过硫酸盐高级氧化技术活化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的高级氧化技术是基于羟基自由基(·OH)的氧化技术,基于硫酸根自由基(S04-·)的过硫酸盐高级氧化技术是近年来刚刚兴起的新型高级氧化技术,具有良好的发展前景。
     活化方法的研究是目前过硫酸盐高级氧化技术研究的热点问题。现有的过硫酸盐活化方法主要包括热、紫外光、过渡金属三种。本文以水中典型的难降解有机物金橙Ⅱ为模型污染物,首先分析了H2O2、过一硫酸盐(PMS)和过二硫酸盐(PS)在热、紫外光、阴离子活化条件下的差异,以此为基础研究了最佳组合(热/PS、紫外光/PS)及新型活化方法CO32-/PMS、微波/PS对金橙Ⅱ的降解动力学、影响因素和反应机理。具体研究内容如下:
     (1)H2O2是研究和应用最多的过氧化物,PMS和PS属于H2O2的衍生物。三者在结构上相似但也存在不同。结构的差异使三者在不同活化条件下对有机物的降解速率和机理不同。本实验首先分析了PMS、PS与H2O2在热、紫外光、阴离子活化方法下对有机物降解效率差异,为接下来的研究奠定了基础。研究结果发现在热活化条件下三种过氧化物对金橙Ⅱ的降解速率为PS>>PMS>H2O2,紫外光活化条件下降解速率为PS>H2O2>PMS,PMS可以被阴离子(CO32-、HCO3-、HPO42-、Cl-)活化,而PS和H2O2不能被活化。
     (2)由(1)中的研究可知,在热活化条件下PS降解效果最好。而我国每年都会排放大量的高温废水(例如印染废水等),高温废水由于其较高的温度给废水处理处理带来极大的困难。因此,本实验研究了利用高温印染废水的余热活化PS降解染料的可能性。结果表明:温度高于50℃可活化PS降解金橙Ⅱ;pH值为中性时降解效果最好;通过紫外可见光谱UV-vis和总有机碳TOC分析得知,金橙Ⅱ不仅被脱色,苯环和萘环也可以被降解,TOC也能被有效去除;在体系中S04-’和.OH都起到降解作用,但是SO4-·占主导地位。
     (3)由(1)中的研究可知在紫外光活化条件下PS降解金橙Ⅱ的效果最好,本实验以金橙Ⅱ为模型污染物对紫外光活化PS降解金橙Ⅱ进行了研究。实验结果表明:紫外光波长为254 nm时可活化PS产生SO4-·降解金橙Ⅱ;降解速率随PS浓度的增加而加快;中性pH时降解效果最好;紫外光活化PS不仅可以将金橙Ⅱ脱色也可以有效地降解苯环和萘环,TOC也能被有效去除;SO4-·在降解过程中起主要作用。
     (4)由(1)的研究结果知道,阴离子可以活化PMS产生活性物种降解有机物,尤其以CO32-的效果最好。CO32-是水中常见的阴离子,在天然水体和废水中广泛存在。本实验研究了CO32-活化PMS对金橙Ⅱ的降解情况。实验结果表明:CO32-是一种高效活化PMS的方法,即使在极低的浓度下(0.001 mol/L)仍然能活化PMS降解金橙Ⅱ。另外,金橙Ⅱ在可见区和紫外区的官能团均都被破坏,TOC也能被有效的去除。甲醇(MA)和NaN3作为俘获剂研究初步探讨了CO32-活化PMS的机理。结果发现与其他活法方法不同,CO32-活化PMS并没有产生S04-·,而是可能产生了102。
     (5)微波加热是分子水平的加热,具有均匀快速的特点,具有降低反应活化能、缩短反应时间、增强选择性、加快反应速率等优点。活性炭是优良的微波吸收材料,能吸收微波的能量并转化为热能。本实验研究了微波活化PS对金橙Ⅱ的降解情况。实验结果表明:微波活化PS最大的优点是快速、对高浓度废水降解效果好。例如:20-1000 mg/L的金橙Ⅱ在5-7 min内都能实现100%的脱色。活性炭加强了微波活化PS体系的氧化能力和对有机物的降解能力。
     (6)氯离子(Cl-)是污水及海水中常见的无机离子,是一种优良的羟基自由基俘获剂,不利于高级氧化技术技术对有机物降解。本实验研究了Cl-对四种典型过硫酸盐活化方法的影响,并对其影响机理进行了初步探讨。结果表明:在UV/PS和热/PS氧化体系中,由于Cl-与S04-·反应生成C12-·,从而对金橙Ⅱ的降解产生了不利影响;在UV/PMS体系中,随着由于Cl浓度的增加,有HClO生成,对反应有促进作用;在Co2+/PMS体系中,Cl-限制了Co2+/Co3+的循环,抑制了反应了SO4-·产生,此时HClO起重要的降解作用。
Advanced oxidation technologies, in which peroxydisulfate (PS) or peroxymonosulfate (PMS) is used as oxidant, came forth recently for the degradation of non-biodegradable contaminants. PS and PMS can be activated to generate SO4-·which is also a powerful oxidant and can oxidize most organics in wastewater. The study of activation method is a hot issue. The conventional activation methods consist of heat, UV and metal activation. While some new activation method come forth recently. In this study, azo dye Acid Orange 7 (AO7) was chosen as the model contamination to study the degradation rate, influential factor and radical method under heat and UV activation method (conventional activation method) and CO32- and microwave activation method (new activation method). Besides, the effect of Cl-, which is an efficient quenching reagent, was studied. Specific studies are as follows:
