蛾龄)达到峰值,与正常饲养的粘虫产卵前期差异不大。5日龄飞行的粘虫到了飞行后2d(即7日蛾龄)JH滴度未见明显上升,表明此时的飞行可能会对粘虫的生殖产生负面影响。
     对甜菜夜蛾成虫甘油酯和糖原积累的时间动态及不同日龄成虫飞行后能源物质的变化进行了研究,结果显示,2日龄成虫身体干重最高。羽化后2~5日龄雄蛾甘油酯含量显著高于初羽化雄蛾:雌蛾甘油酯积累与雄蛾类似,只有4日龄雌蛾甘油酯含量明显降低。雌蛾糖原含量从初羽化到2日龄急剧升高,然后逐日下降,5日龄又有所回升:雄蛾羽化后到1日龄糖原含
    
    中国农业大学博士学位论文摘要
    ...........峨.哪.国
    量迅速升高,以后的日龄有所波动,不同日龄飞行能源物质的消耗不同。2日龄的成虫飞行24h,
    糖类和脂类都有明显的消耗;i、4日龄飞行对糖类的消耗影响不明显。除l日龄雌蛾以外,l、
    4日龄成虫飞行后甘油酚都明显消耗。综合所获结果可以看出,甜菜夜蛾的飞行既能利用脂类,
    也能利用糖类作为飞行能源:甘油醋是甜菜夜蛾主要的能源贮备物质和飞行的主要能源。
    关键词:粘虫;甜菜夜蛾;一飞行:生殖;能源物质;咽侧体活性;保幼激素
    广沙
This impact of flight activity on the energy reserves employed, variation of juvenile hormone titer and enzyme activity of the migratory noctuid pest insects Mythimua separata and the energy reserves employed of the other nctuid pest Spodoptera exigua was studied, the major results are as follows:For adult of the migratory oriental armyworm moth,the flight activity of insect in the different eclosion day-old had various impact on the energetic reserves employed and secretion of the juvenile hormone (JH). Compared with the non-flight control, the flight activity of 1 day-old moth had the biggest effects on those two parameters, and the regeneration of energetic reserves in the flying individuals was significantly higher, the recovery of energetic materials in 3 day-old moth was similar to that of non-flight one, and 5 day-old moth displayed lower energetic reserves.The effects of flight activity of different day-old female on JH biosynthesis were confirmed in radiochemical assay. For 1 day-old female, the rate of JH biosynthesis was significantly higher than that of control after 36 hours flight, increased to 10 times of the control when flying for 60 hours, and peaked when flying for 108 hours. The rates of 3 and 5 day-old females were higher and lower than that of control, respectively, but none of them reached significant level.After flight 12 hours, the degeneration of the flight muscles of the moth varied with different day old. The flight muscles of 1 day-old female moth on day-1 were degenerated prior to that of control after 6 day flight, and there was no difference in flight muscles in 3 or 5 day-old females moth between flight and non-flight ones. Therefore, it could be deduced that the critical period for activation of the corpora allata of the migratory oriental armyworm moth is probably between 1 and 3 day after its emergence.The effects of the flight of female oriental armyworm moth on the activities of energetic metabolic related enzymes in the flight muscles were studied. These measured enzymes were glyceraldehydes-phosphate dehydrogenase (GAPDH), glycerol-3-phosphate dehydrogenase (GDH), lactate dehydrogenase (LDH), and 3-hydroxyacyl-CoA dehydrogenase (HOAD). In the first 5 minutes of the flight of 3 day-old moth, the activities of all the enzymes which are related to carbohydrate and increased rapidly, the lipid metabolism related enzymes were completely activated, and the activities of HOAD were significantly strengthened. But in flight duration from 5th to 60th minutes, the activities of all energy metabolism related enzymes decreased, suggesting that the flight was going to stabilization. High levels of GDH and LDH activities during flight suggested that both aerobic and anaerobic metabolism happened in flight muscle. The ratio of GAPDH: HOAD suggested that not only lipid, but also carbohydrate in the female, could be employed as energy substrates in the process of flight activity.Juvenile hormones (JH) could be effectively separated by reverse phase high performance liquid chromatography (RP-HPLC). The experiment was conducted on JH isolation and measurement in M. separate moth. Two JH homologues (JHI and JHII) were detected in the corpora allata (CA) of both male and female moth, and the main one was JHII. The JH titers in CA of M. separate moth varied with different day-old moth's flight, but generally the flight could stimulate JH secretion in CA. For 1
    
    day-old moth, after 12 hours flight then feeding, JH titer reached peak level in first feeding day, decreased slightly, and then increased with the feeding time, showing the stimulation of JH secretion by flight. According to the peak time of both JH homologue titers, the peak level of JHII and JHI appeared in the 4th and 5th feeding day, respectively.Based on the result that flight activity could stimulate the CA activity of lday-old moth, resulting in JH titer increasing significantly, a inference could be obtained that flight behavior in 1 day-old moth could stimulate moth fecundity behavior, but the correlation between JH titer and fecundity
引文
1.蔡彬,江幸福,罗礼智,等.温、湿度对粘虫蛾飞行能源物质利用的影响.生态学报,2002,22(2):1068~1074
    2.曹春.成虫期营养和神经内分泌对粘虫Mythimna separata (Walker)卵黄发生和卵巢发育的影响.北京农业大学博士学位论文,1995.
