羊毛表面生物酶改性及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统羊毛防毡缩加工多采用氯化—树脂法,加工中产生的可吸收有机卤化物(AOX)毒性高,环境污染大。本文首先在反胶束体系和水相体系中,应用重组T. fusca角质酶对羊毛织物进行预处理;比较了Savinase蛋白酶与木瓜蛋白酶在羊毛防毡缩整理效果上的差异;考察了Bacillus subtilis菌产角蛋白酶、脂肪酶L3126和Lipex 100L预处理对羊毛蛋白酶改性加工的影响。在低浓度H_2O_2氧化预处理的基础上,结合角质酶、蛋白酶处理,对羊毛表面酶法改性效果与机理进行了研究。主要研究结果如下:
     1.考察了反胶束体系中表面活性剂、角质酶浓度与含水量对羊毛后续蛋白酶加工的影响。结果表明,当角质酶浓度为2%(o.w.f),环己烷、正丁醇与Tween-80体积比为5:1:1,含水量(水与Tween-80摩尔比)为25时,角质酶/蛋白酶处理后羊毛织物润湿性改善,纤维表面Allw?rden反应特征减弱。角质酶反胶束体系预处理对羊毛蛋白酶加工有促进作用,处理后羊毛失重率增加,碱溶解度仅蛋白酶处理样相当。仅角质酶反胶束体系处理,羊毛表面类脂去除程度有限,织物表面接触角大于氢氧化钾/甲醇处理样。在角质酶反胶束体系处理中,受含水量、表面活性剂与角质酶浓度、纤维表面可及度等因素影响,羊毛角质酶处理效果有待提高。
     2.在水相体系角质酶预处理的基础上,比较了不同蛋白酶对羊毛织物的整理效果。羊毛经水相体系角质酶预处理,润湿性好于角质酶反胶束体系处理样,进一步结合蛋白酶处理,润湿性明显改善。羊毛蛋白酶处理中,Savinase蛋白酶(丝氨酸蛋白酶)较木瓜蛋白酶(巯基蛋白酶)具有更高的酶解效率,相同酶浓度条件下Savinase处理样失重率较高。角质酶预处理对Savinase蛋白酶处理有明显促进作用,处理后织物强力与角质酶/木瓜蛋白酶处理样相当,织物水洗后的毡缩率较低。仅Savinase蛋白酶处理,羊毛毡缩性改善较少,原因是Savinase蛋白酶对纤维鳞片角蛋白水解效率较低。
     3.研究了脂肪酶、角蛋白酶与角质酶组合预处理对羊毛蛋白酶加工的影响。(1)脂肪酶预处理对羊毛织物润湿性与后续蛋白酶加工影响较小,试样失重率与水洗毡缩率变化不明显。(2)单一角蛋白酶处理对鳞片作用效果较小,羊毛织物润湿性改善较少,水洗毡缩率与原样相当;角蛋白酶/蛋白酶处理后,羊毛润湿性、失重率较仅蛋白酶处理样增加,织物毡缩率有所下降,但不及角质酶/蛋白酶处理样。(3)角质酶、角蛋白酶和蛋白酶组合处理进一步改善了羊毛织物表面的润湿性,试样水洗后的毡缩率低于角质酶/蛋白酶和角蛋白酶/蛋白酶处理样。羊毛经角质酶/角蛋白酶/蛋白酶处理后,酶解残液中半胱氨酸含量高于角质酶/蛋白酶处理残液,原因可能与角蛋白酶对羊毛纤维中胱氨酸二硫键有水解作用相关。
     4.考察了H_2O_2氧化预处理对羊毛蛋白酶加工的影响。单独H_2O_2处理对羊毛纤维表面类脂物结构没有明显影响,织物表面润湿性改善较少,试样失重率较低,羊毛防毡缩性能较原样下降。随着H_2O_2浓度增加,H_2O_2/蛋白酶组合处理后羊毛织物失重率增加,断裂强力明显下降,但防毡缩性能提高较少,这可能与蛋白酶处理中高深度、低广度的酶解模式相关。H_2O_2/蛋白酶处理中,羊毛纤维鳞片细胞间质和皮质层蛋白水解较多,鳞片去除以剥离方式为主,羊毛失重率与防毡缩性能之间的相关性不强,防毡缩整理效果不理想。
     5.考察了低浓度H_2O_2、角质酶组合预处理对羊毛蛋白酶加工的影响。H_2O_2弱氧化、角质酶和蛋白酶组合处理后,羊毛表面润湿性明显改善,失重率增加,织物水洗后的毡缩率下降,纤维表面Allw?rden反应特征减弱。2 g/L H_2O_2 (30%)、4%(o.w.f)角质酶和2%(o.w.f) Savinase蛋白酶处理后,羊毛织物3次水洗后的毡缩率降低至3~5%,强力保留率约为84%,优于角质酶/蛋白酶或H_2O_2 /蛋白酶处理样,试样染色性能与弹性回复能力、柔软度等织物风格也有明显改善。低浓度H_2O_2预处理增加了角质酶对羊毛纤维表面类脂的作用效果,使得蛋白酶处理中纤维鳞片角蛋白的水解效率增加,纤维损伤低于H_2O_2 /蛋白酶处理样。弱氧化、角质酶和蛋白酶组合处理中,羊毛鳞片去除以水解模式为主,试样表面的润湿性与防毡缩性之间存在较好的正相关性,即润湿性越好,织物水洗后的毡缩率越低;失重率与防毡缩性之间的相关性也较H_2O_2/蛋白酶处理样显著。
     6.研究了角质酶、角蛋白酶、氧化预处理与蛋白酶处理对羊毛纤维结构组成与外观形态的影响。角质酶处理后羊毛红外光谱特征吸收峰与原样没有明显变化,饱和脂肪酸酯C=O特征吸收峰的强度降低,C元素含量与C/N比下降,表明羊毛纤维表面类脂物得到去除。H_2O_2处理后羊毛纤维中胱氨酸氧化产物磺基丙氨酸含量增加,类脂物去除效果较差。2 g/L H_2O_2(30%)与角质酶组合处理后,羊毛纤维表面C元素含量明显下降,O/C比增加,表明纤维表面极性基团数量增多,类脂物去除效果增加。弱氧化、角质酶和蛋白酶三步处理后,羊毛纤维中胱氨酸相对含量较低,SEM验证了羊毛纤维鳞片得到均匀去除。
As a conventional shrink-proofing process, chlorine-resin treatment endows wool fabric with satisfactory anti-felting ability. However, it has the disadvantage of environmental pollution caused by the toxic adsorbable organic halogen compounds (AOX). In this study, a cutinase from the recombinant Thermobifida fusca was applied to treat wool in the reversed micelles (RS) and aqueous solutions. The differences of shrink-proofing efficacy between Savinase and papain treatments were evaluated. A keratinase from Bacillus subtilis and two lipases of L3126 and Lipex 100L were applied in the wool processing, respectively. The effects of keratinase and lipase pretreatments on the succeeding protease treatment were investigated. Furthermore, the efficacy and mechanism of the combined enzymatic process, based on mild oxidation, cutinase and protease treatments were also concerned. The main conclusions were listed as follows.