     1) The three peroxides mentioned above (PS, PMS and H2O2) are similar in structure and they all have O-O bond. On the other hand, they have some difference in structure which results various degradation rates and radical mechanisms under various peroxides activated method. Therefore, the main objectives of this study are: (1) to compare the degradation efficiencies of A07 by these three peroxides (PS, PMS, H2O2) under heat or UV activation condition; (2) to study whether common anions (SO42-, NO3-, CO32-, HCO3-,HPO42-, Cl-) can activate these peroxides and consequently degrade A07. The results show that the order of A07 degradation efficiencies by heat activation is PS >> PMS> H2O2 and the order by UV activation is PS> H2O2> PMS. In the anions activated method, it was found that PMS could be activated by some anions, but PS and H2O2 can not be.
     2) High-temperature wastewater constitutes one of the largest groups of organic compounds that represent an increasing environmental danger. It is reported that billion tons high-temperature printing and dyeing wastewater discharge every year in china. The goal of this study is to use the high-temperature wastewater as heat resource to activate PS to degrade contamination in wastewater. The result indicated that the higher temperature of wastewater can result in the faster degradation rate. The radical quenching experiments demonstrate that both SO4-·and·OH could degrade AO7 but SO4-·plays the dominant role. Maximum AO7 degradation occurred at pH 7. Heat activated PS could not only decolorize AO7 but also mineralize it.
     3) The aim of this experiment is to study the degradation of AO7 by PS under UV activated method. The results showed that PS could be activated by UV (254 nm). The higher temperature of wastewater can result in the faster degradation rate and maximum AO7 degradation occurred at pH 7. UV activated PS could not only decolorize AO7 but also mineralize it. The radical quenching experiments demonstrate that both SO4-·and·OH could degrade AO7 but SO4-·plays the dominant role.
     4) CO32- is common anions in natural water and wastewater. The existence of CO32-, which has been considered as an efficient quenching reagent by competing with radicals, can retard the degradation rate of organic compounds in the AOPs. The main objectives of this experiment are to study the degradation of AO7 by CO32- activated PMS. The results show that CO32-activated is an effective activated method. CO32-activated PS could not only decolorize AO7 but also mineralize it. The radical quenching experiments demonstrate that 1O2 other than SO4-·plays the dominant role.
     5) Microwave heating can decrease activation energy, reduce reaction time, increase the selectivity of reaction and improve the speed of reaction, and etc. Activated carbon (AC), which is an excellent MW absorbing material, could absorb and convert MW energy into thermal energy. The goal of this experiment is to study degradation of AO7 by microwave activated PS. The results show that the biggest advantage of microwave activation PS is fast. AO7 (up to 1000 mg/L) is completely decolorized within 5-7 min. The present of activated carbon enhance the oxidation of microwave/PS systems, improving the organic matter degradation.