    3.曹雅忠,李光博,胡毅.光周期对粘虫生殖与飞翔影响的初步研究.生态学报,1997,17(4):402~406
    4.曹雅忠,罗礼智,郭军.粘虫生殖和飞翔与幼虫期营养的关系.昆虫学报,1996,39(1):105~108
    5.曹雅忠,罗礼智,李光博,等.粘虫飞翔能源物质及其消耗.昆虫学报,1995,38(3):290~295
    6.陈伟,傅强,张志涛,等.粘虫蛾的翅振频率及其若干影响因素.浙江农业大学学报,1996,22(1):25~29
    7.戴华国,程薇,吴晓毅,等.稻褐飞虱保幼激素酯酶活性的测定.南京农业大学学报,1997a,20(4):108~110
    8.戴华国,吴晓毅,冯从经,等.褐飞虱的交配行为及与保幼激素滴度的关系.昆虫学报,1997b,40(增):153~158
    9.戴华国,吴晓毅,武淑文.褐飞虱体内保幼激素滴度变化及其与翅型分化的关系.昆虫学报,2001,44(1):27~32
    10.戴淑慧,杨亚萍.甜菜夜蛾生物学特性及防治.植物保护,1993,19(2):20~21
    11.冯慧编.昆虫生物化学分析方法.北京:农业出版社,1989.
    12.龚和,翟启慧.昆虫卵黄蛋白和卵黄发生.昆虫学报,1979,22(2):219~236
    13.关雄,黄志鹏,彭建立,等.不同种类杀虫剂对甜菜夜蛾和小菜蛾的药效测定.福建农业大学学报,1996,25(2):168~172
    14.黄冠辉.飞翔对东亚飞蝗性成熟和生殖的影响.昆虫学报,1964,13(5):765~767
    15.江幸福,罗礼智,李克斌,等.甜菜夜蛾抗寒越冬能力研究.生态学报,2001,21(10)1575~1582
    16.江幸福,罗礼智,胡毅.甜菜夜蛾飞行能力及其与蛾龄的关系.植物保护21世纪展望,中国科学技术出版社,1998,568~571.
    17.江幸福,罗礼智,李克斌,等.温度对甜菜夜蛾飞行能力的影响.昆虫学报,2002,45(2):275~278
    
    18.李光博,王恒祥,胡文秀.粘虫季节性迁飞为害假说及标记回收试验.植物保护学报,1964,3(2):101~110
    19.李克斌,罗礼智,曹雅忠,等.粘虫飞行肌降解与生殖关系的初步研究,中国学术期刊文摘,2001,7(5):662~664
    20.李克斌,罗礼智.粘虫飞行肌中与能量代谢有关的酶活性研究.昆虫学报,1999,42(1):37~43
    21.李克斌,罗礼智.粘虫幼虫密度对成虫能源物质含量的影响.昆虫学报,1998,41(3):250~257
    22.罗礼智,江幸福,李克斌,等.粘虫飞行对生殖及寿命的影响.昆虫学报,1999,42(2):150~158
    23.罗礼智,李光博,胡毅.粘虫飞行与产卵的关系.昆虫学报,1995,38(3):284~289
    24.罗礼智,李光博.粘虫蛾飞行肌超微结构的研究.昆虫学报,1996a,39(2):141~148
    25.罗礼智.昆虫迁飞行为的发生与调控.科学,1998,50(3):32~35.
    26.罗礼智.粘虫蛾飞行肌的发育,超微结构特征分析.昆虫学报,1996b,39(4):366~374
    27.欧阳迎春,李胜.保幼激素及其代谢产物的HPLC分离方法的改进和应用.昆虫学报,2003,46(3):282~287
    28.王宗舜欧阳迎春.东方粘虫飞行初期糖类的动用和消耗.昆虫学报,1995,38(2):146~151
    29.王宗舜.迁飞昆虫的携脂蛋白与脂类运输.昆虫知识,1994,31(5):311~315
    30.吴秋雁,郭郛.粘虫咽侧体对卵巢发育与成熟的作用.昆虫学报,1963,12(4):402~489
    31.杨亦桦,戴华国,韩航如,等.用HPLC测定稻褐飞虱体内的保幼激素.华东昆虫学报,1997,6(2):24~27
    32.张志涛,李光博.粘虫飞翔生物学特性初步研究.植物保护学报,1985,3(2):93~100
    33.章士美,赵泳祥编著.中国农林昆虫地理分布。中国农业出版社 1996,260~261
    34. Applebaum S W, Hirsch J, Abd El-Hadi F, Moshitzky E Trophic control of juvenile hormone synthesis and release in locusts. In Progress in Comparative Endocrinology, 1990, ED. A Epple, C G Scanes, M H Stetson, pp. 186-192. New York: Wiley-Liss
    35. Ayali A, Pener M P. Density-denpendent phase polymorphism affects response to adipokinetic hormone in Locusta. Comparative Biochemistry and Physiology 1992, 101, 549-552
    36. Bailey E. Biochemistry of insect flight. Gen. Com. Endocrinol. 1975, 14a, 89-176
    37. Barker J F and H S Herman. On the neuro-endocrine control of ovarian development in the monarch butterfly. J. Exp. Zool., 1973, 153:1-10.
