离子液体—蛋白酶处理对羊毛表面性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用蛋白酶对羊毛进行生物整理以其环保性正受到人们的日益重视,但是羊毛鳞片层表面的类脂结构以及鳞片外层中大量存在的二硫键严重制约了蛋白酶对鳞片的水解,大大削弱了其处理效果。因此,采用蛋白酶对羊毛进行生物加工时,首先需要对羊毛的鳞片层进行预处理改性,为蛋白酶攻击鳞片层下方的蛋白质做好铺垫,而且预处理的方法和程度对蛋白酶的处理效果起着非常重要的作用。所以,选择一种高效、环保的预处理方法对蛋白酶的生物加工无疑会起到非常积极的作用。
     有鉴于此,本文将低挥发、易回收、热稳定性好、溶解能力强的新型环保溶剂—离子液体引入到羊毛加工过程中,将其作为蛋白酶整理的预处理方法。文章详细研究了离子液体-蛋白酶处理对羊毛各项性能,特别是表面性能的影响;同时探讨了离子液体对蛋白酶水解的促进机理。文章的主要研究结论如下:
     1.在[BMIM]Cl、[BMIM]BF4和[BMIM]PF6三种离子液体中,[BMIM]Cl处理对羊毛的减量效果最好。
     羊毛经过[BMIM]Cl(100℃/10min)处理后,蛋白酶对其减量效果可提升约53.3%。对[BMIM]Cl改性条件的进一步研究可以发现,温度对离子液体的溶解减量效果影响较大,处理温度为80℃时,蛋白酶对羊毛的减量率只有2.41%,而当温度升高到120℃时,减量率可达到9.96%。虽然提高温度可以显著提升其改性效果,但是随着温度的提高,离子液体处理对羊毛造成的损伤程度也在增大,100℃处理时,羊毛碱溶解度只有14.3%,而120℃处理时,碱溶解度则会升高到23.3%。
     2.离子液体-蛋白酶处理能够明显改善羊毛的润湿性能。
     仅经过蛋白酶处理后的织物,其水滴润湿时间>1800s,接触角>110o,羊毛表面润湿性能基本没有改善;而经过[BMIM]Cl 100℃/10min处理后的织物,其润湿时间和润湿接触角分别降至1418s和106.4o,这说明离子液体处理可显著提高织物的表面润湿性能。但是在饱和吸水量方面,离子液体处理则不如蛋白酶处理效果好,两者联合处理则可以全面提升羊毛的润湿性能,其润湿时间和润湿接触角分别降低到520s和99.7o,吸水量则由蛋白酶单独处理时的0.574 g/g织物提升到0.591 g/g织物。
     XPS实验结果显示,羊毛经过联合处理后,其纤维表面疏水性的C-C/C-H键含量由未处理时的64.9%下降到47.8%,而亲水性的O-C=O/N-C=O基团则由23.3%升高到35.3%,-SO3含量也由22.2%升到27.9%。这些亲水性基团的增加说明离子液体的溶解和蛋白酶的水解能够显著改变纤维表层的元素组成,从而有助于羊毛润湿性能的提升。
     3.离子液体-蛋白酶处理对羊毛的染色性能有较大影响。
     羊毛经过蛋白酶处理后,其初染速率仅略有提升,而经过离子液体—蛋白酶处理后,染料初染速率迅速提高,即使在80℃的染浴中也能迅速上染。另外,随着离子液体处理时间的延长和处理温度的提高,染料对羊毛的上染速率和上染率都得到提高。
     染色动力学分析显示,经过离子液体处理后,染料在羊毛中的扩散系数提高了约1.12倍,而扩散活化能则由未处理时的34.39 KJ/mol降低到19.43 KJ/mol。染色织物色度参数显示,织物的K/S值从未处理时的17.61提高到联合处理后的19.78,这表明联合处理有助于织物表观得色深度的提高。但是处理后织物的水洗牢度和湿摩擦牢度则有0.5级左右的降低。
     4.离子液体-蛋白酶处理对羊毛物理机械性能有较大影响。
     当离子液体处理条件为100℃/10min时,经过联合处理后的纤维,其定向摩擦效应由7.09%减弱到3.5%,而织物毡缩率则由30.58%降低到18.84%,这说明离子液体-蛋白酶处理能够有效降低纤维的定向摩擦效应,提高织物防毡缩性能。
     离子液体-蛋白酶处理会造成羊毛强力及断裂伸长率的损伤。离子液体处理条件为100℃/10min时,联合处理后羊毛纤维的断裂强力损失约为10.1%,而断裂伸长率损失则达到31.8%。纱线则由于热收缩原因,呈现出强力下降,断裂伸长率提高的现象,这表明联合处理会对羊毛的强度造成不利影响。
     在织物风格上,离子液体的溶胀作用会使织物的压缩线性度和压缩功降低,而弯曲刚度和弯曲滞后矩增大,这说明离子液体处理会导致织物压缩以及弯曲特性的下降。经过蛋白酶处理后,织物的压缩特性和弯曲特性得到一定程度恢复。在白度上,离子液体高温(120℃)处理时,织物有泛黄倾向,但是蛋白酶的脱色作用则会使织物白度显著提高。
     5.离子液体处理可以明显改变纤维的表面物理形态和化学组成,从而深刻影响蛋白酶对羊毛的水解。
     SEM图像表明,羊毛经过离子液体处理后,纤维表面有明显被溶蚀的痕迹,而且鳞片边缘在离子液体的溶解作用下变得钝化。Allw?rden囊泡形状的变小也显示出鳞片表层遭受了不同程度的破坏。
     FT-IR ATR图谱则表明,经过离子液体处理后的羊毛在3300 cm-1处的N-H和O-H伸缩振动吸收带变得更宽更强,而位于2964 cm-1、2935 cm-1和2877cm-1处,由C-H伸缩振动引起的吸收峰则变得非常弱,这表明离子液体对纤维表层的溶解会导致脂肪族物质去除,使得甲基和亚甲基含量降低,而氨基和羟基等基团则大量暴露。另外,1040cm-1处吸收峰的出现,表明二硫键在离子液体处理过程中被破坏,其产物主要为磺基丙氨酸。
     WAXD衍射分析显示,离子液体处理后(100℃/10min),羊毛纤维的结晶指数由未处理时的60%下降到57.9%,这说明离子液体的溶胀作用会降低纤维的致密程度。
     氨基酸分析显示,与单独蛋白酶处理相比,羊毛经过离子液体-蛋白酶处理后,纤维中大部分氨基酸如谷氨酸、酪氨酸、丝氨酸的含量会继续降低;在水解液中,丝氨酸、苏氨酸、苯丙氨酸和胱氨酸等含量则迅速上升,尤其是蛋白酶的作用位点丝氨酸,其含量增加了约一个数量级。这说明离子液体处理有助于增加蛋白酶的有效作用位点,提高蛋白酶对鳞片层中高硫蛋白质的水解。
     在类脂去除、二硫键被破坏以及纤维结晶度下降的综合作用下,蛋白酶对离子液体处理后的纤维水解速率明显提升,而且对鳞片的水解作用模式也得到加强。
With the development of biotechnology, enzymatic treatment has received much attention as an eco-friendly method in cuticle scales removal. However, the outer surface of the scales is hydrophobic and highly cross linked, it is in practice hardly substrate for protease. To make enzymatic treatment effective, the outer scale has to be modified prior to incubation. Furthermore, pretreatment methods play an important role in protease processing. An efficient and environmentally friendly pretreatment method will undoubtedly make a very active effect for protease treatment.
