微波辅助过二硫酸盐对渗滤液中腐殖酸的降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垃圾渗滤液中含有大量腐殖酸(HA),是化学需氧量(COD)的重要组成部分。HA是一类典型的大分子难降解有机物,它能够络合重金属离子、影响色味,还可以形成有毒副产物。HA的降解是垃圾渗滤液处理的关键之一。因其难生化,不易被传统生物法降解。
     过硫酸盐高级氧化技术是近年来兴起的新型高级氧化技术。过二硫酸盐(PS)传统的活化方法包括热、光、过渡金属离子。微波(MW)具有加热快、高效、均匀等特点,可以快速活化PS形成硫酸根自由基(SO_4~-)。实验在一台改装后的的家用微波炉(功率为800 W)中进行,通过研究影响因素和自由基机理等内容,探讨微波辅助过二硫酸盐(MW+PS)技术对垃圾渗滤液中HA的降解。研究内容如下:
     (1)通过检测254 nm下吸光度(UV_(254))变化、400 nm下吸光度(VIS400)变化、紫外可见光谱等指标,研究了MW+PS氧化法对HA降解的可行性。结果表明5 mmol/L的PS在MW中被活化,反应30 min后对100 mg/L的HA降解率接近100%。通过对反应前后总有机碳(TOC)的表征发现,MW+PS不仅能够降解HA,还能将其矿化,MW反应30 min,100 mmol/L的PS对100 mg/L HA的TOC去除率可达到98%。HA降解效率随PS浓度的升高而增加,随HA浓度的增加而降低;pH = 4,7,10,12.8条件下,MW+PS对HA的降解效率都很高。叔丁醇(TBA)和甲醇(MA)被用作化学探针验证反应过程中自由基的种类,实验结果发现,在降解HA过程中,酸性条件下,SO_4~-占主导,碱性条件下,羟基自由基(·OH)占主导。
     (2)用树脂吸附分离法对渗滤液中HA进行分离与提取,采用MW+PS对提取的HA进行降解。通过对UV-vis光谱和不同pH下的UV_(254)、VIS_(400)检测表征MW+PS对垃圾渗滤液中HA的降解效果。结果发现,MW+PS工艺对TOC和COD去除率分别为55%和58.9%,而且不同初始pH下(pH = 3,7,13)HA反应30 min后UV_(254)和VIS_(400)去除率均可到到95%以上。
     (3)垃圾渗滤液液中含有大量的Cl-,国标法测COD不能有效消除Cl~-的干扰。比较了重铬酸钾回流法、快速消解分光光度法、碱性高锰酸钾法以及紫外分光光度法对COD的检测,对Cl~-所产生的干扰进行讨论。确定在水质稳定的垃圾渗滤液中采用紫外分光光度法检测COD可以避免Cl-带来的干扰,可以快速准确的检测渗滤液中COD。
     (4)探讨了MW+PS工艺对实际垃圾渗滤液(COD浓度为3074.4 mg/L,Cl-浓度为5325 mg/L)的降解情况,同时比较了MW辅助过氧化氢(MW+H_2O_2)、MW辅助过一硫酸盐(MW+PMS)对COD去除率的作用,结果发现氧化剂浓度为0.3 mol/L情况下,MW+H_2O_2、MW+PMS、MW+PS在30 min内的COD去除率分别为42%、80%、97%,MW+PS的去除率更高、反应更温和、更利于控制。其中氧化剂浓度越高,COD去除率越高;渗滤液中含有大量Cl-,因能够捕获反应中的自由基生成Cl_2而影响COD的去除效率,其中加入H_2O_2和PS的溶液COD去除率有一定程度的增加,加入PMS的溶液COD去除率稍有降低。MW+PS工艺在酸性、中性、碱性条件下(pH = 2 - 12)对垃圾渗滤液COD的去除率都很高;当温度大于等于85℃时,MW加热比传统加热方式去除率高;活性炭在MW+PS技术处理垃圾渗滤液中具有明显的增强作用,可以使COD去除率升高,但是反应过程中PS的加入量是主要因素。
There are lots of humic acid (HA) in landfill leachate, which is a high contribution to chemical oxygen demand (COD). HA is a topic recalcitrant pollutant and it can not only adversely affect appearance and taste, but can also be halogenated to form potentially carcinogenic chlorinated organic compounds. However, it is difficult to remove HA from landfill leachate by traditional biological processes.