    38. Beeankkers A M Th, Van der Horst K J, Van Marrewijk W J A. Biochemical processes directed to flight muscle metabolism. In: Kerkut G A, Gilbert L I Eds. Comprehensive Insect Physiology, Biochemistry and Pharmacology, Oxford: Pergamon Press, 1985,10:451-486
    
    39. Beeankkers A M Th, Van der Horst D J, Van Marrewijk W J A. Insect flight muscle metabolism. Insect Biochem. 1984, 14:243-60
    40. Beenakkers A M Th. Carbohydrate and fat as a fuel for insect flight: a comparative study. J. Insect Pyhsiol., 1969a, 15:353-361
    41. Beenakkers A M Th. The influence of corpus cardiacum on lipid metabolism in Locusta migratoria. Gen. Comp. Endocrin. 1969b, 13: 492
    42. Beenakkers A M Th, Van der Horst D J, Van Marrewijk W J A. Insect flight muscle metabolism. Insect Biochem. 1984, 14:243-260
    43. Bergot B J, Ratcliff M, Schooley D A. Method for the quantitative deterimination of the four known junvenile hormones in insect tissue using gas chromatography-mass spectroscopy. J. Chromatography 1981, 204:231-244
    44. Bhaskaran G., Dahm K.H, Barrera P, et al. Allatinhibin, a neurohormonal inhibitor of juvenile hormone biosynthesis in Manduca sexta. Gen Comp. Endocrinol. 1990, 78, 123-136.
    45. Bhatt T R, Horodysiki F M. Expression of the Manduca sexta allatotropin gene in cells of the central and enteric nervous systems. J. Comp. Neurol. 1999,403,407-420
    46. Bogus M, Scheller K, Allatotropin released by the brain controls larval molting in Gallerria mellonella by affecting juvenile hormonesynthesis, Int.J. Dev.Biol. 1996,40,205-210
    47. Bonning B C, Booth T F, Hammock B D, Mechanistic studies of the degradation of juvenile hormone esterase in Manduca sexta. Arch. Insect Biochem. Physiol. 1997, 34,275-286
    48. Borst D W, Eskew M R, Wagner S J, et al.. Quantification of juvenile hormone III, vitellogenin and vitellogenin-mRNA during the oviposition cycle of the lubber grasshopper. Insect Biochem. Molec. Biol., 2000, 30: 813-819
    49. Caldwell R L, Rankin M A. The effect of a juvenile hormone mimic on flight in the milkweed bug, Oncopeltus Fasciatus. Gen. Comp. Endocrinol. 1972,19:601-605.
    50. Chino H, Downer R G H, Takahashi K. The role diacylglycerol-carrying lipoprotein I in lipid transport during insect vitellogenesis. Biochem. Biophys. Acta 1976,487: 508-516
    51. Chino H, Downer R G. H, Wyatt G R, et al.. Lipophorins, a major class of lipoproteins of insect haemolymph, Insect Biochem. 1981, 11:491-498
    52. Chino H, Lum PY, Nagao E, Hiraoka T. The molecular and metabolic essentials for long-distance flight in insects. Journal of Comparative Physiology 1992, b, 162,101-106
    
    53. Coats S A, Mutchmor J A, Tollefson J J. Regulation of migratory flight by juvenile hormone mimic and inhibitor in the western corn rootworm (Coleoptera: Chrysomelidae). Ann. Entomol. Soc. Am. 1987, 80: 697-708
    54. Cockbain A J, Viability, fecundity of alate alienicolae of Aphis fabae Scop, after flights to exhaustion. J.Exp. Biol, 1961, 38:181-187
    55. Cockbain A J. Fuel utilization and duration of tethered flight in Aphis fabae Scop. J. Exp. Biol. 1961,38: 163-174
    56. Cusson M, Miller K, Goodman W G., Characterization of antibody 444 using chromatography purified enantiomers of juvenile hormones Ⅰ,Ⅱ and Ⅲ: implication for radioimmunoassay. Analyst. Biochem. 1997, 249: 83-87
    57. Cusson M, Kerry C G. Y, Waytt G. R, et al.. Regulation of vitellogenin production in armyworm moth, Pseudalitia unipuncta. J. Insect Physiol, 1994,40(2): 129-136
    58. Cusson M, McNeil J N and Tobe S S. In vitro biosynthesis of juvenile hormone by corpora allata of Pseudaletia unipuncta virgin females as a function of ae, environmental conditions, calling behavior and ovarian development. J. Insect Physiol. 1990, 36, 139-146
    59. Cusson M, McNeil J N. Involvement of juvenile hormone in the regulation of pheromone release in a moth. Science, 1989a, 243, 210-212
    60. Cusson M, McNeil J N. Ovarian development in female armyworm moths, Pseudoletia unipuncta: its relationship with pheromone release activities. Canadian Journal of Zoology, 1989b, 67, 1380-1385
    61. Cusson M, Yagi K J, Tobe S S, et al.. Identification of release products of corpora allata of male and female armyworm moths, Pseudaletia unipuncta. Journal of Insect Physiology, 1993, 39, 775-783
    62. Dahm K H, Bhaskaran G., Peter M G, et al.. On the identity of juvenile hormone in insects In The Juvenile Hormone (ed. Gilbert L. I.) 1976, pp. 19-47.Plenum Press, New York.