     6) Cl- is common anions in natural water and wastewater. The existence of Cl-, which has been considered as an efficient quenching reagent by competing with radicals, can retard the degradation rate of organic compounds in the AOPs. The effect of Cl- on the degradation of AO7 by PS and PMS under various activated conditions (UV (254 nm)/PS, Thermal (70℃)/PS, UV/PMS, Co2+/PMS) and the role of active chlorine oxidizers (Cl2-·, HClO) generated from the reaction of Cl- with SO4-·or·OH were investigated by using quenching method. The results show that under UV/PS and heat/PS, Cl- inhibited AO7 degradation due to reaction of Cl- with SO4-·to generate Cl2-·and HClO. Under UV/PS condition, with the increased of Cl-, the amount of HClO increases and the degradation rate accelerates. Under Co2+/PS condition, Cl- can restrain the circulation of Co2+ and Co3+and hinder the formation of SO4-
引文
[1]张传君,李泽琴,程温莹,罗丽.Fenion试剂的发展及在废水处理中的应用.世界科技研究与发展,2005,27(6):64-68.
    [2]Hoigne J, Bader H. The role of hydraxyl radical reaction in ozonation processes in aqueous solution. Water Research,1976,10(5):377-386.
    [3]Glaze W H, Kang J W, Chapin, D H. The chemistry of water and wastewater treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Science and Engineering,1987,9(4):335-352.
    [4]Neyens E, Baeyens J, A review of classic Fenton's peroxidation as an advanced oxidation technique. Journal of Hazardous Materials,2003,98(1-3):33-50.
    [5]张德莉,黄应平,罗光富,刘德富,马万红,赵进才.Fenton及Photo-Fenton反应研究进展.环境化学,2006,25(2):121-127.
    [6]程丽华,黄君礼.Fenton试剂的特性及其在废水处理中的应用.化学工程师,2001,84(3):24-25.
    [7]王滨松,黄君礼,张杰.Fenion试剂氧化活性染料废水的研究.哈尔滨工业大学学报,2005,37(9):1280-1282.
    [8]赵苏,杨合,孙晓巍.高级氧化技术机理及在水处理中的应用进展.能源环境保护,2004,18(3):5-13.
    [9]Banerjee M, Konar R S. Polymerization of acrylonitrile initiated by K2S2O8-Fe(II) redox system. Journal of Polymer Science:Polymer Chemistry,1984,22(5):1193-1195.
    [10]Kang S F, Liao C H, Hung H P. Peroxidation treatment of dye manufacturing wastewater in the presence of ultraviolet light and ferrous ions. Journal of hazardous materials,1999, 65(3):317-333.
    [11]黄应平,刘德富,张水英,张德莉,马万红,赵进才.可见光/Fenton光催化降解有机染料.高等学校化学学报,2005,26(12):2273-2278.
    [12]徐新华,陈调庆,杨雪涛.活性染料染色废水的光助Fenton处理实验研究.污染防治技术,1999,12(4):228-230.
    [13]Brillas E, Sauleda R, Casado J. Use of an anodic Fe/O2 cell for wastewater treatment: degradation of aniline. Journal of the Electrochemieal Society,1999,146(12): 4539-4543.
    [14]Gdswami D Y. A rewiew of engineering developments of aqueous phase solar photocataytic deoxification and disinfection process. Journal of Solar Energy Engineeing, 1997,119(2):101-107.
    [15]Flanagan J, Griffith W P, Skapski A C. The active principle of caro's acid, HSO5-:k-ray crystal structure of KHSO5·H2O. Journal of the Chemical Society. Chemical Communications,1984,23:1574-1579.
    [16]Reints W, Pratt D A, Korth H G, Mulder P.O-O hond dissociation enthalpy in di(trifluoromethyl) peroxide (CF3OOCF3) as determined by very low Pressure pyrolysis. Density functional theory computations on O-O and O-H bonds in (fluorinated) derivatives. Journal of Physical Chemistry A,2000,104(46):10713-10720.
    [17]Liang C J, Bruell C J, Marley M C, Sperry K L. Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries. Soil Sediment Contamination,2003,12(2):207-228.
    [18]Betterton E A, Hoffmann M R. Kinetics and mechanism of the oxidation of aqueous hydrogen sulfide by peroxymonosulfate. Environmental Science and Technology,1990, 24(12):1819-1824.
    [19]Gogate P R, Pandit A B. A review of imperative technologies for wastewater treatment Ⅰ: oxidation technologies at ambient conditions. Advanced in Environment research,2004, 8(3-4):501-551.
    [20]Anipsitakis G P, Dionysiou D D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environmental Science and Technology,2003,37(20):4790-4797.