     Advanced oxidation technologies, in which persulfate (PS) is used as oxidant, have come forth recently for the degradation of non-biodegradable contaminants. The conventional activation methods of PS consist of heat, UV and metal activation. Microwave (MW) heating presents several attractive advantages, such as shorter reaction times, higher yields, and cleaner reactions. A modified domestic MW furnace (800 W) is used to supply MW energy and activate PS to generate sulfate radical (SO_4~-). MW assisted persulfate (MW+PS) is investigated for the degradation of HA. Specific studies are as follows:
     (1) The effects of various operating conditions such as initial HA concentration, initial PS concentration, initial pH value, HCO_3~-/CO_3~(2-)and granular activated carbon (GAC) are examined. Degradation is evaluated by the decreases of absorbance at 254 nm (UV_(254)) and 400 nm (VIS_(400))and total organic carbon (TOC). According to the results, nearly 100% of 100 mg/L HA is degraded by MW+PS process at 800 W in 30 min. Higher initial PS concentration could accelerate the HA degradation efficiency, while higher initial HA concentration could cause a lower degradation efficiency. The UV254 and VIS400 of HA kept high at pH 4 - 12.8. PS could not only oxidize functional groups of HA, but also mineralize it and the removal efficiency of TOC is about 98% under MW irradiation when PS dosage is 100 mmol/L. Methanol (MA) and tert-butyl alcohol (TBA) are applied as chemical probe compounds to detect the free radicals. The results show that both SO_4~- and·OH may exist in the MW+PS technology. Whether SO4?? or·OH playing a predominant role in HA degradation depends on the pH of the solution.
     (2) Humic substance is extracting from landfill leachate by resin. Experiments are carried out on the degradation of extracted HA by MW+PS technology. The results show that the removal efficiency of TOC and COD are 55% and 58.9% respectively. Furthermore, the degradation of UV254 and VIS400 are both more than 95% in 20 min when initial pH is 3, 7 and 13.
     (3) COD is one of the most important determination indicators of landfill leachate. However, the presence of high concentration chloride in leachate generates interference when detacting COD by national standard method. Compared potassium dichromate reflux method, rapid digestion-spectrophotometric method, basic potassium permanganate method with UV spectrophotometry method, it is found that UV spectrophotometry could not only shorten the measure time and improve the efficiency, but avoid the interference from chloride. UV spectrophotometry method is used to detect COD in landfill leachate.
     (4) The treatment of actual landfill leachate (cCOD = 3074.4 mg/L, cCl- = 5325 mg/L) by MW+PS is conducted compared with MW assisted hydrogen peroxide (H2O2) and peroxy-monosulfate (PMS). COD removal efficiencies are respectively 97%, 42% and 80% when the oxidants are 0.3 mol/L. The higher of the concentration is, the higher of the removal efficiency is. For H2O2 and PS, chloride ion in landfill leachate could improve COD removal slightly. While for PMS, chloride ion captures its radical and generates chlorine gas escaping out of the reactor, so that COD removal gets a bit decrease. COD removal efficiency of landfill leachate is all high in the pH value of 2, 7, 8.2, and 12. MW heating is more efficient than traditional water-bath heating when the temperature is above 85℃. GAC plays a synergism effect in the treatment of landfill leachate by MW+PS. When 0.1g/L GAC is added in MW+PS, COD removal is enhanced from 78% to 96% in 10 min compared with no GAC. PS dosage and GAC dosage are explored, and the results show that PS dosage plays the main role in MW+PS+GAC technology.
引文
[1] Li X Z, Zhao Q L. Efficiency of biological treatment affected by high strength of ammonium-nitrogen in leachate and chemical precipitation of ammonium-nitrogen as pretreatment [J]. Chemosphere, 2001, 44(1): 37~43.
    [2] Ramirez I M, Velasquez M T O. Removal and transformation of recalcitrant organic matter from stabilized saline landffill leachates by coagulation-ozonation coupling process [J]. Water Resarch, 2004, 38(9): 2605~2613.
    [3] Wang F, Smith D W, El-Din M G. Application of advanced oxidation methods for landfill leachate treatment [J]. Journal of Environment Science, 2003, 2(6): 413~427.
    [4] Ahn W Y, Kang M S, Yim S K, Choi K H. Advanced landfill leachate treatment using integrated membrane process [J]. Desalination, 2002, 149(1~3): 109~114.
    [5] Zhang H, Choi H J, Huang C P. Treatment of landfill leachate by Fenton’s reagent in a continuous stirred tank reactor [J]. Journal of Hazardous Materials B, 2006, 136(3): 618~623.
    [6] Trujillo D, Font X, S′anchez A. Use of Fenton reaction for the treatment of leachate from composting of different wastes [J]. Journal of Hazardous Materials B, 2006, 138(1): 201~204.