    63. Dallmann S H, Herman W S. Hormonal regulation of haemolymph lipid concentration in the monarch butterfly, Danaus plexippus. General and Comparative Endocrinology, 1978, 36,142-150
    64. Davey K G. The modes of action juvenile hormone: some questions we ought to ask. Insect Biochemistry and Molecular Biology 2000,30: 663-669
    65. de Kort C A D, Granger N A. Regulation of JH titers: the relevance of degradative enzymes nad binding proteins Arch. Insect Biochem. Physiol, 1996,33,1-26
    66. de Kort C A D, Koopmanschap A B. Binding of juvenile hormone Ⅲ to lipophorin from the
     American cockroach, Periplaneta Americana. Arch, Insect Biochem. Physiol, 1989,11, 159-172
    
    67. de Kort C A D, Koopmanschap A B. High molecular weight transport proteins for JH-Ⅲ in insect hemolymph, Experientia, 1986,42, 834-836
    68. de Kort C A D, Koopmanschap A B. Specificity of binding of juvenile hormone III to hemolymph proteins of Lepinotarsa decemlineata and Locusta migratoria. Experientia, 1987,43, 904-905
    69. Dehernard S, Morisseau C, Severson T F, et al.. Expression and characterization of the recombinant juvenile hormone exoxide hydrolase (JHEH) from Manduca sexta, Insect Biochem. Mol. Biol. 1998,28,409-419
    70. Dingle H. Migration: the Biology of Life on the Move. O U P 1996.New York.
    71. Duve H, Johnsen AH, Maestro J L, et al.. Identification of the dipteran Leu-callatostati peptide family: the pattern of precursor processing revealed by isolation studies in Calliphora vomintoria. Reg. Peptides 1996,67,11-19
    72. Duve H, Thorpe A. Distribution and functional significance of Leu-callatostatins in the blowfly Calliphora womitoria. Cell Tiss. Res. 1994,276: 367-379
    73. Englemann F. Endocrine regulated insect vitellogenesis: a synthesis. Adv. Invent. Reproduction 1988,4:31-42
    74. Feiedel T, Gillott C. Contribution of mate-produced proteins to vitellogenesis in Melanoplus sanguinipes. Journal of Insect Physiology, 1977,23, 145-151
    75. Ferenz H J, Rohrkasten A. Selektiver Proteintransport in Oozyten von Locusta migratoria. Verh. Disch. Zool. Gen. 1984,77: 147-150
    76. Feyereisen R and Tobe S S. A rapid partition assay for routine analysis of juvenile hormone released by insect corpora allata. Anal. Biochem. 1981. 111: 372-375
    77. Freach R A. Migration of Laphygma exigua (Lepidoptera: Notuidae) to the British Isles in relation to large-scale weather system. 1968,38: 199-210
    78. Friedel T, Gillott C. Male accessory gland substance of Melanoplus sanguinipes: an oviposition stimulant under the control of the corpus allatum. J. Insect Physiol. 1976,22:489-495
    79. Friendman S. The control of trehalose synthesis in the blowfly. Phormia regina Meig.J. Insect Physiol. 1967, 13: 397-401
    80. Garside C S, Hayes T K, Tobe S S. Degradation of Dip-allatostatins by haemolymph from the cockroach, Diploptera punctata. Peptides, 1997a, 18, 17-25
    81. Garside C S, Hayes T K, Tobe S S. Inactivation of Dip-allatostatin 5 by membrane preparations
     from the cockroach Dploptera punctata, Gen. Comp. Endocrinol. 1997b, 108,258-270
    
    82. Gellissen G., Wyatt G R. Production of lipophorin in the fat body of adult Locusta migratoria: comparison with vitellogeini. Can. J. Biochem. 1981, 39: 648-654
    83. Gilbert L I, Granger N A, Roe R M. The juvenile hormones: historical facts nd speculations on future research dirctions. Insect Biochemistry and Molecular Biology, 2000, 30:617-644
    84. Gilbert L I. The development of a bioassay for juvenile hormone of insects. Trans. Amer. Micr. Soc. 1960, 79:38-67
    85. Gillott C, Friedel T. Fecundity-enhancing and receptivity-inhibiting substances produced by male insects: a veview. In Advances in Invertebrate Reproduction, 1977,vol.l, ed. K..G. Adiyodi, R. G. Adiyodi, pp. 200-218, Kerala: Peralam-Kenoth
    86. Goldsworthy G J, Wheeler C H. The endocrine control of flight metabolism in locusts. In Insect flight: Dispersal and Migration. Berlin/Heidelberg: Springer-Verlag. 1986, pp 49-59
    87. Greenbank D O, Schaefer G W, Rainey R C. Spruce Budworm (Lepidoptera: Tortricidae) Moth Flight and Dispersal: New Understanding from Canopy Observations, Radar, and Aircraft. 1980. Memoirs of the Entomological Society of Canada 110. Ottawa: Entomological Society of Canada
    88. Gunn A, Gatehouse A G, Woodrow K P. Trade-off between flight and reproduction in the African armyworm moth Spodoptera exempta. Physiol. Entomol. 1989,419-427
    89. Gunn A, Gatehouse A G. The development of enzymes involved in flight muscle metabolism in Spodoptera exempta and Mythimna separata. Comp. Biochem. Physiol, 1988 91B(2): 315-324
    90. Gunn A, Gatehouse A G. The influence of larval phase on metabolic reserves, fecundity and lifespan of the African armyworm moth, Spodoptera exempta (Walker) (Lepidoptera: Noctuidae). Bull. Entomol, Res. 1987,77: 6451-6660
    91. Harris S, VanHook, Thompson K M, et al. Cloning and expression of a novel juvenile hormone-metabolizing epoxide hydrolase during larval-pupal metamorphosis of the cabbage looper, Trichoplusia ni, Insect Molec. Biol., 1999,8, 85-96.