     1. The effects of surfactant, cutinase concentration and the mol ratio of H2O to Tween-80 in RS on the efficacy of succeeding protease treatment were investigated. The results indicated that the protease-treated wool presented improved wettability when pretreated with 2 %(o.w.f) cutinase in RS as follows: the V (cyclohexane):V (alcohol):V (Tween-80) of 5:1:1, mol ratio of 25. The characteristic of Allw?rden reaction for the treated wool became weak. Cutinase pretreatment in RS facilitated the succeeding protease treatment. The combined process endowed wool fabric with a bit higher weight loss without more noticeable increase of alkaline solubility as compared to that of the individual protease treatment. Furthermore, the wettability for the wool treated with cutinase in RS was inferior to that incubated with potassium hydroxide and methanol, the achieved contact angle was still large, which indicated that the removal of the outmost lipids from the wool surface was not completely. The whole efficacy of cutinase treatment in RS was related to the composition of organic solvent and surfactant, the mol ratio of H2O to Tween-80, the concentration of cutinase as well as the accessibility of enzyme to the fatty acids in wool surface. The efficacy of cutinase treatment in RS was to be further improved.
     2. The effects of cutinase pretreatment in aqueous solution on the shrink-proofing efficacy of protease treatment were discussed. The actions of two proteases during enzymatic wool processing were compared. The results indicated that wettability of the wool treated with cutinase in aqueous solution was better that treated in RS. More acceptable wool wettability was obtained after the combined use of cutinase and protease treatments. The protease of Savinase (a serine protease) showed higher ability to degrade wool protein during enzymatic processing when compared to papain (a cysteine protease), resulting in more weight loss when the concentrations of the two proteases were similar. Cutinase pretreatment efficiently promoted the Savinase treatment, the obtained anti-felting ability of wool was better than that of the sample based on cutinase-papain treatment although the tensile strengths were at the same level. Individual Savinase treatment led to less improvement of anti-felting ability, which was due to the inefficient enzymatic degradation of wool scales during enzymatic processing.