    [7] Zhang H, Zhang D B, Zhou J Y. Removal of COD from landfill leachate by electro-Fenton method [J]. Journal of Hazardous Materials B, 2006, 135(1~3): 106~111.
    [8] Primo O. Rivero M J, Ortiz I. Photo-Fenton process as an efficient alternative to the treatment of landfill leachates [J]. Journal of Hazardous Materials, 2008, 153(1~2): 834~842.
    [9] Rivas F J., Beltra′F J., Carvalho F, Alvarez P M. Oxone-promoted wet air oxidation of landfill leachates [J]. Industrial and Engineering Chemistry Research. 2005, 44(4): 749~758.
    [10] Gonze E, Commenges N, Gonthier Y, Bernis A. High frequency ultrasound as a pre- or a post-oxidation for paper mill wastewaters and landfill leachate treatment [J]. Chemical Engineering Journal, 2003, 92(1~3):215~225.
    [11]周健,李宝霞,龙腾锐,林明波.微波强化Fenton氧化法处理垃圾渗滤液试验研究[J].中国给水排水, 2009, 25(17): 97~99.
    [12]刘卫华.催化臭氧去除垃圾渗滤液中DEHP及高浓度腐殖质的机理研究[D]: [博士学位论文].天津:天津大学, 2007.
    [13] Calace N, Petronio B M. Characteration of high molecular weight organic compounds in landfill leachate: humic substance [J]. Journal of Environmental Science and Health, Part A: Environmental Scionce snd Engineering &Toxic and Hazardous Substance Control, 1997, 32(8): 2229~2244.
    [14] Fan H J, Shu H Y, Yang H S, Chen W C. Characteristics of landfill leachates in central Taiwan [J]. Science of the Total Environment, 2006, 361(1~3): 25~37.
    [15]许志诚,罗微,洪义国,许玫英,孙国萍.腐殖质在环境污染物生物降解中的作用研究进展[J].微生物学通报, 2006, 33(6): 122~127.
    [16] Castagnoli O, Musmeci L, Zavattiero E, Chirico M. Humic substances and humification rate in a municipal refuse disposed of in a landfill [J]. Water, Air, and Soil Pollution. 1990. 53: 1~12.
    [17] Coates J D, Cole K A, Chakraborty R, O'Connor S M, Achenbach L A. The diversity and ubiquity of bacteria utilizing humic substances as an electron donor for anaerobic respiration [J]. Applied and Environmental Microbiology, 2002, 68(5): 2445~2521.
    [18] Kang K H, Shinb H S, Park H. Characterization of humic substances present in landfill leachates with different landfill ages and its implications [J]. Water Research, 2002, 36(16): 4023~4032.
    [19]黄泽春,陈同斌,雷梅.陆地生态系统中水溶性有机质的环境效应[J].生态学报, 2002, 22(2): 259~269.
    [20] Cook R L, Langford C H. Structural characterization of a fulvic acid and a humic acid using solid-state ramp-CP-MAS 13C nuclear magnetic resonance [J]. Environment Science Technololy, 1998, 32: 719~725.
    [21] Badis A, Ferradji F Z, Boucherit A, Fodil D, Boutoumi H. Removal of natural humic acids by decolorizing actinomycetes isolated from different soils (Algeria) for application in water purification [J]. Desalination, 2010, 259(1~3): 216~222.
    [22] Baker H, Khalili F. Analysis of the removal of lead (Ⅱ) from aqueous solutions by adsorption onto insolubilized humic acid: temperature and pH dependence [J]. Analytical Chemistry Acta, 2004, 516(1~2): l79~186.
    [23] Abbt-Braun G, Johannsen K, Kleiser M, Frimmel F H. Adsorption behaviour of humic substances on activated carbon: comparison with physical and chemical character of material from different origin [J]. Environment International, 1994, 20(3): 397~403.
    [24] Calace N, Massimiani A, Petronio B M, Pietroletti M. Municipal landfill leachate-soil interactions: a kinetic approach [J]. Chemosphere, 2001 44(5): 1025~1031.
    [25] Rodrlguez J, Cast rillon L, Maranon E, Sastre H, Fernández E. Removal of non-biodegradable organic matter from landfill leachates by adsorption [J]. Water Research, 2004, 38(14~15): 3297~3303.
    [26] Zouboulis A I, Jun W, Katsoyiannis I A. Removal of humic acids by flotation [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 231(1~3): 181~193.
    [27] Anastasios I, Zouboulis, Chai X L, Katsoyiannis I A. The application of bioflocculant for the removal of humic acids from stabilized 1andfill leachate [J]. Journal of Environmental Management, 2004, 70: 35~41.