     Ionic liquid used to be a green solvent in materials processing, was employed for wool surface modification prior to incubation. Ionic liquids are often considered as a unique type of solvents due to their excellent properties, such as negligible volatility, high thermal stability, easy recycle and high solubility for many substances. In the paper, the properties of wool treated by ionic liquid and protease was first dissected, and then the promotional effect of ionic liquid modification on protease incubation was also studied. The major findings are as follows:
     1. Among the three kinds of ionic liquids [BMIM]Cl, [BMIM]BF4 and [BMIM]PF6, [BMIM]Cl treatment showed the best modification results for wool fibers.
     The weight loss of wool fiber can be rasied 53.3% by protease processing when pretreated by [BMIM]Cl at 100℃for 10 min. Further studies on the conditions of [BMIM]Cl treatment showed that the weight loss increased with the treatment temperature and elongation of treatment duration. Compared with the treatment duration, the temperature played a much more important role in [BMIM]Cl modification. However, the degree of damage to wool fibers also increased with the treatment temperature. The alkaline solubility of wool fibers treated by [BMIM]Cl at 100℃was no more than 14.3%, but it would reach 23.3% when treated at 120℃.
     2. The wettability of wool can be significantly improved after ionic liquid and protease treatment.
     Protease treatment had little improvement on the wettability of wool fabric. The wetting time of wool fabric treated by protease was more than 1800 seconds, and water contact angle more than 110o. Whereas the wetting time and water contact angle of wool fabric decreased to 1418s and 106.4o after ionic liquid treatment, which indicated that ionic liquid treatment made an efficient impact on wool wettability. However, the water uptake of wool fibers treated by ionic liquid was smaller than the protease treated. After the ionic liquid and protease treatment, the wetting time and water contact angle of wool fabric decreased to 520s and 99.7o, and the water uptake was increased to 0.591g/g from 0.574g/g. The wettability of wool sample was fully improved.
     XPS analysis showed that the elemental composition of wool surface was remarkably changed by ionic liquid and protease treatment. The content of C-C/C-H groups decreased from 64.9% to 47.8%, while the hydropholic groups such as O-C=O/N-C=O increased to 35.3% from 23.3% after ionic liquid and protease treatment. At the same time, the S(VI) content of wool fiber was also increased to 27.9% from 22.2%. These increases of hydropholic groups were helpful for the surface hydrophilicity.
     3. The dyeing properties of wool were greatly changed after ionic liquid and protease treatment.
     Compared with the slightly improvement in the initial dyeing rate of protease-treated wool fibers, it was quickly increased after ionic liquid and protease treatment. The dyeing rate was also high even dyed at 80oC. Otherwise, with the increase of treatment temperature and elongation of treatment duration, the dyeing rate and final dye exhaustion was both improved. Dyeing dynamics showed that the diffusion coefficient increased by about 1.12 times and diffusion active energy of wool fibers decreased to 19.43 KJ/mol from 34.39 KJ/mol after ionic liquid treatment.
     The K/S value of wool fabric increased to 19.78 from 17.61 after the combined treatment, which indicated that ionic liquid treatment was help to improve the color depth. However, there was about half grade decrease in the washing fastness and wet rubbing fastness after the combination treatment.
     4. The mechanical properties of wool were remarkably changed by ionic liquid and protease treatment.
     When wool fibers were pretreated by [BMIM]Cl at 100℃for 10 min, the directional friction effect can be reduced to 3.5% from 7.09% of the untreated, and respectively, the felting shrinkage was reduced to 18.84% from 30.58% .
     Ionic liquid and protease treatment could lead to the decrease of tensile strength and breaking elongation. The loss of tenislie strength reached 10.1%, and 31.8% for breaking elongation after ionic liquid and protease treatment. But the breaking elongation of yarn was a bit to upgrade for the heat shrinkage.
     Fabric manner tests results showed that the compression and bending properties of wool fabric decreased after ionic liquid treatment, but the followed protease treatment was helpful to recover them. For the whiteness, ionic liquid treatment at 120℃could induce the wool yellowing, but the whiteness was significantly improved after protease treatment.
     5. Ionic liquid treatment can significantly change the fiber's surface morphology and chemical composition and thus profoundly affecte the hydrolysis of wool by protease.
     SEM photos of ionic liquid-treated wool fibers revealed visible deterioration to scales compared with the untreated. Although the scales treated with ionic liquid were still clearly visible, the scale edges were deeply eroded by ionic liquid. The smaller Allw?rden sacs also showed the damage of wool epicutical layer by ionic liquid solubility.
     As shown in the infrared spectrum of ionic liquid-treated wool fibers, the stretching vibration band of N-H and O-H bonds which falls at 3300 cm-1, became wider and stronger, while the stretching vibration band of C-H bond, which falls at 2964 cm-1, 2935 cm-1 and 2877cm-1 became smaller. This indicated that the content of CH3 and CH2 bonds was reduced for the removal of the lipid acids, and thus made the -NH2 and -OH bonds originally under the lipid layer exposed to the surface. Otherwise, there was cysteic acid produced for the emergence of absorbance band at 1040cm-1 after ionic liquid treatment.
     WAXD results showed that the crystallnity index of wool fibers decreased from 60.0% to 57.9% after ionic liquid treatment. These changes could be attributed to the swollen effect of ionic liquid.