     3. The effects of the combined use of lipase, keratinase and cutinase pretreatments on the succeeding protease treatment were investigated. (1) Individual lipase treatment did less impact to the wettability of wool as well as to the efficacy of succeeding protease treatment. No obvious changes of weight loss and shrinkage percentage were observed with and without lipase treatment. (2) Keratinase treatment alone seeming did not affect the wool scales; no noticeable improvements of wettability and anti-felting ability were detected after the enzymatic processing. Cutinase-keratinase pretreatment promoted the succeeding protease treatment; it led to more weight loss and less area shrinkage when compared to that of the individual protease treatment. However, the obtained properties of wool did not exceed that based on cutinase-protease treatment. (3) The combination use of cutinase, keratinase and protease treatments endowed wool fabric with better wettability; the obtained area shrinkage after washing cycles was also lower than that with cutinase-protease and keratinase-protease processes. The data from the amino acid analysis of the residual protease-incubated solution indicated that the relative mass concentration of cysteine in cutinase-keratinase-protease treated bath was a bit higher than that of the cutinase-protease treated, which was probably due to the more reduction of disulphide cross-links in cuticle scales by keratinase.
     4. The effects of the peroxide pretreatment on the succeeding protease treatment were investigated. Individual oxidation did less impact on the outmost lipids in wool surface, no obvious changes of wettability and weight loss were observed after wool processing. The anti-felting ability of wool decreased after individual peroxide treatment when compared to the untreated one. Higher concentrations of peroxide led to more weight loss as well as some strength loss after succeeding protease treatment. However, the anti-felting ability of wool did not further improved, which can be due to the mechanism of the peroxide-protease treatment, i.e. the proteolytic reactions proceeded deeply in the fiber interior instead of evenly in wool surface. When the wool fabric sample was pretreated with high concentration of peroxide, the enzymatic degradation with protease occurred efficiently in the fiber interior, resulting in more degradation of cell memberane complex and cortex protein. For the wool based on peroxide-protease combined treatment, there was no definite correlation between weight loss and anti-felting ability of wool, thus the shrink-proofing property of wool was unsatisfactory.
     5. The effects of the combined use of mild oxidation and cutinase pretreatments on the succeeding protease treatment were investigated. After the wool fabric sample was combinedly treated with mild oxidation, cutinase and protease treatments, wettability and weight loss of wool increased, low area shrinkage percentage and very weak Allw?rden’s effect were obtained. When the wool fabric was respectively treated with 2 g/L of peroxide (30%), 4% (o.w.f) cutinase and 2% (o.w.f) Savinase protease, the area shrinkage decreased to approximately 3~5 % after three washing cycles, the residual strength percentage was nearly 84%, which was much acceptable as compared to the wool treated with protease alone. The dyeability as well as the fabric styles (including elastic resilience, softness etc), for the combined treated wool, were also better than that based on individual protease treatment. Mild oxidation with low concentration of peroxide promoted the succeeding cutinase treatment and led to more removal of the lipids from the wool epicuticle, making the enzymatic degradation proceed efficiently from the cuticle cells. The obtained fiber damages of wool were lower than that treated with peroxide-protease. For the wool fabric combinedly treated with mild oxidation, cutinase and protease treatments, direct correlation between wettability and anti-felting ability was detected, i.e., better wettabiltiy of wool could lead to lower area shrinkage. Furthermore, the correlation between weight loss and anti-felting ability of wool was also more noticeable than that based on peroxide-protease treatment.
     7. The effects of cutinase, keratinase, oxidation pretreatments as well as the protease treatment on the structure and composition of wool fibers were analyzed. The FT IR spectra of wool based on cutinase pretreatments did not obviously change when compared to the untreated one. For the wool treated with cutinase, the characteristic peaks of the ester- bond (C=O) became weak, the relative mass concentration of carbon as well as the atomic ratio of carbon to nitrogen decreased, indicating that the lipids content in wool surface might decrease during cutinase pretreatment. For the wool treated with peroxide, the concentration of Cys-SO3H and the atomic ratio oxygen to carbon both increased after peroxide treatment. For the wool treated with 2 g/L of peroxide (30%), cutinase and protease, respectively, the relative mass concentration of carbon decreased, while the atomic ratio of oxygen to carbon increased, revealing that the lipids content in wool epicuticle might decrease and more polar groups exposed on the wool surface. The data from amino acid analysis of wool indicated that the relative mass concentration of cysteine for the cutinase-keratinase-protease treated wool was very low. SEM images verified that the combined use of mild oxidation and cutinase
     8. pretreatments could evenly increase the extent of scale removal during protease treatment.