    92. Highnam K C, Haskell P T. The endocrine system of isolated and crowed Locusta and Schistocerca in relation to oocyte growth, and the effects of flying upon maturation. J. Insect Physiol, 1964,10:849-864
    93. Hoffman K H, Lorenz M W, Klein P M. Ovarian control of juvenile hormone-Ⅲ biosynthesis in the cricket species Gryllus bimaculatus (Ensifera: Gryllidae). Ento. Gen, 1996,20,157-167
    94. Ichinose R, Nakamura A, Yamoto T, et al. Uptake of juvenile hornone esterase by pericardial cells of Manduca sexta. Insect Biochem. Mol. Biol. 1992,22, 893-904.
    
    95. Ishizaka S J, Bhaskaran G, Dahm K H. Juvenile hormone production and ovarian maturation in adult Manduca sexta. In Regulation of Insect Reproduction IV (Ed. Tonner T. A.) 1989, pp. 49-57
    96. Ismail S M, Goin K, Muthumani M, et al.. Juvenile hormone acid and ecdysterioid togethere induce competence for metamorphosis of the Verson's gland in Manduca sexta. J. Insect Physioi. 2000, 46, 59-68.
    97. Jason I S, Cusson M, McNeil J N, et al.. Molecular characterization of a cDNA from Pseudaletia unipunctata encoding the Manduca sexta allatostatin peptide (Mas-AST). Inscet Biochem. Mol. Biol. 1996,26,767-773
    98. Johnson C G. Migration and dispersal of insect by flight, Methuen, London, 1969,763
    99. Jones G., Manczak M, Schelling, D, et al.. Tanscription of the juvenile hormone esterase gene under the control of both an initiator and AT-rich motif. Biochem. J. 1998,335,79-84
    100. Kallapur V L, Majumder C, Roe R M. In vivo and in vitro tissue specific metabolism of juvenile hormone during the last stadium of the cabbage looper, Trichoplus ni. J. Insect Physiol, 1996,42,181-190
    101. Kammer A, Heinrich B. Insect flight metabolism. Adv. Insect Physioi. 1978, 13:133-228.
    102. Kataoka H, Toschi A, Li J P, et al. Identication of an allatotropin from adult Manduca sexta. Science, 1989,243, 1481-1483
    103. Kennedy J S. Migration behavioral and ecological. In Rankin M. A. ed. Migration: mechanism and adaptive significance. 1986,Contib.Mar. Sci.27 (Suppl), 5
    104. Kheyri M. Investigation of outbreak of the beet armyworm Spodoptera exigua, Hb. (Lep. Notuidae). Entomoloaic et Phytopathologic Appliquees. 1976. 42: 1~15
    105. Kobayashi M. and Ishikawa H. Involvement of juvenile hormone and ubiquitin-dependent proteolysis in flight muscle breakdown of Alate aphid (Acyrthosiphon pisum). J. Insect Physioi, 1994,40(2)107-111
    106. Koeppe J K M, Fuchs T T, Chen L M, et al.. The role of juvenile hormone in reproduction. In Comprehensive Insect Physiology, Biochemistry and Pharmacology. Ed. G. A. Kerkut and L. I Gilbert. 1985, Vol 8, pp:165-203, Pergamon, New York.
    107. Koopmannschap A B, de Kort C A D. Isolation and characterization of a high molecular weight JH-Ⅲ transport protein in the hemolymph of Locusta migratoria, Arch, Insect Biochem. Physioi. 1988,7,105-118
    108. Kramer S J, Toschi A, Miller C, et al. Identification of an allatostatin from the tobacco hornworm Manduca sexta. Proceedings of the National Academy of Sciences, USA, 1991,88,9458-9462
    
    109. Lafont-Cazal M, Baehr J C. Octopaminergic control of corpora allata activity in an insect. Experientia 1988,44,895-896
    110. Lee K Y, Horodyski F M, Chamberlin M E. Inhibition of midgut iron transport by allatotropin (Mas-AT) and Manduca FLRFamides in the tobacco homworm, Manduca sexta. J.Exp. Biol. 1998, 201,3067-3074
    111. Loher W, Ganjian I, Kubo I, et al.. Prostaglandins their role in egg-laying of the cricket Teleogryllus commodus. Proceedings of the National Academy of Sciences. USA. 1981, 78, 7835-7838
    112. Lorenz M W, Hoffmann K H. Allatotropic activity in the subesophageal ganglia of crickets, Gryllus bimaculatus and Acheta domestica (Ensifera: Gryllidae). J.insect. Physiol. 1995,41,191-196.