     According to the amino acids analysis results, the content of most amino acids in ionic liquid and protease treated wool fiber such as Glu, Tyr and Ser decreased much more than that treated merely by protease. In the incubation solution, the content of some amino acids such as Ser, Thr, Phe and Cys increased quickly after ionic liquid pretreatment. Especially, the content of Ser, the active center of Savinase, increased by about 10 times. This inducated that ionic liquid treatment improved the hydrolysis of the high-sulfur protein in wool scales.
     With the removal of lipid acids, the broken of disulfide bonds and the derease of crystallnity of wool, ionic liquid treatment not only improved the hydrolysis rate of wool keratin, but enhanced the hydrolysis of wool scales.
引文
1.姚穆.毛纤维材料学[M].北京:中国财政经济出版社, 1960: 1-2
    2. Hyde N. Wool, fabric of History [J]. National Geographic, 1988, 173 (5):552-591
    3. Mclaren J A, Milligan B. Wool Science-The Chemical Reactivity of the Wool Fibres[M]. Marrickville: Science Press, 1981: 25
    4. Baumann, H., Applied Aspects of Keratin Chemistry, in "Fibrous Proteins: Scientific, Industrial and Medical Aspects [M]. London: Academic Press, 1979: 299-370
    5. Rippon J A. The structure of wool [M]. Bradford: Society of Dyers and Colorists, 1992: 31-51
    6. Bird C L. The Theory and Practice of Wool Dyeing [M]. Yorkshire: Society of Dyers and Coloration, 1972:127
    7. Rippon J A. Wool Dyeing [M]. Yorkshire: Society of Dyer and Colorists, 1992: 9
    8. Zahn H. Wool chemistry and processing. Proceedings of the 9th International Wool Textile Research Conference, 1995: 1-16.
    9. Dobb M G., Johnston F R, Nott J A, et al. Morphology of the cuticle layer in wool fibers and other animal fibers [J]. Journal of the Textile Institute, 1961, 52 (4): 153–170
    10. Negri A P, Cornell H J, Rivett D E. A model for the surface of keratin fibres [J].Textile Resarch Journal 1993, 63:109–15
    11. Lewin M, Pearce M, Handbook of fiber chemistry (Second edition) [M]. NewYork: Marcel Dekker, 1998, 357-403
    12. Whiteley K J, Kaplin L J. The Comparative arrangement of microfibrils in Ortho-, Meso-, and Para-cortical cells of Merino-wool fibers[J]. Journal of the Textile Institute, 1997, 68(11): 384-386
    13. Tester D.H. Fine structure of cashmere and superfine Merino wool fibers[J]. Textile Research Journal, 1987, 57(4): 213-218
    14.姚金波,滑均凯,刘建勇.毛纤维新型整理技术[M].北京:中国纺织出版社,2000, 4
    15. Rivett D E. Structural lipids of the wool fibre [J]. Wool Science Review, 1991, 67: 1–25.
    16. Negri A P, Cornell H J, Rivett DE. The nature of the covalently bound fatty acids in wool fibres [J]. Australian Journal of Agricultural Research, 1991, 42:1285–1292
    17. Bradbury J H. Advances in Protein Chemistry [M]. New York: Academic Press, 1973.111
    18. Makinson K R. Shrinkproofing of Wool. New York: Marcel Dekker, 1979.150
    19.张茜.羊毛织物生态防毡缩整理的研究[D]:[硕士学位论文].天津:天津工业大学纺织服装学院
    20.孔繁超,吕淑霖,袁柏耕.毛织物染整理论与实践.北京:纺织工业出版社, 1990. 128
    21.何天虹,姚金波.羊毛剥鳞片加工对静电特性的影响[J].毛纺科技, 2003(1):32-35
    22.王凯,单小红.改性处理对羊毛纤维刺痒感的影响[J].毛纺科技, 2008 (08):52-54
    23.韩露,于伟东.织物刺痒感产生机理探讨[J].北京纺织, 2001, 22(04):51-53
    24.王爱兵,杨斌.超声波技术及其在纺织品前处理中的应用[J].中原工学院学报, 2003, 14(1): 73-75
    25. Bradbury J H, Chapman G V. The Chemical Composition of Wool Part I: Separation and Microscopic Characterization of Components Produced by Ultrasonic Disintegration [J]. Australian Journal of Biological Sciences, 1964(17): 960-972
    26.李霞,高卫东,王鸿博.超声波协同酶复合整理改善毛织物防缩性的研究[J].毛纺科技, 2007 (7): 18-21
    27.陈杰瑢.等离子体清洁技术在纺织印染中的应用[M].北京:中国纺织出版社.2005.2-6
    28.邢声远.低温等离子体技术在纺织工业中的应用[J].毛纺科技, 2004(1):21-26.
    29. Kan C W.The effect of descaling process on the properties of wool[D]: [PhD].Hong Kong: Hong Kong Polytechnic University, 1999.
    30. Wu Yu, Wang Shouguo. The research about the time-effect of the wettability on the wool surface treated by the Ar plasma jet in the atmospheric pressure[J].Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2009, 267(18):3137-3139
    31.虞学锋,王鸿博.低温氧等离子体处理对羊毛织物性能的影响[J].江南大学学报(自然科学版), 2007, 6(3): 353-357
    32.金郡潮,戴瑾瑾,梁静.等离子体处理羊毛织物防毡缩性能的研究[J].毛纺科技, 2001 (6): 19-23
    33. Alexander P, Hudson R F, Fox M. The Reaction of Oxidizing Agents with Wool. 5. The oxidation products of the disulphide bond and the formation of a sulphonamide in the peptide chain[J]. Biochemistry Journal, 1951, 49: 129-138
    34. Earland C, Raven D. Studies on the structure of keratin III. The reaction of wool and horn keratins with solutions of sodium hypochlorite[J]. Biochimica et Biophysica Acta, 1958, 27: 41-45
    35.邵建中,胡朝明,刘今强,等.用于羊毛表面改性的氧化剂性能研究[J].纺织学报, 2001,22(04): 38-41
    36. Cardamone J M. DCCA shrinkproofing of wool part I. Importance of antichlorination[J]. Textile Research Journal, 2004, 74(6):555-560
    37. Cardamone J M, Yao J, Nunez A. Controlling shrinkage in wool fabrics: effective hydrogen peroxide systems [J]. Textile Research Journal, 2004, 74(10):887-898
    38.吴红玲.羊毛织物防毡缩整理的理论与实践[J].染整技术, 2006, 28(1):15-18
    39.张海燕.羊毛氯化处理工艺的研究[J].毛纺科技,1996(1):57-59
    40.王晶.羊毛染色及防缩氯化预处理中的AOX问题[J].印染, 2000, 26(7): 42-45.