引文
1. Zahn H. Wool chemistry and processing[C]. Proceedings of the 9th International Wool Textile Research Conference, 1995: 1-16
    2.崔莉.微生物谷氨酰胺转胺酶稳定性及其对羊毛蛋白纤维改性机制的研究[D]: [博士学位论文].无锡:江南大学, 2007
    3. Negri AP, Cornell HJ, Rivett DE. A model for the surface of keratin fibres[J]. Text Res J, 1993, 63: 109-115
    4. Hutchinson S, Evans D, Corino G, et al. An evaluation of the action of thioesterases on the surface of wool[J]. Enzyme Microb Technol, 2007, 40: 1794-1800
    5. Breakspear S, Smith JR, Luengo G. Effect of the covalently linked fatty acid 18-MEA on the nanotribology of hair’s outermost surface[J]. J Struct Biol, 2005, 149: 235-242
    6. Huson M, Evans D, Church J, et al. New insights into the nature of the wool fiber surface[J]. J Struct Biol, 2008, 163(2): 127-136
    7.孙文章.水性聚氨酯和环氧树脂用于蛋白质纤维织物的抗皱防缩整理[D]: [硕士学位论文].上海:东华大学, 2001
    8. Holme I. New developments in the chemical finishing of textiles[J]. J Text Inst, 1993, 84(4): 520-531
    9. Jocic D, Vílchez S, Topalovic T, et al. Chitosan/acid dye interactions in wool dyeing system[J]. Carbohyd Polym, 2005, 60: 51-59
    10. Pascual E, Julia MR. The role of chitosan in wool finishing[J]. J Biotechnol, 2001, 89: 289-296
    11.周文龙.酶在纺织中的应用[M].中国纺织出版社, 2002.6: 217-223
    12.樊增禄.羊毛的蛋白酶防毡缩处理研究[D]: [博士学位论文].上海:东华大学, 1998
    13. Bishop D, Shen J, Heine E, et al. The use of proteolytic enzymes to reduce wool fibre stiffness and prickle[J]. J Text Inst, 1998, 89(Part 1, No.3): 546-553
    14. Koh J, Kang SM, Kim SJ, et al. Effect of pineapple protease on the characteristics of protein fibers[J]. Fiber Polym, 2006, 7(2): 180-185
    15. Lenting H B M, Schroeder M, Güebitz G M, et al. New enzyme-based process direction to prevent wool shrinking without substantial tensile strength loss[J]. Biotechnol Lett, 2006, 28: 711-716
    16. Silva CJSM, Prabaharan M, Güebitz G M, et al. Treatment of wool fibres with subtilisin and subtilisin-PEG[J]. Enzyme Microb Technol, 2005, 36: 917-922
    17. Shen J, Rushforth M, Cavaco-Paulo A, et al. Development and industrialisation of enzymatic shrink-resist process based on modified proteases for wool machine washability[J]. Enzyme Microb Technol, 2007, 40: 1656-1661
    18. Cardamone J M, Yao J, Nunez A. Controlling shrinkage in wool fabrics: effective hydrogen peroxide systems [J]. Text Res J, 2004, 74 (10): 887-898
    19.樊增禄,戴瑾瑾,朱泉.蛋白酶对羊毛的作用机理[J],纺织学报, 2002, 23(1): 19-21
    20. Cortez J, Bonner Phillip LR, Griffin M. Application of transglutaminase in the modification of wool textile[J]. Enzyme Microb Technol, 2004, 34: 64-72
    21. Cui L, Wang Q, Wang P, et al. Transglutaminase-Mediated Crosslinking of Gelatin onto Wool Surfaces to Improve the Fabric Properties[J]. J Appl Polym Sci, 2009, 113: 2598-2604
    22. Du G C, Cui L, Zhu Y, et al. Improvement of shrink-resistance and tensile strength of wool fabric treated with a novel microbial transglutaminase from Streptomyces hygroscopicus [J]. Enzyme Microb Technol, 2007, 40: 1753-1757
    23. Gupta R, Gupta N, Rathi P. Bacterial lipases: an overview of production, purification and biochemical properties[J]. Appl Microbiol Biotechnol, 2004, 64: 763-781
    24. Joseph B, Ramteke PW, Thomas G. Cold active microbial lipases: some hot issues and recent developments[J]. Biotechnol Adv, 2008, 26: 457-470
    25. Naoe K, Ohsa T, Kawagoe M, et al. Esterification by Rhizopus delemar lipase in organic solvent using sugar ester reverse micelles[J]. Biochem Eng J, 2001, 9: 67-72
    26. Lee K, Poppenborg L, Stuckey D. Terpene ester production in a solvent phase using a reverse icelle-encapsulated lipase[J]. Enzyme Microb Technol, 1998, 23: 253-260
    27. Hasan F, Shah A, Hameed A. Industrial applications of microbial lipases[J]. Enzyme Microb Technol, 2006, 39: 235-251
    28. Hartzell M, Hsiech Y. Enzymetic scouring to improve cotton fabric wettability[J]. Text Res J, 1998, 68(4): 233-241
    29. Buchert J, Pere J, Puolakka A, et al. Scouring of cotton with pectinases, proteases and lipases[J]. Textile Chemist Colorist, 2000, 32(5): 48-52
    30. Ossola M, Galante Y. Scouring of flax rove with the aid of enzymes[J]. Enzyme Microb Technol, 2004, 34: 177-186
    31. Vankar P, Shanker R. Ecofriendly ultrasonic natural dyeing of cotton fabric with enzyme pretreatments[J]. Desalination, 2008, 230: 62–69
    32. Gulrajani M L, Agarwal R. Degumming of silk with lipase and protease[J]. Indian J Fibre T ext Res, 2000, 25(1): 69-74