    [28]王晓昌,王锦.混凝-超滤去除腐殖酸的试验研究[J].中国给水排水, 2002, 18(3): 18~22.
    [29]黄廷林.强化絮凝法去除水中DBP先质研究[J].环境科学学报, 1999, 19(4): 399~404.
    [30]吴彦瑜,覃芳慧,赖杨兰,彭华平,周少奇. Fenton试剂对垃圾渗滤液中腐殖酸的去除特性[J].环境科学研究, 2010, 23(1): 94~99.
    [31]丁辉,李鑫钢,徐世民.光助Fenton氧化垃圾渗滤液中腐殖质研究[J].太阳能学报, 2008, 29(6): 761~766.
    [32]刘卫华,季民,张昕,杨洁.催化臭氧氧化去除垃圾渗滤液中难降解有机物的研究[J].环境化学, 2007, 26(1): 58~61.
    [33]樊彩梅,孙彦平.纳米TiO2对水中腐殖酸的吸附及光催化降解[J].应用化学, 2001, 18(11): 912~914.
    [34]魏守强,刘瑛,王实倩.电化学法处理水中腐殖酸的研究[J].当代化工, 2004, 6(33): 350~353.
    [35] Xing R, Liu S, Yu H H, Guo Z Y, Wang P B, Li C P, Li Z E, Li P C. Salt assisted acid hydrolysis of chitosan to oligomers under microwave irradiation [J]. Carbohydrate Research, 2005, 340(13): 2150~2153.
    [36] Bo L L, Zhang Y B, Quan X, Zhao B. Microwave assisted catalytic oxidation of p-nitrophenol in aqueous solution using carbon-supported copper catalyst [J]. Journal ofHazardous Materials, 2008, 153(3): 1201~1206.
    [37] Quan X, Zhang Y B, Chen S, Zhao Y Z, Yang F L. Generation of hydroxyl radical in aqueous s oluti on bymicr owave energy using activated carbon as catalyst and its potential in removal of persistent organic substances [J]. Journal of Molecular Catalysis A: Chemical, 2007, 263(1~2): 216~222.
    [38]郑怀礼,杨铀,唐雪,焦世俊,刘澜,张鹏.微波促进类Fenton反应催化氧化脱色降解染料罗丹明B[J].光谱学与光谱分析, 2009, 29(8): 2180~2184.
    [39] Ferrari C, Longo I, Tombari E, Bramanti E. A novel microwave photochemical reactor for the oxidative decomposition of Acid Orange 7 azo dye by MW/UV/H2O2 process [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 204(2~3): 115~121.
    [40] Liu T, Wei X Y, Zhao J J, Xie H S, Wang T T, Zong Z M. Microwave-assisted hydroxylation of benzene to phenol with H2O2 over FeSO4/SiO2 [J]. Mining Science and Technology, 2010, 20(1): 93~96.
    [41] Horikoshi S, Hidaka H, Serpone N. Hydroxyl radicals in microwave photocatalysis. Enhanced formation of OH radicals probed by ESR techniques in microwave-assisted photocatalysis in aqueous TiO2 dispersions [J].Chemical Physics Letters, 2003, 376(3~4): 475~480.
    [42] Liang C J, Bruell C J, Marley M C, Sperry K L. Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries [J]. Soil and Sediment Contamination, 2003, 12(2): 207~228.
    [43] Tsitonaki A, Smets B F, Bjerg P L. Effects of heat-activated persulfate oxidation on soil microorganisms [J]. Water Research, 2008, 42(4~5): 1013~1022.
    [44] Waldemer R H, Tratnyer P G., Johnson R L, Nurmi J T. Oxidation of chlorinated ethenes by heat-activated persulfate: Kinetics and products [J]. Environment Science and Technology. 2007, 41(3): 1010~1015.
    [45] Liang C J, Bruell C J. Thermally activated persulfate oxidation of trichloroethylene: experimental investigation of reaction orders [J]. Industrial and Engineering Chemistry, 2008, 47(9): 2912~2918.
    [46] Anipsitakis G P, Dionysiou D D. Transition metal/UV-based advanced oxidation technologies for water decontamination [J]. Applied Catalysis B, 2004, 54(3): 155~163.
    [47] Lau T K, Chu W, Graham N J D. The aqueous degradation of butylated hydroxyanisole by UV/S2O82-: Study of reaction mechanisms via dimerization and mineralization [J]. Environment Science and Technology, 2007, 41(2): 613~619.
    [48] Anipsitakis G. P, Dionysiou D D. Radical generation by the interaction of transition metals with common oxidants [J]. Environment Science and Technology, 2004, 38(13): 3705~3712.