    41.湛海玲,郭艺雯,于伟东.基于还原法的羊毛溶解及其效果表征[J].纺织学报, 2009,30(10): 37-40
    42.解子燕.纤维化学[M].北京:中国纺织出版社, 2002. 106-107
    43. Cook J R,黄铁民. Synthappret LKF应用于还原羊毛的防缩处理:对羊毛与聚合物间共价键的论证[J].国外纺织技术, 1982,(12):11-14
    44.周文龙.酶在纺织中的应用[M].北京:中国纺织出版社,2002. 216-218
    45.张树政.酶制剂工业[M].北京:科学出版社, 1984. 388-431, 655-668
    46.谈重芳,王雁萍,陈林海,等.微生物脂肪酶在工业中的应用及研究进展[J].食品工业科技, 2006, 27(7):193-195
    47. Heine E. Fundamental research on the action of enzymes on wool [D]: [PhD Thesis]. Aachen: Reinisch-Westfaelish Technischen Hochschule, 1991
    48. El-Sayed H, Kantouch A, Heine E, et al. Developing a zero-AOX shrink-resist process for wool. Part 1: preliminary results [J]. Coloration Technology, 2001, 117(4):234–238.
    49. Ganske F, Meyer H H, Deutz H, et al. Enzyme catalyzed hydrolysis of 18-methyleicosanoic acid-cysteine thioester [J]. European Journal of Lipid and Science and Technology, 2003, 105: 627–632
    50. Sally Hutchinson, David Evans, Gary Corino, et al. An evaluation of the action of thioesterases on the surface of wool [J]. Enzyme and Microbial Technology, 2007, 40 (7):1794-1800
    51.樊增禄,戴瑾瑾,朱泉.酶对羊毛染色性能的影响[J].毛纺科技, 2001(3):20-23
    52. Middlebrook W R, Phillips H. The application of enzymes to the production of shrinkage-resistant wool and mixture fabrics [J]. Journal of the Society of Dyers and Colorists, 1941, 57: 137-144
    53. Burgess R. Use of Trypsin for Determination of the Resistance of Wool Fibers toBacterial Disintegration [J]. Journal of the Textile Institute, 1934, 25: 289-94
    54. Speakman J B, Mcmahon P R. Sulphur Content of the Intercellular Phase of the Wool Fibre [J] Nature, 1938, 141: 118-119
    55. Cardamone J M. Yao Jiming. Methods of improving shrink-resistance of natural fibers, synthetic fibers, or mixtures thereof, or fabric or yarn composed of natural fibers, synthetic fibers, or mixtures thereof [P]. United States Patent, 7090701. 2006-08-15
    56. Goddard D R, Michaelis L. A study on keratin [J] Journal of the Biological Chemistry, 1934, 106(2): 605-614
    57.郭勇,李珣,蔡再生.常压等离子体与酶结合处理提高羊毛防毡缩性[J].毛纺科技, 2006(2): 13-16
    58.张永烨,黄广友.羊毛织物的等离子体和生物酶复合防毡缩整理[J].印染, 2008 (13):1-4
    59.王平,范雪荣,马小云,等,基于角质酶反胶束预处理的羊毛织物蛋白酶加工[J].纺织学报, 2010, 31 (3):78-82
    60.王平,范雪荣,蔡成岗,等.基于角蛋白酶与蛋白酶协同处理的羊毛防毡缩加工[J].纺织学报, 2010, 31(6): 18-21
    61. Cardamone J M, Yao J, Nunez A. Controlling shrinkage in wool fabrics: effective hydrogen peroxide systems [J]. Textile Research Journal, 2004, 74(10): 887-898
    62.陆水峰,邵建中.过一硫酸盐和生物酶联合处理对羊毛织物性能的影响及机理探讨[J].浙江理工大学学报, 2007, 24 (3): 225-229
    63.李博,姜凤琴,童步章.毛织物高锰酸钾丝光防缩整理工艺[J].毛纺科技, 2003 (3): 28-30
    64.周爱晖,范雪荣,王平,等. DCCA处理在羊毛酶法防毡缩中的作用[J].毛纺科技, 2008 (8): 14-18
    65.百度.双氧水对人体的危害[EB/OL]. http://zhidao.baidu.com/question/28506818.html, 2007-06-14
    66.周爱晖,范雪荣,王平,等.氧化与氯化处理对羊毛酶法防毡缩整理的影响[J].印染助剂, 2009, 26(1): 12-14
    67. Seddon K R. Ionic liquids: fact and fiction [J]. Chemistry Today, 2006, 24(2): 16-23
    68. David Bradley. Super Solvents [J]. Chemistry Processing, 1999, 1-2
    69. Holbrey J D, Seddon K R. Ionic Liquids [J].Clean Products and Processes 1, 1999: 223-236
    70. Wasserscheid P, Keim W. Ionic liquids. New solutions for transition metal catalysis [J].Angewandte Chemie International Edition, 2000, 39: 3773-3789
    71. Wilkes J S. A short history of ionic liquids-from molten salts to neoteric solvents [J]. Green Chemistry, 2002, 4(2):73-80
    72. Wilkes J S, Zaworotko M J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids [J]. Journal of the Chemical Society, 1992(13): 965-966
    73.张锁江,吕兴梅.离子液体从基础研究到工业应用[M].北京:科学出版社, 2006.1-2
    74.任强,武进,张军,等.1-烯丙基-3-甲基咪唑室温离子液体的合成及其对纤维溶解性能的初步研究[J].高分子学报, 2003 (3): 448– 451
    75.郭明,虞哲良,李铭慧,等.咪唑类离子液体对微晶纤维素溶解性能的初步研究[J].生物质化学工程, 2006, 40(6): 9-12
    76. Broughton R M. Investigation of Organic Liquids for Fiber Extrusion [EB/OL]. http://www.ntcresearch.org/pdf-rpts/AnRp07/C05-AE05-A7.pdf, 2007-11
    77. Philips D M, Drummy L F, Conrady D G, et al. Dissolution and regeneration of bombyx mori silk fibroin using ionic liquids [J]. Journal of the American Chemical Society, 2004, 126(44): 14350-14351