    113. Luo L Z, Li K B, Jiang X F, et al.. Regulation of flight capacity and contents of energy substances by methoprene in the moths of oriental armyworm, Mythimna separata. Entomologia sinca 2001.8(1): 63-72
    114. Mason L J, Johnson S J, Woodring J P. Influence of carbohydrate deprivation and tethered flight on stored lipid, fecundity and survivorship of the soybean looper (Lepidoptera: Noctuidae). Environ. Entomol. 1989, 18:1090-1094
    115. McAnelly M L, Rankin M A. Migration in the grassopper Melanoplus sanguinpes (Fab.) I. Interactions between flight and reproduction. Biol. Bull. 1986, 170: 378-392
    116. McLachlan A. Life-history tactics of rain-pool dwellers. J. Anim. Ecol. 1983,52: 545-561
    117. Michel R, Beinhauer I, Klee A, et al.. The regulation of glycolysis in flying locusts (Locusta migratoria). Biochem.Soc. Trans. 1986, 14: 1078-1079
    118. Mikkola K, Salmensuu P. Migration of Laphygma exigua (Lep, Noctuidae) in northwestern Europe in 1964. Ann. Zool. fenn., 1965,2:124-39
    119. Mokrasch L C. Analysis of hexosephosphates and sugar mixture with the anthrone reagent. J. Biol. Chem. 1954,208:55-59.
    120. Nachman R J, Garside C S, Tobe S S. Haemolymph and tissue-bound peptidase resistant analogs of the insect allatostatins. Peptides, 1999,20,23-29.
    121. Neese P A, Sonenshine D E, Kallppur V L, et al.. Absence of insect juvenile hormones in the American dog tick, Dermacentor variabilis (Say) (Acari: Ixodidae), and in Ornithodorse parkeri Cooley (Acari: Argasidae). J. Insect Physiol. 2000,46, 477-490
    122. Nijhiout M M, Riddiford L M. The control of egg maturation by juvenile hormone in the tobacco
     hornworm moth, Manduca sexta Biol. Bull. 1994, 46:377-392
    
    123.Nimi S, Sakurai S. Development changes in juvenile hormone and juvenile hormone acid titers in the hemolymph and in ritro junenile hormone syhthesis by corpora allata of the silkworm, Bombyx mori, J. Insect Physiol. 1997,43,875-884
    124. Oku T, Kobayashi T. Migratory behavior and life cycle of noctuid on the recent status of migrant species in north Japan. Bullutin of the Tohoku National Agricultural Experiment Station. 1978, 58: 97-209.
    125. Orchard I. Adipokinetic hormones: an update. J. Insect Physiology, 1987, 33,451-463
    126. Orchard I, Ramirez J M, Lange A B. A multifunctional role for octopamine in locust flight. Annual review of Entomology. 1993, 38,227-249
    127. Orth A P, Lan Q, Goodman W G. Ligand regulation of juvenile hormone bingding protein mRNA in mutant Manduca sexta. Mol. Cell Endocrinol. 1999,149,61-69
    128. Pener M P. Hormonal effects on flight and migration. In Comprehensive Insect Physiology, Biochemistry and Pharmacology, 1985, vol, 8, ed. G.A. Kerkut, L.I. Gillbert, pp. 491-550. Oxford: Pergamon Press.
    129. Polivanova E N, Triseleva T A. Suppression of the migratory flight behavior of overwingered dults of Eurygaster integriceps puton (Insecta, Heteroptera) by PRECOCENE. Dokl. Akad. Nauk SSR. 1985, 279: 247-250
    130. Pratt G E, Farnsworth D E, Fok K F, et al. Identity of a second type of allatostatin from cockroach brains: an octadecapeptide amide with tyrosine-rich address sequence. Proc. Nat. Acad. Sci. USA.1991,88,2412-2416
    131. Pratt G E, Farnsworth D E, Fok K F, et ai. Identity of a second type of allatostatin from cockroach brains: an octadecapeptide amide with a tyrosine-rich address sequence. Proceedings of the National Academy of Sciences, USA, 1991, 88,2412-2416
    132. Rachinsky A, Feldlaufer M F. Responsiveness of honeybee (Api mellifera L.) corporta allata to allatoregulatory peptides from four insect species. J. Insect Physiol. 2000,46,41-46
    133. Rankin M A. Endocrine effects on migration. American Zoologist, 1991,31(21)7-230
    134. Rankin M A, Burchsted J C A. The cost of migration in insects. Annu. Rev. Entomol, 1992,37:533-559
    135. Rankin S M, Stay B, Chan K, et al.. Cockraoch allatostin-immunoreactive neurons and effects of cockroach allatostatin in earwigs. Arch, Insect Biochem. Physiol. 1998,38,155-165
    136. Rankin M A. Effects of precocene Ⅰ and Ⅱ on flight behavior in Oncopeltus fasciatus, the
     migratory milkweed bug. J. Insect Physiol. 1980, 26: 67-74
    
    137. Rankin M A. Hormonal control of insect migration. In Evolution of Migration and Diapause in Insects, Ed. H. Dingle, 1978, pp. 5-32. New Yuork: Springer-Verlag.
    138. Rankin M A. The hormonal control of flight in the milkweed bug. Oncopeltus fasciatus. In Experimental Analysis of Insect Behaviour. Ed. L. Barton-Browne, 1974, pp. 317-328. New York: Springer-Verlag.