    [21]Bandala E R, Pelaez M A, Dionysiou D D, Gelover S, Garcia J, Macias D. Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) using cobalt-peroxymonosulfate in Fenton-like process. Journal of Photochemistry and Photobiology A,2007,186(2-5): 357-363.
    [22]Neta P, Huie R E, Ross A B. Rate constants for reactions of inorganic radicals in aqueous solution. Journal of Physical and Chemical Reference Data,1988,17(3):1027-1284.
    [23]Du C M, Shi T H, Sun Y W, Zhuang X F. Decolorization of acid orange 7 solution by gas-liquid gliding arc discharge plasma. Journal of Hazardous materials,2008,154(1-3): 1192-1197.
    [24]Liang C J, Bruell C J, Marley M C, Sperry K L. Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries. Soil Sediment Contamination,2003,12(2):207-228.
    [25]Huie R E, Clifton C L. Rate constants for hydrogen abstraction reactions of the sulfate radical, SO4-·Alkanes and ethers. International Journal of Chemical Kinetics,1989,21(8): 611-619.
    [26]Clifton C L, Huie R E. Rate constants for hydrogen abstraction reactions of the sulfate radical, SO4-·alcohols. International Journal of Chemical Kinetics,1989,21(8):677-687
    [27]Padmaja S, Alfassi Z B, Neta P, Huie R E. Rate constants for reactions of SO4 radicals in acetonitrile. International Journal of Chemical Kinetics,1993,25(3):193-198.
    [28]Khursan S L, Semes'ko D G, Safiullin R L. Quantum-chemical modeling of the detachment of hydrogen atoms by the sulfate radical anion. Russian Journal of Physical Chemistry,2006,80(3):366-371.
    [29]Neta P, Madhavan V, Zemel H, Fessenden R W. Rate constants and mechanism of reaction of sulfate radical anion with aromatic compounds. Journal of American Chemical Society,1977,99(1):163-164.
    [30]储高升,张淑娟,姚思德,韩镇辉,都志文,张志成.SO4-·自由基氧化苯丙氨酸反应机理的图谱表征.中国科学B辑,2002,32(3):248-254.
    [31]Cuypers C, Grotenhuis T, Joziasse J, Rulkens W. Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments. Environmental Science and Technology,2000, 34(10):2057-2063.
    [32]Huang K C, Zhao Z, Hoag G E, Dahmani A, Block P A. Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere,2005,61(4): 551-560.
    [33]Huang K C, Couttenye R A, Hoag G. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere,2002,49(4):413-420.
    [34]Block P, Osborne L. The Seventeenth Annual AEHS Meeting and West Coast Conference on Soils, Sediments, and Water, Mission Valley Marriott, San Diego, California,2007.
    [35]Haselow J, Rossabi J.2005 http://www.envsolutions.fmc.com/Portals/fao/Content/Docs /Klozur%20Field%20Apps%20Poster%20UMass%202005.pdf
    [36]Kronholm J, Jyske P, Riekkola M L. Oxidation efficiencies of potassium persulfate and hydrogen peroxide in pressurized hot water with and without preheating. Industrial and Engineering Chemistry Research,2000,39(7):2207-2213.
    [37]张乃东,张曼霞,孙冰.硫酸根自由基处理水中甲基橙的初步研究.哈尔滨工业大学学报,2006,38(4):636-638.
    [38]张乃东,张曼霞,彭永臻.S2O82-派生氧化法催化降解水中的甲基橙.催化学报,2006,27(5):445-448.
    [39]Chu W, Lau T K, Fun S C. Effects of combined and sequential addition of dual oxidants (H2O2/S2O82-) on the aqueous carbofuran photodegradation.Journal of Agricultural and Food Chemistry,2006,54(26):10047-10052.
    [40]Evgenidou E, Konstantinou I, Fytianos K, Poulios I. Oxidation of two organophosphorous insecticides by the photo-assisted Fenton reaction. Water Research, 2007,41(9):2015-2027.
    [41]Tabrizi G B, Mehrvar M. Integration of advanced oxidation technologies and biological processes:recent developments, trends, and advances. Journal of Environment Science and Health, Part A Environmental Science,2004,39(11-12):3029-3081.
    [42]刘琰,孙德智.高级氧化技术处理染料废水的研究进展.工业水处理,2006,26(6):1-5.