    78. Xie Hai-bo, Li Sheng-hai, Zhang Suo-bo. Ionic liquids as novel solvents for the dissolution and blending of wool keratin fibers [J]. Green Chemistry, 2005, 7: 606-608
    79. Biswas A, Shogren R L, Stevenson D G, et al. Ionic liquids as solvents for biopolymers: Acylation of starchand zein protein [J].Carbohydrate Polymers, 2006 (66): 546-550
    80. Stevenson D G, Biswas A, Jane J, et al. Changes in structure and properties of starch of four botanical sources dispersed in the ionic liquid, 1-butyl-3-methylimidazolium chloride [J].Carbohydrate Polymers, 2007, 67(1): 21-31
    81.高洁,汤烈贵.纤维素科学[M].北京:科学出版社. 1996.71
    82. Swatloski R P,Spear S K,Holbrey J D,et al. Dissolution of cellulose with ionic liquids [J]. Journal of the American Chemical Society, 2002, 124 (18): 4974-4975
    83. EPA. The Presidential Green Chemistry Challenge Award Recipients 1996-2009 [EB/OL]. http://www.epa.gov/greenchemistry/pubs/docs/award_recipients_1996_2009.pdf, 2009-06
    84.张锁江,吕兴梅.离子液体从基础研究到工业应用[M].北京:科学出版社, 2006.333
    85. Huang J F, Chen P Y, Sun I W, et al. NMR evidence of hydrogen bonding in 1-ethyl-3-methylimidazolium-tetrafluoroborate room temperature ionic liquid. Inorganica Chimica Acta, 2001, 320: 7-11
    86.刘传富,孙润仓,任俊莉,等.离子液体在纤维素材料中的应用进展[J].精细化工, 2006, 23(4): 318-322
    87.翟蔚,陈洪章,马润宇.离子液体中纤维素的溶解及再生特性[J].北京化工大学学报,2007, 34(2): 138-141
    88. Wu J, Zhang J, Zhang H, et al. Homogeneous acetylation of cellulose in a new ionic liquid [J]. Biomacromolecules, 2004, 5: 266-268
    89.于伟东.纺织材料学[M].北京:中国纺织出版社, 2006. 54
    90.林江滨,姚晋荣,周丽,等.再生蚕丝的制备及其结构和性能初探[J].高等学校化学学报, 2007, 28(6): 1181-1185
    91. Philips D M, Drummy L F, Naik R R, et al. Regenerated silk fiber wet spinning from an ionic liquid solution [J]. Journal of Materials Chemistry, 2005, 15: 4206-4208
    92.姚金波.羊毛角蛋白溶液的制备与应用[D]: [博士论文].天津:天津工业大学, 2003
    93.谢海波,张所波.一种角蛋白溶液的制备方法[P].中国专利, 200410011389.6. 2004-10-389.6
    94. Liu Weiwei, Ye Yunting, Zhang Yumei, et al. Properties of PAN/ ionic liquids diluted solution[J]. 7th ISGCC, 2005:108
    95.黄翔宇.新型溶剂在腈纶工业中的应用[J].金山油化纤, 2006, 25(2): 16-20
    96.李宙雷,王华平,张玉梅.聚丙烯腈-离子液体稀溶液体系特性粘度值的修正[J].东华大学学报(自然科学版), 2006, 32(3): 20-23
    97. Tu Xiaoping, Zhang Yumei, Zhao Tingting, et al. Rheological behavior of polyarylsulfone 1-butyl-3-methylimidazolim chloride solution [J]. 2nd ICAFPM, 2005, 1: 302
    98.胡仁志,张波兰,张永金,等.离子液体改性苎麻纤维性质研究[J].武汉科技学院学报, 2004, 17(5): 25-28
    99. Lau R M, Van Rantwijk F, Seddon K R, et al. Lipase-catalyzed reactions in ionic liquids [J]. Organic Letter, 2000, 2(26): 4189-4191
    1.王均凤,张锁江,陈慧萍,等.离子液体的性质及其在催化反应中的应用[J].过程工程学报, 2003,3(2):177-185
    2.张锁江,吕兴梅.离子液体从基础研究到工业应用[M].北京:科学出版社,2006:64
    3.范雪荣.纺织品染整工艺学[M].第2版.北京:中国纺织出版社,2007:22
    4.姚穆.纺织材料学[M].第2版.北京:中国纺织出版社,1990:111
    5. MacFarlane D R, Pringle J M, Johansson K M, et al. Lewis base ionic liquids[J]. Chemical Communications,2006,(18):1905-1917
    6. Luo S P, Xu D Q, Yue H D, etal. Synthesis and properties of novel chiral-amine -functionalized ionic liquids[J]. Tetrahedron: Asymmetry, 2006, 17(13):2028-2033
    7.刘伟,刘晔.双位点碱性离子液体对Knoevenagel缩合反应的协同催化作用[J].催化学报,2008,29(8):771-776
    8.王仲妮,王洁莹,司友华,等.咪唑类离子液体的研究进展[J].化学进展,2008,20(7/8): 1057-1062
    9. Berthod A, Ruiz M J, Broch S C. Ionic liquids in separation techniques[J]. Journal of chromatography A, 2008, 1184(1-2):6-18
    10. Fredlake C P, Crosthwaite J M, Hert D G, et al. Thermophysical properties of imidazo- lium based ionic liquids[J]. Journal of chemical & engineering data, 2004, 49(4):954- 964
    11.任强,武进,张军,等.1-烯丙基-3-甲基咪唑室温离子液体的合成及其对纤维溶解性能的初步研究[J].高分子学报,2003,(3):448– 451
    12. Philips D M, Drummy L F, Conrady D G, et al. Dissolution and regeneration of bombyx mori silk fibroin using ionic liquids [J]. Journal of American Chemistry Society, 2004, 126(44):14350-14351
    13. Xie H B, Li S H, Zhang S B.Ionic liquids as novel solvents for the dissolution and blending of wool keratin fibers [J]. Green Chemistry, 2005, 7: 606-608
    14. John S, Wilkes, Michael J Z. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids [J]. Journal of the Chemical Society, Chemical Communications, 1992, 965-967