    [49] Yang Q J, Choi H, Al-Abed S R, Dionysiou D D. Iron-cobalt mixed oxide nanocatalysts: Heterogeneous peroxymonosulfate activation, cobalt leaching, and ferromagnetic properties for environmental applications [J]. Applied Catalysis B, 2009, 88(3~4): 462~469.
    [50] Gayathri P, Dorathi R P J, Palanivelu K. Sonochemical degradation of textile dyes in aqueous solution using sulphate radicals activated by immobilized cobalt ions [J]. Ultrasonics Sonochemistry, 2010, 17(3): 566~571.
    [51] Xie H Q, Guan J G, Guo J S. Synthesis and properties of ionic conducting crosslinked polymer and copolymer based on dimethacryloyl poly (ethylene glycol) [J]. European Polymer Journal, 2001, 37(10): 1997~2003.
    [52]申迎华,张爱琴,武根壮,张向英.聚合方法对一种正离子聚丙烯酰胺结构与性能的影响[J].高分子学报, 2008, (6): 561~566.
    [53]吴彩虹,李沛弘,杨万秀,宋海鹏.过硫酸氢钾复合盐与过硫酸钠在PCB微蚀刻中的对比研究[J].表面技术, 2007, 36(1): 78~80.
    [54]邵建中,刘今强,郑今欢, Carr C M.过一硫酸盐羊毛表面改性机理的红外光谱研究[J].纺织学报, 2001, 22(5): 285~287.
    [55] Nosaka Y, Nakamura M, Hirakawa T, Behavior of superoxide radicals formed on TiO2 powder photocatalysts studied by a chemiluminescent probe method [J]. Physical Chemistry Chemical Physics, 2002, 4(6): 1088~1092.
    [56] Xia X H, Xu J L, Yun Y. Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide [J]. Journal of Environmental Sciences, 2002, 14(2): 188~194.
    [57]张乃东,张曼霞,孙冰.硫酸根自由基处理水中甲基橙的初步研究[J].哈尔滨工业大学学报, 2006, 38(4): 636~638.
    [58] Hori H, Yamamoto A, Hayakawa E, Taniyasu S, Yamashita N, Kutsuna S, Kiatagawa H, Arakawa R. Efficient decomposition of environmentally perfluorocarboxylic acids by use ofpersulfate as a photochemical oxidant [J]. Environmental Science and Technology, 2005, 39(7): 2383~2388.
    [59] Liang, C J, Wang Z S, Bruell C J. Influence of pH on persulfate oxidation of TCE at ambient temperature [J]. Chemosphere, 2007, 66(1): 106~113.
    [60] Liang C J, Bruell C J, Marley M C, Sperry K L. Persulfate oxidation for in situ remediation of TCE - Activated by ferrous ion with and without a persulfate-thiosulfate redox couple [J]. Chemosphere, 2004, 55(9): 1213~1223.
    [61] Cuypers C, Grotenhuis Nierop T, K G, Franco E M, Jager A de, Rulkens W. Amorphous and condensed organic matter domains: the effect of persulfate oxidation on the composition of soil/sediment organic matter [J]. Chemosphere, 2002, 48(9): 919~931.
    [62] Cuypers C, Grotenhuis T, Joziasse J, Rulkens W. Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments [J]. Environmental Science Technology, 2000, 34(10): 2057~2063.
    [63]赵进英,张耀斌,全燮,赵雅芝.加热和亚铁离子活化过硫酸钠氧化降解4-CP的研究[J].环境科学, 2010, 31(5): 1233~1238.
    [64]常晓珺,张彭义.真空紫外光降解五氯酚钠以及过硫酸盐对反应的促进作用[J].环境工程学报, 2007, 1(4): 34~37.
    [65]何树华,吕弋,何德勇,胡玉斐,章竹君.鲁米诺-过硫酸钠化学发光体系测定硝苯地平[J].分析化学, 2004, 32(4): 474~476.
    [66]沈友,宋冠华.过硫酸铵作氧化剂I2-CCl4萃取光度法定矿石中的锰[J].光谱学与光谱分析, 2002, 22(6): 1065~1066.
    [67]李侠.过硫酸钾氧化刚果红褪色催化光度法测定水中微量镍[J].冶金分析, 2007, 27(3): 71~74.
    [68] Sharma V K. Potassiumfemate (VI): an environmentally friendly oxidant [J]. Advances in Environmental Research, 2002, 6(2): 143~156.
    [69]阳艳林,于洪忠,徐辉.过硫酸氢钾复合消毒剂杀菌效果观察[J].中国消毒学杂志, 2008, 25(2): 150~152.