    [43]Waldermer R, Tratnyek P, Johnson R, Nurmi J T. Oxidation of chlorinated ethenes by heat-activated persulfate:Kinetics and products. Environmental Science and Technology, 2007,41(3):1010-1015.
    [44]Huang K C, Zhao Z Q, Hoag G E, Dahmani A, Block, P A. Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere,2005, 61(4):551-560.
    [45]Hori H, Nagaoka Y, Murayama M, Kutsuna S. Efficient decomposition of perfluorocarboxylic acids and alternative fluorochemical surfactants in hot water. Environmental Science and Technology,2008,42(19):7438-7443.
    [46]Malato S, Blanco J, Richter C, Braun B, Maldonado M I. Enhancement of the rate of solar photocatalytic mineralization of organic pollutants by inorganic oxidizing species. Applied Catalysis B:Environmental,1998,17(4):347-356.
    [47]Connick R E, Zhang Y X, Lee S Y, Adamic R, Chieng P. Kinetics and mechanism of the oxidation of HSO3- by O2 1. The uncatalyzed reaction, Inorganic Chemistry,1995, 34(18):4543-4553.
    [48]Hori H, Yamamoto A, Hayakawa E, Taniyasu S, Yamashita N, Kutsuna S. Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant. Environmental Science and Technology,2005, 39(7):2383-2388.
    [49]Hori H, Yamamoto A, Koike K, Kutsunaa S, Osakab I, Arakawab R. Persulfate-induced photochemical decomposition of a fluorotelomer unsaturated carboxylic acid in water. Water Research,2007,41(13):2962-2968.
    [50]Wei C, Lau T, Fung S C. Effects of combined and sequential addition of dual oxidants (H2O2/S2O82-) on the aqueous carbofuran photodegradation. Journal of Agricultural and Food Chemistry,2006,54(26):10047-10052.
    [51]Liang C J, Wang Z S, Bruell C J. Influence of pH on persulfate oxidation of TCE at ambient temperatures, Chemosphere,2007,66:106-113.
    [52]Lau T K, Wei C, Graham N J D. The aqueous degradation of butylated hydroxyanisole by UV/S2O82-:study of reaction mechanisms via dimerization and mineralization. Environmental Science and Technology,2007,41(2):613-619.
    [53]Salari D, Daneshvar N, Niaei A, Aber S, Rasoulifard M H. The photo-oxidative destruction of C.I. basic yellow 2 using UV/S2O82-process in an annular photoreactor. Journal of Environmental Science and Health, Part A:Toxic/Hazardous Substances and Environmental Engineering,2008,43(6):657-663.
    [54]Fordham J W L, Williams H L. The persulfate-iron(II) initiator system for free radical polymerizations. Journal of the American Chemical Society,1951,73:4855-4859.
    [55]Liang C J, Bruell C J, Marley M C, Sperry K. Persulfate oxidation for in situ remediation of TCE. Ⅱ. activated by chelated ferrous ion. Chemosphere,2004,55(9):1213-1223.
    [56]Kolthoff I M, Medalia A I, Raaen H P. The reaction between ferrous iron and peroxides. Ⅳ. reaction with potassium persulfate. Journal of the American Chemical Society,1951, 73(4):1733-1739.
    [57]Li S X, Wei D, Mak N K, Cai Z W, Xu X R, Li H B, Jiang Y. Degradation of diphenylamine by persulfate:Performance optimization, kinetics and mechanism, Journal of Hazardous materials,2009,164:26-31.
    [58]郑伟,张金凤,王联红,孔令仁,杨曦.柠檬酸-Fe(Ⅱ)/K2S2O8对敌草隆降解的研究.环境化学,2008,27(1):19-22.
    [59]张金凤,杨曦,郑伟,高颖.水体系中Fe(Ⅱ)/K2S2O8降解敌草隆的研究.环境科学,2008,20(5):1239-1243.
    [60]Anipsitakis G P, Dionysiou D D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environmental Science and Technology,2003,37(20):4790-4797.
    [61]Memarian H R, Farhadi A. Sono-thermal oxidation of dihydropyrimidinones. Ultrasonics sonochemistry,2008,15(6):1015-1018.
    [62]Price G J, Keen F, Clifton A A. Sonochemically-assisted modification of polyethylene surfaces. Macromolecules,1996,29(17):5664-5670.