    15. Campbell J L E, Johnson K E. The chemistry of protons in ambient-temperature ionic liquids-solubility and electrochemical profiles of HCl in HCl-IMCl-AlCl3 ionic liquids as a function of pressure (295 K) [J]. Journal of American Chemistry Society, 1995, (117):7791-7800
    16.胡仁志,张波兰,张永金,等.离子液体改性苎麻纤维性质研究[J].武汉科技学院学报,2004,17(5): 25-28
    17. Baker S N, Baker G A, Kane M A, et al. The Cybotactic Region Surrounding Fluorescent Probes Dissolved in 1-Butyl-3-methylimidazolium Hexafluorophosphate: Effects of Temperature and Added Carbon Dioxide [J].Journal of Physical Chemistry B, 2001, 105(39): 9663-9668
    18.张锁江,吕兴梅.离子液体-从基础研究到工业应用[M].北京:科学出版社, 2006. 107
    19. Lau R M, Van Rantwijk F, Seddon K R, et al. Lipase-catalyzed reactions in ionic liquids [J]. Organic Letter, 2000, 2(26): 4189-4191
    20. Erbedinger M, Mesiano A J. Enzymatic catalysis of formation of (Z)-aspartame in ionic liquid– an alternative to enzymatic catalysis in organic solvents [J]. Biotechnonlogy Pogress, 2000, 16(6): 1129-1131
    21. De Diego T, Lozano P, Gmouh S, et al. Understanding structure-stability relationships of candida antartica lipase B in ionic liquids [J]. Biomacromolecules, 2005, 6(3): 1457-1464
    22.周文龙,孙恺. SZ蛋白酶对羊毛的减量和防毡缩性能的影响[J].印染, 2000(5): 5-8
    23. Zhou Wenlong, Sun Kai. Protease selection and technology optimization in biofinish of wool [J]. Journal of Donghua University (Engl. Ed.), 1999, 16(2): 101-105
    24.金咸穰.染整工艺实验[M] .北京:中国纺织出版社, 1987. 61
    25.于泳,曾鹏,杨兰英,等.紫外光谱法检测水中咪唑类离子液体的含量[J].光谱实验室, 2008, 25(2):115-117
    1. Zahn H, Messmger, Hocker H. Covalently linked fatty acids at the surface of wool: part of the“cuticle cell envelop”[J].Textile Research Journal, 1994, 46(5): 554-555
    2. Horr T J. Determining the lipid layer thickness on wool fiber surfaces using XPS [J]. Textile Research Journal, 1995, 66(2):122
    3. Schindler W D, Hauser P J. Chemical Finishing of Textiles [M]. Cambridge: Woodhead Publishing Ltd, 2004.74-86
    4.袁久刚,王强,范雪荣,等.离子液体/蛋白酶对羊毛表面的亲水化改性[J].纺织学报, 2010, 31(3): 86-90
    5.于伟东.纺织材料学[M].北京:中国纺织出版社, 2006. 91-93
    6.中国棉纺织网.纺织材料的回潮率及公定重量[EB/OL]. http://www.zgmfz.com /hyxx/ shownews. asp?newsid=1868, 2006-09-10
    7.张娜,王家俊.羊毛的凉爽舒适性[J].纺织学报, 2006, 27(11): 110-112
    8.张枫.羊毛的凉爽感[J].毛纺科技, 1994(1): 60-61.
    9.黄素平.浅谈羊毛的凉爽舒适性[J].毛纺科技, 2004(5): 36-38.
    10. Natsuko Kohara, Toshinari Nakajima. Influence of succinylation on the interactions of wool fibers and water [J]. Textile Research Journal, 2004, 74(10): 855-860
    11. Wang Ping, Wang Qiang, Fan Xuerong, et al. Effects of cutinase on the enzymatic shrink-resist finishing of wool fabrics [J]. Enzyme and Microbial Technology, 2009, 44(5): 302-308
    12. Zhou Wenlong, Sun Kai. Protease selection and technology optimization in biofinish of wool [J]. Journal of Donghua University (Eng. Ed.), 1999, 16(2): 101-105
    13.袁久刚,范雪荣,王强,等. [BMIM]Cl离子液体预处理对羊毛蛋白酶水解性能的影响[J].化学学报, 2010, 68(2): 187-193
    14.董元彦,李保华,路福绥.物理化学[M] .北京:科学出版社, 2001. 223-228
    15.于伟东,储才元.纺织物理[M].上海:中国纺织大学出版社, 2001. 261-272
    16.凌群民,李永锋,谭磊,等.对织物润湿性能的研究[J].纺织科学研究, 2005(1): 43-46
    17. Christopher M, Carr Ian H, Leaver, et al. Detection and Analysis by XPS of sulfhydryl groups at the surface of wool fibers [J].Textile Research Journal, 1986, 56(3): 216-217
    18.袁骏,周文龙,季振国. X射线光电子能谱分析羊毛表面结构的研究[J].纺织学报, 2001, 22(2): 10-15
    19.王建祺,吴文辉,冯大明.电子能谱学(XPS/XAES/UPS)引论[M].北京:国防工业
    1. Zahn H, Messmger, Hocker H. Covalently linked fatty acids at the surface of wool: part of the“cuticle cell envelop”[J].Textile Research Journal, 1994, 46(5): 554-555
    2. Horr T J. Determining the lipid layer thickness on wool fiber surfaces using XPS [J]. Textile Research Journal, 1995, 66(2):122
    3. Schindler W D, Hauser P J. Chemical Finishing of Textiles [M]. Cambridge: Woodhead Publishing Ltd, 2004.74-86
    4.袁久刚,王强,范雪荣,等.离子液体/蛋白酶对羊毛表面的亲水化改性[J].纺织学报, 2010, 31(3): 86-90
    5.于伟东.纺织材料学[M].北京:中国纺织出版社, 2006. 91-93
    6.中国棉纺织网.纺织材料的回潮率及公定重量[EB/OL]. http://www.zgmfz.com /hyxx/ shownews. asp?newsid=1868, 2006-09-10
    7.张娜,王家俊.羊毛的凉爽舒适性[J].纺织学报, 2006, 27(11): 110-112
    8.张枫.羊毛的凉爽感[J].毛纺科技, 1994(1): 60-61.
    9.黄素平.浅谈羊毛的凉爽舒适性[J].毛纺科技, 2004(5): 36-38.