    [70]郑伟,杨曦,张金凤,张川,孔令仁. Fe(II)/K2S2O8对水体中As(III)的氧化研究[J].环境科学与技术, 2007, 30(11): 41~42, 57.
    [71] Neppolian B, Celik E, Choi H. Photochemical oxidation of arsenic (III) to arsenic (V) usingperoxydisulfate ions as an oxidizing agent [J]. Environment Science and Technology, 2008, 42(16): 6179~6184.
    [72] Xu X H, Ye Q F, Tang T M , Wang D H. Hg0 oxidative absorption by K2S2O8 solution catalyzed by Ag+ and Cu2+ [J]. Journal of Hazardous Materials, 2008, 158(2~3): 410~416.
    [73]杨世迎,杨鑫,王萍,单良,张文义.过硫酸盐高级氧化技术的活化方法研究进展[J].现代化工, 2009, 29(4): 13~19.
    [74] Furman O S, Teel A L, Watts R J. Mechanism of base activation of persulfate [J]. Environment Science Technology, 2010, 44(16): 6423~6428.
    [75] Liang C J, Lai M C. Trichloroethylene degradation by zero valent iron activated persulfate oxidation [J]. Environment Engineering and Science, 2008, 25(7): 1071~1077.
    [76] Oh S Y, Kang S G, Chiu P C. Degradation of 2, 4-dinitrotoluene by persulfate activated with zero-valent iron [J]. Science of the Total Environment, 2010, 408(16): 3464~3468.
    [77] Zhao J Y, Zhang Y B, Quan X, Chen S. Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature [J]. Separation and Purification Technology, 2010, 71(3): 302~307.
    [78] Yang S Y, Wang P, Yang X, Wei G, Zhang W Y, Shan L. A novel advanced oxidation process to degrade organic pollutants in wastewater: Microwave-activated persulfate oxidation [J]. Journal of Environmental Sciences, 2009, 21(9): 1175~1180.
    [79] Anipsitakis G P, Dionysiou D D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt [J]. Environmental Science and Technology, 2003, 37(20): 4790~4797.
    [80] Anipsitakis G P. Cobalt/ peroxymonosulfate and related oxidizing reagents for water treatment [D]. USA: University of Cincinnati, 2006.
    [81] Wei C, Lau T, Fung S C. Effects of combined and sequential addition of dual oxidants (H2O2/ S2O82-) on the aqueous carbofuran photodegradation [J]. Journal of Agricultural and Food Chemistry, 2006, 54(26): 10047~10052.
    [82] Yang Q J, Choi H, Al-Abed S R., Dionysiou D D. Iron-cobalt mixed oxide nanocatalysts: Heterogeneous peroxymonosulfate activation, cobalt leaching, and ferromagnetic properties for environmental applications [J]. Applied Catalysis B: Environmental, 2009, 88(3~4): 462~469.
    [83] Memarian H R, Farhadi A. Sono-thermal oxidation of dihydropyrimidinones [J]. Ultrasonics Sonochemistry, 2008, 15(6): 1015~1018.
    [84] Lee Y C, Lo S L, Chiueh P T, Liou Y H, Chen M L. Microwave-hydrothermal decomposition of per?uorooctanoic acid in water by iron-activated persulfate oxidation [J]. Water Research, 2009, 44(3): 1~7.
    [85] Lee Y C, Lo S L, Chiueh P T, Chang D G. Efficient decomposition of per?uorocarboxylic acids in aqueous solution using microwave-induced persulfate [J]. Water Research, 2009, 44(11): 2811~2816.
    [86] Katsumata H, Sada M, Kaneco S, Suzuki T, Ohta K, Yobiko Y. Humic acid degradation in aqueous solution by the photo-Fenton process [J]. Chemical Engineering Journal, 2008, 137(2): 225~230.
    [87] Liang C J, Huang C F, Mohanty N, Kurakalva R M. A rapid spectrophotometric determination of persulfate anion in ISCO [J]. Chemosphere, 2008, 73(9): 1540~1543.
    [88] Traina S J, Novak J, Smeck N E. An ultraviolet absorbance method of estimating the percent aromatic carbon content of humic acids [J]. Journal of Environment Quality, 1990, 19(1): 151~153.
    [89] Liang C J, Bruell C J, Albert M F, Cross P E, Ryan D K. Evaluation of reverse osmosis and nanofiltration for in situ persulfate remediated groundwater [J]. Desalination, 2007, 208(1~3): 238~259.