    33. Zhang J F, Wang X, Gong J, et al. A study on biodegradability of PET fiber and diethylene glycolterephthalate[J]. J Appl Polym Sci, 2004, 93: 1089-1096
    34. Mall J K, Sims P, Carr C M. Surface chemical analysis of lipase enzyme treatments on wool and mohair[J]. J Text Inst, Part 1 2002, 93: 43-51
    35. Ganske F,Meyer H H, Deutz H, et al. Enzyme catalysed hydrolysis of 18-methyleicosanoic acid-cysteine thioester[J]. Eur J Lipid Sci Technol, 2003, 105: 627-632
    36. Heine E. Fundamental research on the action of enzymes on wool[D]. Germany: RWTH Aachen University, 1991
    37. El-sayed H, Hamed R, Kantouch A, et al, Enzyme-based feltproofing of wool, AATCC Rev, 2002, 2(1): 25-28
    38. El-Sayed H, Kantouch A, Heine E, et al. Developing a Zero-AOX Shrink-resist process for wool. Part 1: Preliminary Results[J]. Color Technol, 2001, 117: 234-238
    39. Hutchinson S, Evans D, Corino G, et al. An evaluation of the action of thioesterases on the surface of wool[J]. Enzyme Microb Technol, 2007, 40: 1794-1800
    40. Egmond M, De V. Fusarium solani pisi cutinase[J]. Biochimie, 2000, 82: 1015-1021
    41. Martinez C, De G, Lauwereys M, et al. Fusariun solani cutinase is a lipolytic enzyme with a catalytic serine accessible to solvent[J]. Nature, 1992, 356, 615-618
    42. Degani O,Gepstein S, Dosoretz C G. Potential use of cutinase in enzymatic scouring of cotton fiber cuticle[J]. Appl Biochem Biotechnol, 2002,102:277-289
    43. Ofir D S G. Potential use of cutinase in enzymatic scouring of cotton fiber cuticle[J].Appl Biochem Biotechnol, 2002, 102: 277-289
    44. Agrawal PB, Nierstrasz VA, Warmoeskerken MMCG. Role of mechanical action in low-temperature cotton scouring with F. solani pisi cutinase and pectate lyase[J]. Enzyme Microb Technol, 2008, 42: 473-482
    45. Silva CJSM, Carneiro F, O’Neill A, et al. Cutinase-a new tool for biomodification of synthetic fibers[J]. J Polym Sci Part A: Polym Chem, 2005, 43: 2448-2450
    46. Silva CJSM, Araújo R, Micaelo N, et al. Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6.6 fibers[J]. J Biotechnol, 2007, 128: 849-857
    47. Eberl A, Heumann S, Kotekc R, et al. Enzymatic hydrolysis of PTT polymers and oligomers[J]. J Biotechnol, 2008, 135: 45-51
    48.毕凤珍,李寅,陈坚等. Thermobifida fusca产角质酶摇瓶发酵条件研究[J].应用与环境生物学报, 2005, 11(5): 608-610
    49.张守亮.产角质酶嗜热子囊菌热放线菌的诱变及发酵条件优化[D]: [硕士学位论文].无锡:江南大学, 2006
    50.张芙华.重组枯草芽孢杆菌生产角质酶发酵条件优化[D]: [硕士学位论文].无锡:江南大学, 2008
    51. Chen S, Tong X, Woodard R, et al. Identification and Characterization of Bacterial Cutinase[J]. J Biol Chem, 2008, 283: 25854-25862
    52. Ignatova Z, Gousterova A, Spassov G, et al. Isolation and partial characterization of extracellular keratinase from a wool degrading thermophilic actinomycete strain Thermoactinomyces candidus[J]. Can J Microbiol, 1999, 45: 217-222
    53. Radha S, Gunasekaran P. Purification and characterization of keratinase from recombinant Pichia and Bacillus strains [J]. Protein Expr Purif, 2009, 64(1): 24-31
    54. Malviya H, Rajak. Synthesis and regulation of extracellular keratinase in three fungi isolated from the grounds of a gelatin factory[J]. Mycopathologia, 1992,120: 1-4
    55.张洋.一种新型角蛋白酶的发酵、理化性质及应用研究[D]: [硕士学位论文].福州:福州大学, 2005
    56. Bockle B, Muller R. Reduction of disulfide bonds by Streptomyces pactum during growth on chicken feathers[J]. Appl Environ Microbiol, 1997, 63(2): 790-792
    57. Yamamura S, Morita Y, Hasan Q, et al. Keratin degradation: a cooperative action of two enzymes from Stenotrophomonas sp[J]. Biochem Biophys Res Commun, 2002, 294:1138-1143
    58.涂国全,张宝,叶亚建等.链霉菌分解角蛋白的生化机制研究II含硫化合物对角蛋白酶作用机理和角蛋白降解的生化机制初步研究[J].江西农业大学学报, 1998, 20(l): 6-11
    59. Kunert J. Biochemical mechanism of keratin degradation by the actinomycete streptomyces adidae and the fungus micros porumypseum[J]. J Basic Microbiol, 1989, 29(9): 597-604
    60. Macedo A, da Silva WOB, Gava R, et al. Novel keratinase from Bacillus subtilis S14 exhibiting remarkable dehairing capabilities[J]. Appl Environ Microbiol, 2005, 71: 594-596
    61.蔡成岗.角蛋白酶生产菌株选育、发酵与分离纯化研究[D]: [博士学位论文].杭州:浙江大学, 2007
    1. Zhu Hao, Shi Nai. The Enzymological Researches in Reverse Micellar Systems[J]. Prog Biochem Biophys, 1998, 25(3): 204-211
    2. Sakono M, Ichinos H, Goto M. Protein refolding in nanostructured reverse d micelles including a molecular chaperone[J]. J Biosci Bioeng, 2003, 96(3):275-278
    3. Ermakova E A, Zakhartchenko N L, Zuev Y F. Effect of surface potential of reverse micelle on enzyme-substrate complex formation[J]. Colloids Surf A, 2008, 317:297-302.