    139. Rankin M A, McAnelly M L, Bodenhamer J E. The oogenesis-flight syndrome revisited. In Insect flight: Dispersal and Migration. Berlin/Heidelberg: Springer-Verlag. 1986, pp. 27-48
    140. Rankin M A, Rankin S M. Some factors affecting presumed migratory flight activity of the convergent ladybeetle, Hippodamia convergent (Coccinellidae: Coleoptera). Biol, Bull. 1980, 158: 356-369.
    141. Rankin M A, Singer M C. Insect movement: mechanisms and effects, In Ecological Entomology. Ed. C. B.Huffaker, R. L, Rabb, 1984, pp. 185-216. New York: Wiley
    142. Rankin M A. Endocrine effects on migration. American Zoologist, 1991, 31, 217-230
    143. Rankin S M, Christopher C A, Tobe S S. Partial characterization and isolation of earwig 'allatostatins': biological activities in earwigs and cockroaches. Comp. Biochem. Physiol. 1998, 121A, 395-403
    144. Rembold H, Lackner B. Convenient mtthod for the determination of picomole amounts of junenile hormone. J. Chromatography, 1985, 323:355-361
    145. Rygg T D. Flight of Oscinella frit L. (Diptera, Chloropidae) female in relation to age and ovary development. Entomol. Exp. Appl, 1996,9:74-84
    146. Robinson N L. Goldsworthy, G. J. Adipokinetic hormone and flight metabolism in the locust. J. Insect Physiol, 1976, 22: 1559-1564
    147. Roe R M, Venkatesh K. Metabolism of juvenile hormones: degradation and titer regulation. In: Gupta, A.P. (Ed.), Morphogenetic Hormones of Arthropods, vol. I. Rutgers University Press, New Brunswick, 1990, pp. 126-179
    148. Roe R M, Linderman R J, Lonikar M, et al.. Rational design and synthesis of polarized ketones as inhibitors of juvenile hormone esterase: importance of juvenile hormone mimicry, J. Agric. Food Chem. 1990,38,1274-1278
    149. Rowan A N, Newsholme E A. Changes in the contents of adenine nucleotides and intermediates of glycolysis and the citric acid cycle in flight muscle of the locust upon flight and their relationship to the control of the cycle. Biochem. J. 1979,178:209-216
    
    150. Sacktor B. Biochemistry of insect flight. Part 1- Utilization of fuels by muscle. Gen. Com. Endocrinol. 1975,14a, 1-88.
    151. Sacktor B, Wormser-Shavit E. Regulation of metabolism in working muscle in vivo. 1. Concentrations of some glyclytic, tricarboxylic acid cycle, and amino acid intermediates in insect flight muscle during flight. J. Biol. Chem. 1966,241: 624-632.
    152. Satyanaryana K, Yu J H, Bhaskaran G, et al.. Regulation of vitellogenin synthesis by juvenile hormone in the corn earworm, Helicoverpa zea, Invert. Reprod. Devel, 1992,21:169-178.
    153. Satyanrayana K, Yu J H, Bhaskaran G, et al.. Hormonal control of egg maturation in ght corn earworm. Heliothis zea. Entomologia exp. appl. 1991, 59, 135-143
    154. Shapiro J P, Law J H, Wells M A. Lipid transport in insects, Annu. Rev. Entomol. 1988, 33: 297-318
    155. Sharma H C, Davis J C. The oriental armyworm, Mythimna separata (Wlk.) Distribution, biology and control: a literature review. Center for Overseas Pest Research, 1983. College House, Wrights Lane, London W8 5SJ
    156. Shayya E, Shire P D, Zimouska G, et al.. Declining ecdysteroid levels are temporally correlated with the initiation of vitellogenesis during pharate adult development in the Indian meal moth, Plodiainter punctella. Insect Biochem. Molecul. Biol., 1993, 23 (1): 153-159
    157. Shirk P D, Bean D W, Millemann A M, et al.. Ecdystoroids control viellogenesis and egg maturation in pharate adult females of the females of the Indian meal moth Plodia interpunctella. Arch. Insect Biochem. Physiol., 1990,15:183-189
    158. Simmonds M S J, Blaney W M. Effects of rearing density on development and feeding behaviour in larvae of Spodoptea exempta. J. Insect Physol, 1986,32: 1043-1053
    159. Slansky F J. Food consumption and reproduction as accected by tethered flight in female milkweed bugs (Oncopeltus fasciatus). Entomol. Exp. Appl. 1980,28: 277-286.