    [90] Rickman K A, Mezyk S P. Kinetics and mechanisms of sulfate radical oxidation of b-lactam antibiotics in water [J]. Chemosphere, 2010, 81(3): 359~365.
    [91] Wu Y Y, Zhou S Q, Qin F H, Zheng K, Ye X Y. Modeling the oxidation kinetics of Fenton’s process on the degradation of humic acid [J]. Journal of Hazardous Materials, 2010, 179(1~3) 533~539.
    [92] Yu X Y, Bao Z C, Barker J R. Free radical reactions involving Cl?, Cl2-?, and SO4-? in the 248 nm photolysis of aqueous solutions containing S2O82- and Cl- [J]. Journal of Physical Chemistry A, 2004, 108(2): 295~308.
    [93] Chamarro E, Marco A, Esplugas S. Use of Fenton reagent to improve organic chemical biodegradability [J]. Water Research. 2001, 35(4): 1047~1051.
    [94] Guedes A, Madeira L M P, Boaventura R A R, Costa C A V. Fenton oxidation of cork cookingwastewater-overall kinetic analysis [J]. Water Research, 2003, 37(13): 3061~3069.
    [95] Imai D, Dabwan A H A, Kaneco S, Katsumata H, Suzuki T, Kato T, Ohta K. Degradation of marine humic acids by ozone-initiated radical reactions [J]. Chemical Engineering Journal, 2009, 148(2~3): 336~341.
    [96] Liang C J, Su H W. Identification of sulfate and hydroxyl radicals in thermally activated persulfate [J]. Industrial and Engineering Chemistry Research, 2009, 48(11): 5558~5562.
    [97] Kerc A, Bekbolet M, Saatci A M. Sequential oxidation of humic acids by ozonation and photocatalysis [J]. Ozone Science and Engineering, 2003, 25(6): 497~504.
    [98]徐文倩.微波活性炭组合技术处理难降解废水的应用研究[D]: [硕士学位论文].上海:同济大学, 2006.
    [99]张威.活性炭吸附-微波诱导氧化处理苯酚废水的研究[D]: .[硕士学位论文].哈尔滨:哈尔滨工业大学, 2007.
    [100] Lindse M E; Tarr M A. Inhibition of hydroxyl radical reaction with aromatics by dissolved natural organic matter [J]. Environment Science and Technology, 2000, 34(3): 444~449.
    [101] Lindsey M E, Tarr M A. Quantitation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide [J]. Chemosphere 2000, 41(3): 409~417.
    [102] GB 11914-1989,水质化学需氧量的测定重铬酸盐法[S].
    [103] Thurman E M, Malcolm R L. Preparative isolation of aquatic humic substances [J]. Environmental Science and Technology, 1981, 15(4): 463~466.
    [104] Slack R J, Gronow J R, Voulvoulis N. Household hazardous waste in municipal landfills: contaminants in leachate [J]. Science of the Total Environment, 2005, 337(1~3): 119~137.
    [105] Baun A, Ledin A, Reitzel L A, Bjerg P L, Christensen T H. Xenobiotic organic compounds in leachates from ten Danish MSW landfills-chemical analysis and toxicity tests [J]. Water Research, 2004, 38(18): 3845~3858.
    [106] Kurniawan T A, Lo W H, Chan G Y S. Radicals-catalyzed oxidation reactions for degradation of recalcitrant compounds from landfill leachate [J]. Chemical Engineering Journal, 2006, 125(1): 35~57.
    [107] Morais J L D, Zamora P P. Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates [J]. Journal of Hazardous Materials, 2005, 123(1~3): 181~186.
    [108] APHA, AWWA, Standard Methods for Examination of Water and Wastewater, 19th ed., WPCF, New York, 1995.
    [109]国家环境保护总局,水和废水监测分析方法[M].北京:中国环境科学出版社, 2002.
    [110] Vyrides I, Stuckey D C. A modified method for the determination of chemical oxygen demand (COD) for samples with high salinity and low organics [J]. Bioresource Technology, 2009, 100(2): 979~982.
    [111] Gotvajn A ?, Ti?ler T, Kon?an J Z. Comparison of different treatment strategies for industrial landfill leachate [J]. Journal of Hazardous Materials, 2009, 162(2~3): 1446~1456.
    [112]岳琳,王启山,石岩,何士忠. CuO-CeO2/γ-Al2O3粒子电极对垃圾渗滤液降解特性[J].环境科学, 2008, 6(29): 3851~6851.
    [113] Calli B, Mertoglu B, Inanc B. Landfill leachate management in Istanbul: applications and alternatives [J]. Chemosphere, 2005, 59(6): 819~829.