    4. Creagh A L, Prausnits J M, Blanch H W. Structural and catalytic properties of enzymesin reverse micelles[J], Enzyme Microb Technol, 1993,15:383-392
    5. Chen N, Fan J B, Xiang J, et al. Enzymatic hydrolysis of microcrystalline cellulose in reverse micelles[J]. Biochim Biophys Acta, 2006, 1764 (6): 1092-1035
    6. Sawada K, Ueda M. Enzyme processing of textiles in reverse micellar solution[J]. J Biotechnol, 2001,89:263-269
    7. Sawada K, Ueda M, Kajiwara K. Simultaneous dyeing and enzyme processing of fabrics in a non-ionic surfactant reverse micellar system[J]. Dyes Pigm, 2004, 63: 251-258
    8. Hutchinson S, Evans D, Corino G, et al. An evaluation of the action of thioesterases on the surface of wool[J]. Enzyme Microb Technol, 2007, 40: 1794-1800
    9. Chen S, Tong X, Woodard R, et al. Identification and Characterization of Bacterial Cutinase[J]. J Biol Chem, 2008, 283:25854-25862
    10. Maarten R, Egmond J D V. Fusarium solani pisi cutinase[J]. Biochimie, 2000, 82:67-69
    11.马明,张宇,顾宁.反胶束体系中Fe3O4/SiO2核壳结构纳米粒子的制备和表征[J].东南大学学报(自然科学版), 2009(4):799-802
    12.樊增禄.羊毛蛋白酶处理防毡缩研究[D]: [博士学位论文].上海:东华大学,1998
    13.朱若英.对环境友好的羊毛改性技术研究[D]:[博士学位论文].天津:天津工业大学, 2003
    14.朱浩,施鼎,范映辛等.反胶束体系的酶学研究[J].生物化学与生物物理进展, 1998, 25(3): 204-210
    15. Eberl A, Heumann S, Kotekc R, et al. Enzymatic hydrolysis of PTT polymers and oligomers[J]. J Biotechnol, 2008, 135(1): 45-51
    16.王普,陈希杨.反胶束体系中青霉素酰化酶活性及稳定性研究[J],高校化学工程学报, 2002, 16 (4): 426-429
    17. Carvalho C M L, Cabral J M S. Reverse micelles as reaction media for lipases[J]. Biochimie, 2000, 82:1063-1085
    18.夏仕文,俞耀庭,童明容.反胶束中的酶催化研究进展[J],化学通报, 1998(2): 8-12
    19. Huson M, Evans D,Church J, et al. New insights into the nature of the wool fibre surface[J]. J Struct Biol, 2008, 163(2): 127-136
    20. Kim M S, Kang T J, Dimensional and surface properties of plasma and silicone treated wool fabric [J]. Text Res J, 2002, 72(2): 113-120
    1. Nasiripourdori A, Naderi-Manesh H, Ranjbar B, et al. Co-solvent effects on structure and function properties of savinase: Solvent-induced thermal stabilization[J]. Int J BiolMacromol, 2009 , 44(4): 311-315
    2. Sangeetha K, Emilia Abraham T. Chemical modification of papain for use in alkaline medium [J]. J Mol Catal B: Enzym, 2006, 38: 171?177
    3. Brack N, Lamb R, Pham D, et al. Nonionic surfactants and the wool fibre surface[J]. Colloids Surf A, 1999, 146: 405-415
    4. Hutchinson S, Evans D, Corino G, et al. An evaluation of the action of thioesterases on the surface of wool[J]. Enzyme Microb Technol, 2007, 40:1794-1800
    5. Silva CJSM, Prabaharan M, Güebitz G, et al. Treatment of wool fibres with subtilisin and subtilisin-PEG[J]. Enzyme Microb Technol, 2005, 36: 917-922
    6. Shen J, Rushforth M, Cavaco-Paulo A, et al. Development and industrialisation of enzymatic shrink-resist process based on modified proteases for wool machine washability[J]. Enzyme Microb Technol, 2007, 40: 1656-1661
    7. Cortez J, Bonner P L R, Griffin M. Transglutaminase treatment of wool fabrics leads to resistance to detergent damage[J]. J Biotechnol, 2005, 116(4): 379-386