    [63]Liang C J, Lai M C. Trichloroethylene degradation by zero valent iron activated persulfate oxidation. Environmental Engineering Science,2008,25(7):1071-1077.
    [64]Furukawa Y, Kim J W, Watkins J, Wilkin R T. Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron. Environmental Science and Technology,2002,36(24):5469-5475.
    [65]崔俊芳,郑西来,林国庆.地下水有机污染处理的渗透性反应墙技术.水科学进展,2003,14(3):363-367.
    [66]Anipsitakis G P, Stathatos E. Dionysiou D D. Heterogeneous activation of oxone using Co3O4. Journal of Physical Chemistry B,2005,109(27):13053-13055.
    [67]Chen X, Chen J, Qiao X, Wang D, Cai X. Performance of nano-Co3O4/peroxymonosulfate system:Kinetics and mechanism study using acid orange 7 as a model compound. Applied Catalysis B:Environmental,2008,80(1-2):116-121.
    [68]Elmolla E, Chaudhuri M. Optimization of fenton process for treatment of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution. Journal of Hazardous materials, 2009,170(2-3):666-672.
    [69]Li K, Stefan M I, Crittenden J C. Trichloroethene degradation by UV/H2O2 advanced oxidation process:product study and kinetic modeling. Environmental Science and Technology,2007,41(5):1696-1703.
    [70]Anipsitakis G P, Dionysiou D D. Radical generation by the interaction of transition metals with common oxidants. Environmental Science and Technology,2004,38(13): 3705-3712.
    [71]Betterton E A, Hoffmann M R. Kinetics and mechanism of the oxidation of aqueous hydrogen sulfide by peroxymonosulfate. Environmental Science and Technology,1990, 24(12):1819-1824.
    [72]Lente G, Kalmar J, Baranyal Z, Kun A, Kek I, Bajusz D, Takacs M, Veres L, Fabian I. One-versus two-electron oxidation with peroxomonosulfate ion:reactions with iron(II), vanadium(IV), halide ions, and photoreaction with cerium(III). Inorganic Chemistry, 2009,48(4):1763-1773.
    [73]Hammami S, Bellakhal N, Oturan N, Oturan M A, Dachraoui M, Degradation of acid orange 7 by electrochemically generated-OH radicals in acidic aqueous medium using a boron-doped diamond or platinum anode:A mechanistic study. Chemosphere,2008,73(5) 678-684.
    [74]Du C M, Shi T H, Sun Y W, Zhuang X F, Decolorization of Acid Orange 7 solution by gas-liquid gliding arc discharge plasma, Journal of Hazardous materials,2008,154(1-3) 1192-1197.
    [75]Wahba N, Asmar M F E, Sadr M M E, Iodometric method for determination of persulfates. Analytical Chemistry,1951,31(11) 1870-1871.
    [76]Anipsitakis G P, Dionysiou D D. Transition metal/UV-based advanced oxidation technologies for water decontamination. Applied Catalysis B:Environmental,2004,54(3): 155-163.
    [77]Aparicio F, Contreras R, Galvan M, Cedillo A. Global and local reactivity and activation patterns of HOOX (X= H, NO2, CO2-,SO3-) peroxides with solvent effects. Journal of Physical Chemistry A,2003,107(47):10098-10104.
    [78]Delcomyn C A, Bushway K E, Henley M V. Inactivation of biological agents using neutral oxone-chloride solutions. Environmental Science and Technology,2006,40(8): 2759-2764.
    [79]Connick R E, Zhang Y X, Lee S Y, Adamic R, Chieng P. Kinetics and mechanism of the oxidation of HSO3- by O2.1. The uncatalyzed reaction, Inorganic Chemistry,1995, 34(18):4543-4553.
    [80]Waldermer R H, Tratnyek P G, Johnson R L, Nurmi J T. Oxidation of chlorinated ethenes by heat-activated persulfate:kinetics and products. Environmental Science and Technology,2007,41(3):1010-1015.
    [81]Kolthoff M, Miller I K. The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium. Journal of the American Chemical Society,1951,73(7):3055-3059.
    [82]Dogliotti L, Hayon E. Flash photolysis of per[oxydi]sulfate ions in aqueous solutions. The sulfate and ozonide radical anions. Journal of Physical Chemistry,1967,71(8): 2511-2516.