    10. Natsuko Kohara, Toshinari Nakajima. Influence of succinylation on the interactions of wool fibers and water [J]. Textile Research Journal, 2004, 74(10): 855-860
    11. Wang Ping, Wang Qiang, Fan Xuerong, et al. Effects of cutinase on the enzymatic shrink-resist finishing of wool fabrics [J]. Enzyme and Microbial Technology, 2009, 44(5): 302-308
    12. Zhou Wenlong, Sun Kai. Protease selection and technology optimization in biofinish of wool [J]. Journal of Donghua University (Eng. Ed.), 1999, 16(2): 101-105
    13.袁久刚,范雪荣,王强,等. [BMIM]Cl离子液体预处理对羊毛蛋白酶水解性能的影响[J].化学学报, 2010, 68(2): 187-193
    14.董元彦,李保华,路福绥.物理化学[M] .北京:科学出版社, 2001. 223-228
    15.于伟东,储才元.纺织物理[M].上海:中国纺织大学出版社, 2001. 261-272
    16.凌群民,李永锋,谭磊,等.对织物润湿性能的研究[J].纺织科学研究, 2005(1): 43-46
    17. Christopher M, Carr Ian H, Leaver, et al. Detection and Analysis by XPS of sulfhydryl groups at the surface of wool fibers [J].Textile Research Journal, 1986, 56(3): 216-217
    18.袁骏,周文龙,季振国. X射线光电子能谱分析羊毛表面结构的研究[J].纺织学报, 2001, 22(2): 10-15
    19.王建祺,吴文辉,冯大明.电子能谱学(XPS/XAES/UPS)引论[M].北京:国防工业
    1. Bradbury J H. The morphology and chemical structure of wool [J]. Pure and Applied Chemistry, 1976, 46(2-4): 247-253
    2. Simpson W S, Crawshaw G H. Wool: science and technology [M]. Cambridge:Woodhead, 2002.60-80.
    3. Zahn H, Messmger, Hocker H. Covalently linked fatty acids at the surface of wool: part of the“cuticle cell envelop”[J].Textile Research Journal, 1994, 46(5):554-555
    4. Horr T J. Determining the lipid layer thickness on wool fiber surfaces using XPS [J]. Textile Research Journal, 1995, 66(2):122
    5. Rippon J A. The structure of wool [M]. Bradford: Society of Dyers and Colorists, 1992. 31-51
    6. Cardamone J M, Yao J, Nunez A. DCCA shrinkproofing of wool, part I: importance of antichlorination [J]. Textile Research Journal, 2004, 74(6): 555-560
    7. Shao J Z, Liu J Q, Zheng J H, et al. FTIR spectroscopy study of the wool surface modification in permonosulphate/sulphite process [J]. Journal of Textile Research, 2001, 22(5):285-287
    8.陈关云.羊毛二乙胺预处理及其染色工艺探讨[J].毛纺科技,2004,(4):29-32
    9. Wang J, He J X, Dai J J. Identification of some AOX compounds formed in wool chlorination using model chemicals [J]. Journal of Donghua University, 2002, 19, 33-35
    10.王晶.羊毛染色及防缩氯化处理中的AOX问题[J].印染,2000, 26 (7):42-45
    11. Cui L, Yu Y Y, Fan X R, et al. Effect of protease treatment on dyeing properties of wool fabrics for single bath [J]. Engineering in Life Sciences, 2009, 9(2):135-139
    12. Fan Z L, Zhu Q, Dai J J. Enzymatic treatment of wool [J]. Journal of Donghua University, 2001, 18(2): 112-115
    13. Zhou Wenlong, Sun Kai. Protease selection and technology optimization in biofinish of wool [J]. Journal of Donghua University, 1999, 16(2): 101-105
    14.曾林泉.印染分析化验手册[M].北京:中国纺织出版社,2007.601-607
    15.金咸穰.染整工艺试验[M].北京:中国纺织出版社,1987.77
    16.朱若英.对环境友好的羊毛表面改性技术研究[D]:[博士论文].天津:天津工业大学,2003
    17. Kan C W. The effect of descaling process on the properties of wool fibers [D]. Hong Kong: Hong Kong Polytechnic University, Institute of Textile and Clothing, 1999
    18. Bird C L, Boston W S. The theory of coloration of textiles [M]. Bradford: The Dyers Company Publication, 1975. 166-169
    19. David G D, Roy S Sinclair. Giles’s Laboratory Course in Dyeing. 4th edn. Bradford: Society of Dyers and Colorists, 1989. 120-121
    20. Bruce R L, Broadwood N V, King D G. Kinetics of wool dyeing with acid dyes [J]. Textile Research Journal, 2000, 70(6): 525-531
    21. Morton W E, Hearle J W S. Physical properties of textiles fibers [M].Manchester: The Textile Institute, 1997. 169
    22. McDonald R. Color Physics for Industry. 2nd edn. Bradford: Society of Dyers and Colorists, 1997. 121
    23.全国纺织品标准化技术委员会基础分委会. GB /T 3921. 1-1997.纺织品色牢度试验耐洗色牢度试验[S].北京:中国标准出版社
    24.全国纺织品标准化技术委员会基础分委会. GB/T 3920-1997.纺织品色牢度试验耐洗色牢度试验[S].北京:中国标准出版社
    25. Rouette H K.纺织百科全书(注释本) [M].北京:中国纺织出版社, 2001. 623
    26.范雪荣.纺织品染整工艺学(染整工艺学)[M].北京:中国纺织出版社, 2005. 154-155
    27.王菊生.染整工艺原理[M].北京:中国纺织出版社, 2005. 165-167
    1.吴微微.服装材料学:基础篇[M].北京:中国纺织出版社, 2009. 22
    2.于伟东.纺织材料学[M].北京:中国纺织出版社, 2006. 99, 100, 227, 289-297
    3.吴汉金,郑佩芳.织物结构对织物物理机械性能的影响[J].华东纺织工学院学报, 1984, 10(3): 41-48
    4.王菊生,孙铠.染整工艺原理(第二册) [M] .北京:纺织工业出版社, 1983. 230