    8. Cortez J, Bonner P L R, Griffin M. Application of transglutaminases in the modification of wool textiles[J]. Enzyme Microb Technol, 2004, 34(1): 64-72
    9. Du G C, Cui L, Zhu Y, et al. Improvement of shrink-resistance and tensile strength of wool fabric treated with a novel microbial transglutaminase from Streptomyces hygroscopicus[J]. Enzyme Microb Technol, 2007, 40(7): 1753-1757
    10.曹红翠.紫外分光光度法测定蛋白质的含量[J].广东化工, 2007, 34(8): 93-94
    11.周文龙,孙铠.比色法测定羊毛蛋白酶减量的研究[J]. 2001, 22(4): 252-256
    12.姚金波.羊毛角蛋白溶液制备与应用[D]: [博士学位论文].天津:天津工业大学, 2007
    13. Katsaros G I, Katapodis P, Taoukis P S. High hydrostatic pressure inactivation kinetics of the plant proteases ficin and papain[J]. J Food Eng, 2009, 91(1): 42-48
    14. Gosalia D N, Salisbury C M, Ellman J A, et al. High throughput substrate specificity profiling of serine and cysteine proteases using solution-phase fluorogenic peptide microarrays[J]. Mol Cell Proteomics, 2005, 4, 626-636
    15. Sangeetha K, AbrahamT E. Chemical modification of papain for use in alkaline medium[J]. J Mol Catal B: Enzym, 2006, 38:171-177
    1. Hutchinson S, Evans D, Corino G, et al. An evaluation of the action of thioesterases on the surface of wool[J]. Enzyme Microb Technol, 2007, 40: 1794-1800
    2. El-Sayed H, Kantouch A, Heine E, et al. Developing a Zero-AOX Shrink-resist process for wool. Part 1: Preliminary Results[J]. Color Technol, 2001, 117: 234-238
    3.李江,姚斌,范云六.微生物角蛋白酶的分子生物学研究进展[J].工业微生物, 2006, 36(3): 37-42
    4. Li J, Yao B, Fan Y. Research advances in molecular biology of microbial keratinase[J]. Industrial Microbiology, 2006, 36(3):37-42
    5. Cai C G, Lou B G, Zheng X D. Keratinase production and keratin degradation by a mutant strain of Baciliius subtilis[J]. Journal of Zhejiang University Science B, 2008, 9(1): 60-67
    6.张寒俊,刘大川,杨国燕.紫外光谱法定量测定不同种蛋白酶活力的研究[J].食与饲料工业, 2004(9): 44-45
    7.蔡成岗.角蛋白酶生产菌株选育、发酵与分离纯化研究[D]: [博士学位论文].杭州:浙江大学, 2007
    8.张芙华.重组枯草芽孢杆菌生产角质酶发酵条件优化[D]: [硕士学位论文].无锡:江南大学, 2008
    9. Araújo R, Silva CJSM, Micaelo N, et al. Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6.6 fibers[J]. J Biotechnol, 2007, 128:849–857
    10. Agrawal PB, Nierstrasz VA, Warmoeskerken MMCG. Role of mechanical action in low-temperature cotton scouring with F. solani pisi cutinase and pectate lyase[J]. Enzyme Microb Technol, 2008, 42:473-482
    11. Kim W K, Lorenz E S, Patterson P H. Effect of enzymatic and chemical treatments on feather solubility and digestibility[J]. Poultry Sci, 2002, 81: 95-98
    12.涂国全,张宝,叶亚健等.链霉菌分解角蛋白的生化机制研究[J].江西农业大学学报, 1998, 20(1): 6-11
    13. Suntornsuk W, Tongjun J, Onnim P, et al. Purification and characterization of keratinase from a thermotolerant feather-degrading bacterium[J]. W J Microbiol Biotechnol, 2005, 21: 1111-1117
    14.蔡成岗,郑晓冬.以羽毛为底物发酵产角蛋白酶培养基的优化[J].科技通报, 2009, 25(4):25-30
    15.周爱晖,范雪荣,王强等.预处理在羊毛酶法防毡缩中的作用[J].毛纺科技, 2008(8):14-18
    16. Walawska A, Rybicki E, Filipowska B. Physicochemical changes on wool surface after an enzymatic treatment[J]. Progr Colloid Polym Sci, 2006, 132:131-137
    1. El-Sayed H, Kantouch A, Heine E, et al. Developing a Zero-AOX Shrink-resist process for wool. Part 1: Preliminary Results[J]. Color Technol, 2001, 117: 234-238