    [83]Wardman P. Reduction potentials of one-electron couples involving free radicals in aqueoussolution. Journal of Physical and Chemical Reference Data,1989,18(4): 1637-1755.
    [84]. Bauer C, Jacques P, Kalt A. Photooxidation of an azo dye induced by visible light incident on the surface of TiO2. Journal of Photochemistry and Photobiology A: Chemistry,2001,140(1):87-92.
    [85]Feng W, Nansheng D, Helin H. Degradation mechanism of azo dye C. I. reactive red 2 by iron powder reduction and photooxidation in aqueous solutions. Chemosphere,2000, 41(8):1233-1238.
    [86]Buxton G V, Greenstock C L, Helman W P, Ross A B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution. Journal of Physical and Chemical Reference Data,1988,17:513-886.
    [87]Lina J, Liu M. Singlet oxygen generated from the decomposition of peroxymonocarbonate and its observation with chemiluminescence method. Spectrochimica Acta Part A,2009,72(1):126-132.
    [88]熊志刚.金属酞著负载化及其可见光敏化降解氯苯酚:[博士论文].杭州:浙江大学 理学院化学系,2008.
    [89]Hosaka S, Itagaki T, Kuramitsu Y. Selectivity and sensitivity in the measurement of reactive oxygen species (ROS) using chemiluminescent microspheres prepared by the binding of acridinium ester or ABEI to polymer microspheres. Luminescence,1999, 14(60):349-354.
    [90]Kappe C O. Controlled microwave heating in modern organic synthesis. Angewandte Chemie International Edition,2004,43(46):6250-6284.
    [91]Abramovitch R A, Huang B Z, Abramovitch D A. In situ decomposition of PCBs in soil using microwave energy. Chemosphere,1999,38(10):2227-2236.
    [92]Jones D A, Lelyveld, T P, Mavrofidis S D, Kingman S W, Miles N J. Microwave heating applications in environmental engineering-a review. Resources, Conservation and Recycling,2002,34(2):75-90.
    [93]Xia L X, Lu S W, Cao G Y. Demulsification of emulsions exploited by enhanced oil recovery system. Separation Science and Technology,2003,38(16):4079-4094.
    [94]Bo L L, Quan X, Wang X C, Chen S. Preparation and characteristics of carbon-supported platinum catalyst and its application in the removal of phenolic pollutants in aqueous solution by microwave-assisted catalytic oxidation. Journal of Hazardous Materials,2008, 157(1):179-186.
    [95]Menendez J A, Inguanzo M, Pis J J. Microwave-induced pyrolysis of sewage sludge. Water Research,2002,36(13):3261-3264.
    [96]Tai H S, Jou C H. Application of granular activated carbon packed-bed reactor in microwave radiation field to treat phenol. Chemosphere,1999,38(11):2667-2680.
    [97]Liu X T, Quan X, Bo L L, Chen S, Zhao Y Z. Simultaneous pentachlorophenol decomposition and granular activated carbon regeneration assisted by microwave irradiation. Carbon,2004,42(2):415-422.
    [98]Bo L L, Quan X, Chen S, Zhao H M, Zhao Y Z. Degradation of p-nitrophenol in aqueous solution by microwave assisted oxidation process through a granular activated carbon fixed bed. Water Research,2006,40(16):3061-3068.
    [99]Chen Y X, Yang S Y, Wang K, Lou L P. Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of acid orange 7. Journal of Photochemistry and Photobiology A:Chemistry,2005,172(1):47-54.
    [100]Quan X, Zhang Y B, Chen S, Zhao Y Z, Yang F L. Generation of hydroxyl radical in aqueous solution by microwave energy using activated carbon as catalyst and its potential in removal of persistent organic substances. Journal of Molecular Catalysis A:Chemical, 2007,263(1-2):216-222.
    [101]Riga A, Soutsas K, Ntampegliotis K, Karayannis V, Papapolymerou G. Effect of system parameters and of inorganic salts on the decolorization and degradation of procion H-exl dyes. Comparison of H2O2/UV, Fenton, UV/Fenton, TiO2/UV and TiO2/UV/H2O2 processes. Desalination,2007,211(1-3):72-86.
    [102]Laat J D, Le G T, Legube B. A comparative study of the effects of chloride, sulfate and nitrate ions on the rates of decomposition of H2O2 and organic compounds by Fe(Ⅱ)/H2O2 and Fe(Ⅲ)/H2O2. Chemosphere,2004,55(5):715-723.