    5. Makinson K R. Shrinkproofing of Wool [M]. New York: Marcel Dekker, 1979.150
    6.朱若英.对环境友好的羊毛表面改性技术研究[D]: [博士论文].天津:天津工业大学, 2003
    7.全国纺织品标准化技术委员会基础分委会. GB/T 8629–2001.纺织品试验用家庭洗涤和干燥程序[S].北京:中国标准出版社
    8.张茜.羊毛织物生态防毡缩整理的研究[D]: [硕士论文].天津:天津工业大学, 2006
    9.沈建明.纺材实验[M] .北京:纺织工业出版社, 1999.67
    10.全国纺织品标准化技术委员会基础分委会. GB4711-84.羊毛单纤维断裂强力和伸长试验方法[S].北京:中国标准出版社
    11.全国纺织品标准化技术委员会基础分委会. GB/T 3923.1-1997.纺织品织物拉伸性能:第一部分断裂强力和断裂伸长率的测定[S].北京:中国标准出版社
    12.全国纺织品标准化技术委员会基础分委会. GB/T 8424.2—1997.纺织品相对白度的仪器评定方法[S].北京:中国标准出版社
    13. Adams M J, Briscoe B J, Wee T K. The differential friction effect of keratin fibres[J]. Journal of Physics D: Applied Physics, 1990, 23(4): 406-414
    14.樊增禄,戴瑾瑾,朱泉.蛋白酶处理对羊毛物理机械性能的影响[J].纺织学报, 2002, 23(2): 108-110
    15.洪志贵.织物风格评价的研究[J].纺织学报, 1993, 14(4): 16-19
    16.夏兆鹏,马会英,徐梅.织物风格评定研究进展[J].纺织科技进展, 2005(05): 60-62
    17.周建萍,陈晟.KES织物风格仪测试指标的分析及应用[J].现代纺织技术,2005(6):37-40
    18.周详,周静.织物悬垂性影响因素分析[J].上海纺织技术, 2006, 34(10): 16-17
    19.王府梅,徐广标.精纺毛型织物弯曲性能预测途径探讨[J] .纺织学报, 2004, 25(6): 76-79
    20.杨旭红,王华杰.棉毛型大豆蛋白纤维织物的风格研究[J] .纺织学报, 2002, 23(4):20-22
    21. Cegarra J. The state of the art in textile biotechnology [J]. Journal of the Society of Dyers and Colorists, 1996, 112(11):326-329
    1.周文龙.酶在纺织中的应用[M].北京:中国纺织出版社,2002:216-218
    2.Rippon J A. The structure of wool [M]. Bradford: Society of Dyers and Colorists, 1992: 31-51
    3.熊振平.酶工程[M].北京:化学工业出版社, 1989,1
    4.Wakelyn P J. The Allw?rden Reaction on Corona Treated Wool [J]. Textile Research Journal, 1972, 42(1): 67-69
    5. Alastair A, Michèle P L. The Protein Protocols Handbook [M]. Totowa: Humana Press, 2002, 3-6
    6. Bradbury J H, Leeder J D. Keratin fibers, Part VI: Mechanism of the Allw?rden Reaction [J]. Australian Journal of Biological Sciences, 1972, 25(1): 133-138
    7.姚雷,朱亚伟,朱建成.氧化剂和蛋白酶对羊毛纤维结构和性能的影响[J].毛纺科技, 2009, 37(6): 32-35
    8.邵建中, Carr C M.过一硫酸盐羊毛表面改性机理的红外光谱研究[J].纺织学报, 2001, 22 (5): 285-287
    9. Douthwaite F J, Lewis D M, Schumacher-Hamedat U. Reaction of cystine residues in wool with peroxy compounds [J]. Textile Research Journal, 1993, 63(3): 177-183
    10.陈丽萍,于伟东.羊毛及其角朊膜显微傅立叶红外光谱对比分析[J].东华大学学报(自然科学版), 2006, 32(4): 105-109
    11.胡朝明.傅立叶变换红外光谱检测过一硫酸处理羊毛表面的研究[J].现代纺织技术, 2001, 9 (1): 1-4
    12. Gomez N, Julia M R , Lewis D M, et al. The use of FTIR to investigate modification to wool treated with sodium sulphite andcationic protein hydrolysate. Journal of the Society of Dyers and Colourists, 1995, 111 (9): 281-284.
    13.李文霞,廖青,刘燚.利用付立叶红外光谱与付立叶拉曼光谱初探超细羊毛粉的光谱行为[J].分析科学学报, 2007, 23(5): 519-522
    14. Panayiotou H. Vibrational spectroscopy of keratin fibres: a forensic approach [D]: [PhD]. Queensland: Queensland University of Technology, 2004
    15. Xie Haibo,
    16. Swatloski R P, Spear S K, Holbrey J D, et al. Dissolution of cellulose with ionic liquids[J]. Journal of the American Chemical Society, 2002, 124(18): 4974?4975
    17. Cao Jinan, Billows Craig A. Crystallinity determination of native and stretched wool by X-ray diffraction [J]. Polymer International, 1999, 48(10): 1027-1033
    18. Segal L, Creely J J, Martin AE, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffreactometer[J]. Textile Research Journal, 1959, 29(10):786-794
    19. Nishar Hameed, Qipeng Guo. Blend films of natural wool and cellulose prepared from an ionic liquid [J]. Cellulose, 2010, DOI: 10.1007/s10570-010-9411-0
    20.张晓春,刘志平.固定化离子液体[hmim][FEP]的表征[J].北京化工大学学报, 2009, 36(sup):1-3
    21.范康年.红外光谱的特征吸收峰[M].北京:高等教育出版社, 2001.62
    22. Stahl W H, Mcque B, Siu R G H. Decomposition of cystine and wool by treatment in the ball mill and autoclave[J]. The Journal of Biological Chemistry, 1949, 177(1):69-73
    23.朱选,金征宇,刘当慧.羽毛角蛋白挤压机制的研究[J].中国粮油学报,1998, 13(4):16-19
    24. Kirschenbaum D M. Molar absorptivity and A 1cm 1% values for proteins at selected wavelengths of the ultraviolet and visible regions [J]. Analytical Biochemistry, 1975, 68(2): 465-484
    25.杨凤.动物营养学(第二版)[M].北京:中国农业出版社, 2007. 8, 255
    26. Woods J L, Orwin D F. Wool proteins of New Zealand Romney sheep [J]. Australian Journal of Biological Sciences. 1987, 40(1): 1-14
    27.孟进军,吴雪萍,陈善明,等.中国美利奴羊羊毛角蛋白组成的研究[J].中国农业科学, 1991, 24(06):73-79
    28.孟进军,李平,陈善明.用两向凝胶电泳分析羊毛角蛋白组成[J].纺织学报, 1987, 8(2): 95-98

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700