    160. Southood T R E. Habitat the gemplet for ecological strategies: J. of Animal Ecology, 1977, 337-365.
    161. Stay B, Tobe S S, Bendena W G. Allatostatins: Identification, primary structure, function, and distribution. Adv. Insect Physiol. 1994,25,267-337
    162. Stay B, Fairbairn S, Yu C G. Role of allastatins in the regulation of juvenile hormone synhesis. Arch. Inscet Biochem. Physiol. 1996, 3,287-298
    163. Stay B, Woodhead A P, Joshi S, et al.. Allatostains, neuropeptide inhibitors of juveile hormone biosynthesis in brain and corpora allata of the cockroach Diploptera punctata, In: Menn, J.J., Kelly,
     T.J., Masler, E.P. (Eds), Insect Neuropeptides, ACS Symposiun Series 453, American Chemical Society, Washington, DC. 1991, Pp. 164-176
    
    164. Steele J E. Endocrine control of carbohydrate metabolism in insects. In Endocrinology of Insects. New York: Liss, 1983
    165. Steele J E. The role of carbohydrate metabolism in physiological function In Energy Metabolism in Insects. New York: Liss1981, pp. 101-134
    166. Strong D R, Lawton J H, Southwood T R E. Insects on Plants. Community Patterns and Mechanisms. Oxford: Blackwell Scientific, 1984
    167. Sutherland T D, Feyereisen R. Target of cockroach allatostatin in the pathway of juvenile hormone biosynthesis, Mol. Cell. Endocrinol. 1996, 120, 115-123
    168. Taylor P A, Bhatt T R, Horodyski F M. Molecular characterization and expression analysis of Manduca sexta allatotropin. Eur. J. Biochem. 1996, 239, 588-596
    169. Tompson C S, Yagi K J, Chen Z F, et al.. The effects of octopamine on juvenile hormone biosynthesis, electrophysiology, and cAMP content of the corpora allata of the cockroach Diploptera punctata. Journal of Comparative Physiology, 1990, 160,241-249
    170. Van der Horst D J, Abbink J H M, Van Doom J M, et al.. Glycerol dynamics and metabolism during flight of the locust, Locusta migratoria. Insect Biochem., 1983,13:45-55
    171. Van der Horst D F, Van Doorn J M, Beenakkers A M Th. Dynamics in the haemolymph trehalose pool during flight of the locust Locusta migraoria. Insect Biochem., 1978, 8:413-416
    172. Van Handel E, Nayar J K. Direct use of carbohydrate during sustained flight in the moth Spodoptera frugiperda, Insect Biochem., 1972,2: 203-208
    173. Van Marrewijk W J A, Van Den Brock A Th M, Beenakkers A M Th. Regulation of glycogenolysis in the locust fat body during flight. Insect Biochem. 1980, 10:675-679
    174. Van Marrewijk. W J A, Van Den Brock A Th M, Beenakkers A M Th. Hormonal control of fat-body glycogen mobilization for locust flight. Gen. Comp. Endocrinol. 1986,64,136-142
    175. Veenstra JA, Noriega F G, Graf R, et al.. Identification of three allatostatins and their cDNA from mosquito Aedes aegypti. Peptide 1997, 18,937-942.
    176. Vejberg K, Normann T C. Secretion of hyperglycaemic hormone from the corpus cardiacum of flying blowflies,Calliphora erythrocephala. J. Insect Physiol. 1974,20: 1189-1192
    177. Wang Z S, Ouyang Y C. Flight activity and fatty acid utilization in the oriental armyworm, Mythimna separata (Walker) moth. Acta of Entomologica Sinica, 1995, 2(4): 370~376
    
    178. Ward J P, Candy D J, Smith S N. Lipid storage and changes during flight by triatomine bugs (Rhodnius prolixus and Triatoma infestans). J. Insect Physiol. 1981, 28: 527-534
    179. Weis-Fogh T. Fat combustion and metabolic rate of flying locusts (Schistocerca gregaria Forskal). Philos. Trans. R. Soc. London Ser. 1952, D, 237: 1-36
    180. Wheeler C H. Mobilization and transport of fuels to the flight muscles. In Insect Flight. Boca Raton. FL: CRC Press 1989, pp. 273-303
    181. Wheeler C H, Goldsworthy G J. Lipid transport to the flight muscles in Locusta, In Insect locomotion. Proc. Symp. 4.5 from 17th Congr. Entomol., ed. M. Gewecke, G. Wendler.1984, pp. 121-129. Berlin:Parey
    182. Wiemerslage L J. Lipid droplet formation during vitellogenesis in the cecropia moth. J. Insect Physiol. 1976,22:41-50
    183. Willers J L, Schneider J C, Ramaswamy S B. Fecundity, Longevity and caloric patterns in female Heliothis viresedns: changes with age due to flight and supplemental carbohydrate. J. Insect Physiol, 1987,33:803-808
    184. Wojtasek H, Prestwich G D. An insect juvenile-hormone-specific hydrolase is related to vertebrate microsomal epoxide hydrolases. Biochem. Biophy, Res. Comm, 1996,220,323-329
    185. Woodhead A P, Stay H, Seidel S L, et al.. Primary structure of four allastostatins: neuropeptide inhibitors of juvenile hormone synthesis. Proceedings of the National Academy of Sciences, USA, 1989, 86, 5997-6001
    186. Woodrow K P, Gatehouse A G, Davies D A. The effect of larval phase on flight performance of African armyworm moths. Spodoptera exempta (Walker) (Lepidoptera: Noctuidae) Bull. Entomol. Res. 1987,77: 112-122
    187. Yathmn S. Distribution and flight period of Amphipyrinae (Noctuidae: Lepidoptera) species in Israel in 1959-1970. Israel Journal of Entomology. 1971,6:(1): 107-132
    188. Zera A J, Sall J, Otto K. Biochemical aspects of flight and flightlessness in Gryllus: flight fuels, enzyme activities and electrophoretic profiles of flight muscles for flight capable and flightless morphs. J. Insect Physiol. 1999,45(3): 275-285
    189. Ziegler R, Schulz M. Regulation of carbohydrate metabolism during flight in Manduca sexta. J. Insect Physiol. 1986, 32: 997-1001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700