    [103]Tang C, Chen V. The photocatalytic degradation of reactive black 5 using TiO2/UV in an annular photoreactor. Water Research,2004,38(11):2775-2781.
    [104]Lu M C, Chang Y F, Chen I M, Huang Y Y. Effect of chloride ions on the oxidation of aniline by Fenton's reagen. Journal of Environment Management,2005,75(2):177-182.
    [105]Tizaoui C, Bouselmi L, Mansouri L, Ghrabi A. Landfill leachate treatment with ozone and ozone/hydrogen peroxide systems. Journal of Hazardous Materials,2007,140(1): 316-324.
    [106]Arslan-Alaton, Tureli G, Olmez-Hanci T. Treatment of azo dye production, wastewaters using photo-Fenton-like advanced oxidation processes:Optimization by response surface methodology. Journal of Photochemistry and Photobiology A,2009,202(2):142-153.
    [107]Liang C, Wang Z, Mohanty N. Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20℃. Science of the Total Environment.2006,370(2): 271-277.
    [108]Anipsitakis G P, Dionysiou D D, Gonzalez M A. Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions. Environmental Science and Technology,2006,40(3):1000-1007.
    [109]Dogliotti L, Hayon E. Flash photolysis of per[oxydi]sulfate ions in aqueous solutions. The sulfate and ozonide radical anions. Journal of Physical Chemistry,1967,71(8): 2511-2516.
    [110]Kolthoff I M, Miller I K. The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium. Journal of the American Chemical Society,1951,73(7):3055-3059.
    [111]Anipsitakis G P, Dionysiou D D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environmental Science and Technology,2003,37(20):4790-4797.
    [112]Hayon E, Treinin A, Wilf J. Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. SO2-, SO3-, SO4-, and SO5-radicals. Journal of the American Chemical Society,1972,94(1):47-57.
    [113]Yu X, Bao Z, Barker J R. Free radical reactions involving Cl-, Cl2-·, and SO4-·in the 248 nm photolysis of aqueous solutions containing S2O82- and Cl-. The journal of physical chemistry. A,2004,108(2):295-308.
    [114]Lente G, Kalmar J, Baranyai Z, Kun A, Kek I, Bajusz D, Takacs M, Veres L, Fabiart I. One-versus two-electron oxidation with peroxomonosulfate ion:Reactions with iron(Ⅱ), vanadium(Ⅳ), halide ions, and photoreaction with cerium(Ⅲ). Inorganic Chemistry, 2009,48(4):1763-1773.
    [115]George C, Rassy H E, Chovelon J M. Reactivity of selected volatile organic compounds (VOCs) toward the sulfate radical (SO4-·). International Journal of Chemical Kinetics, 2001,33(9):539-547.
    [116]Wicktor F, Donati A, Herrmann H, Zellner R. Laser based spectroscopic and kinetic investigations of reactions of the Cl atom with oxygenated hydrocarbons in aqueous solution. Physical Chemistry Chemical Physics,2003,5(12):2562-2572.
    [117]Jacobi H W, Wicktor F, Herrmann H, Zellner R. A laser flash photolysis kinetic study of reactions of the Cl2-·radical anion with oxygenated hydrocarbons in aqueous solution. International Journal of Chemical Kinetics,1999,31(3):169-181.
    [118]Neta P, Maruthamuthu P, Carton P M, Fessenden R W. Formation and reactivity of the amino radical. Journal of Physical Chemistry,1978,82(17):1875-1878.
    [119]Yang Q, Choi H, Dionysiou D D. Nanocrystalline cobalt oxide immobilized on titanium dioxide nanoparticles for the heterogeneous activation of peroxymonosulfate. Applied Catalysis B,2007,74(1-2):170-178.
    [120]Alegre M L, Gerones M, Rosso J A, Bertolotti S G, Braun A M, Martir D 0, Gonzalez M C. Kinetic study of the reactions of chlorine atoms and Cl2-·radical anions in aqueous solutions.1. reaction with benzene. Journal of Physical Chemistry A,2000,104(14): 3117-3125.
    [121]Chan K H, Chu W. Degradation of atrazine by cobalt-mediated activation of peroxymonosulfate:Different cobalt counteranions in homogenous process and cobalt oxide catalysts in photolytic heterogeneous process. Water Research,2009,43(9): 2513-2521.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700