    2.王菊花,许海育.甲酸—双氧水在羊毛生物酶防毡缩整理中的应用[J].印染助剂. 2007, 24(6): 34-36
    3.王鸿博,洪剑寒,王锦嫣等.氧气低温等离子体对涤棉织物润湿性能的影响[J].纺织学报, 2006, 27(6): 1-46
    4.姚金波,滑钧凯,刘建勇.毛纤维新型整理技术[M].北京:中国纺织出版社, 2000: 8-24
    5. Du GC , Cui L, Zhu Y, et al. Improvement of shrink-resistance and tensile strength of wool fabric treated with a novel microbial transglutaminase from Streptomyces hygroscopicus[J]. Enzyme Microb Technol, 2007, 40: 1753-1757
    6.周文龙,袁骏,李茂松.双氧水和DCCA处理羊毛XPS能谱研究[J].纺织学报, 2001, 22 (5): 53-55
    7.周文龙.酶在纺织中的应用[M].中国纺织出版社, 2002.6: 54-63
    8. Kang S M, Koh J, Noh SY, et al. Effects of lugworm protease on the dyeing properties of protein fibers[J]. J Ind Eng Chem, 2009, 15(4): 584-587
    9.周建萍,陈昇 . KES织物风格仪测试指标的分析及应用[J].现代纺织技术, 2005(6):37-40
    10.杨旭红,王华杰.大豆蛋白纤维织物风格的测试分析[J].棉纺织技术, 2001, 29(9): 12-15
    1. Wojciechowska E, Rom M, W?ochowicz A, et al. The use of Fourier transform-infrared(FTIR) and Raman spectroscopy (FTR) for the investigation of structural changes in wool fibre keratin after enzymatic treatment[J]. Journal of Molecular Structure , 2004, 704: 315–321
    2. Church J S, Corino G L, Woodhead A L. The analysis of merino wool cuticle and cortical cells by Fourier transform Raman spectros copy[J]. Biopolymer, 1997, 42(1): 7-17
    3.李文霞,廖青,刘燚.利用付立叶红外光谱与付立叶拉曼光谱初探超细羊毛粉的光谱行为[J].分析科学学报, 2007, 23(5): 519-522
    4.邵建中,刘今强,郑今欢.过一硫酸盐羊毛表面改性机理的红外光谱研究[J].纺织学报, 2001, 22 (5):285-287
    5. Kan C W, Yuen C W M. Surface characterisation of low plasma-treated wool fiber[J]. J Mater Process Tech, 2006, 178:52-60
    6.胡朝明.傅立叶变换红外光谱检测过一硫酸处理羊毛表面的研究[J].现代纺织技术, 2001, 9(1):1-4
    7. Kim W K, Lorenz E S, Patterson P H. Effect of enzymatic and chemical treatments on feather solubility and digestibility[J]. Poultry Sci, 2002, 81: 95-98
    8. Lucovsky G, Yang J, Chao S S, et al. Nitrogen–bonding environments in glow discharge depositedα-Si: H films [J]. Phys Rev B, 1983, 28: 3234-3240
    9. Richardson M J, Johnston J H. Sorption and binding of nanocrystalline gold by Merino wool fibres-An XPS study[J]. J Colloid Interface Sci, 2007, 310: 425-430
    10. Ward R J, Willis H A, George G A, et al. Surface analysis of wool by X-ray photoelectron spectroscopy and static secondary ion mass spectrometry[J]. Text Res J, 1993, 63: 362-368
    11. Ke G Z, Yu W D, Xua W L. Effects of corona discharge treatment on the surface properties of wool fabrics[J]. J Mater Process Technol, 2008, 207: 125-129
    12.王卫,李龙,杨丁丁.改性羊毛的X射线光电子能谱分析[J].毛纺科技, 2006(7): 10-13
    13. Molina R, Espin?s J P, Yubero F, et al. XPS analysis of down stream plasma treated wool: Influence of the nature of the gas on the surface modification of wool[J]. Appl Surf Sci, 2005, 252: 1417-1429
    14. Walawska A, Rybicki E, Filipowska B. Physicochemical changes on wool surface after an enzymatic treatment [J], Progr Colloid Polym Sci, 2006, 132: 131-137
    15. Silva C J S M, Prabaharan M, Güebitz G, et al. Treatment of wool fibres with subtilisin and subtilisin-PEG [J], Enzyme Microb Technol, 2005, 36(7): 917-922

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700