    [114] Lopez A, Pagano M, Volpe A, Pinto A C D. Fenton’s pre-treatment of mature landfill leachate [J]. Chemosphere, 2004, 54(7): 1005~1010.
    [115] American Public Health Association (APHA), 1995. Standard Methods for the Examination of Water and Wastewater, 19th ed. APHA, Washington, DC.
    [116] Kochany J, Kochany E L. Utilization of landfill leachate parameters for pretreatment by Fenton reaction and struvite precipitation-A comparative study [J]. Journal of Hazardous Materials, 2009, 166(1): 248~254.
    [117] APHA, AWWA, WPCF, Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association, Washington, D.C., 1999.
    [118]刘作华,陶长元,刘仁龙,孙大贵,左赵宏.微波-Fenton法处理垃圾渗滤液的研究[J].压电与声光, 2007, 29(3): 344~349.
    [119] HJ/T 399-2007,水质化学需氧量的测定快速消解分光光度法[S].
    [120] HJ/T 132-2003,高氯废水化学需氧量的测定碘化钾碱性高锰酸钾法[S].
    [121]杨国红.含高氯废水CODCr测定中HgSO4加入量的确定[J].环境监测管理与技术, 1993, 5(4): 42~44.
    [122] Ballinger D, Lloyd A, Morrish A. Determination of chemical oxygen demand of wastewaters without the use of mercury salts [J]. Analyst, 1982, 107: 1047~1053.
    [123]何志坤.密封催化消解法测定COD与国家标准方法的比对实验[J].中山大学学报论丛,2002, 22(5): 222~223.
    [124]朱冠军,南皓雄,姚伯元.快速消解分光光度法测定造纸黑液酸析絮凝木质素[J].现代化工, 2008, 25(2): 206~209.
    [125]王志强,闫毓霞.密封消解法测定高氯化物废水的化学需氧量[J].化工环保, 2003, 23(3): 169~174.
    [126]袁英贤,丁少军,陈寒玉.微波消解-分光光度法测定COD的研究[J].环境工程, 2007, 25(5): 76~81.
    [127]李德豪,李连香,邱冬梅,洪国尚,古琴.无银催化-微波消解快速测定污水中化学需氧量研究[J].环境工程, 2002, 20(5): 52~54.
    [128]陈佳荣,臧维玲,金送笛.水化学实验指导书[M].北京:中国农业出版社, 1998.
    [129]《水和废水监测方法指南》编委会.水和废水监测方法指南[M].中国环境科学出版社, 1992.
    [130] J.G.斯塔克.化学数据手册[M].英国:石油工业出版社, 1980.
    [131] Yao H, Wu B, Qu H B, Chen Y Y. A high throughput chemiluminescence method for determination of chemical oxygen demand in waters [J]. Annali di Chimica, 2009, 633(1): 76~80.
    [132] Zhu L H, Chen Y E, Wu Y H, Li X R, Tang H Q. A surface-fluorinated-TiO2-KMnO4 photocatalytic system for determination of chemical oxygen demand [J]. Annali di Chimica, 2006, 571(2): 242~247.
    [133]谢雪琴,陈如.现代分析测试技术在印染行业的应用(一)—紫外-可见吸收光谱分析技术[J].印染, 2007,33(3): 42-45, 52.
    [134] Ogura N. Ultraviolet absorbing materials in natural water [J]. Nippon. Kagaku Zasshi, 1965, 86(12): 1286~1288.
    [135]吕伟,吴介达.紫外光度检测离子色谱法测定高浓度氯离子样品中的痕量溴、碘离子[J].色谱, 1990, 8(5): 333~335.
    [136]奚旦立,孙欲生,刘秀英.环境监测(第三版)[M].高等教育出版社, 2004.
    [137]吴忠标,吴祖成,沈学优,官宝红.环境监测[M].北京:化学工业出版社, 2003.
    [138]周娜,罗彬,廖激,但德忠.紫外吸收光谱法直接测定化学需氧量的研究进展[J].四川环境, 2006, 25(1): 84-87.
    [139]袁丽水.污水紫外吸光度与COD的关系[J].上海环境科学, 2000, 19(12): 579~581.
    [140]蒋绍阶,刘宗源. UV254作为水处理中有机物控制指标的意义[J].重庆建筑大学学报, 2002, 24(2): 61~65.
    [141] Yang Y, Wang P, Shi S J, Liu Y. Microwave enhanced Fenton-like process for the treatment of high concentration pharmaceutical wastewater [J]. Journal of Hazardous Materials, 2009, 2(38): 1~8.
    [142] Zhang Z Y, Lei Z F, Zhang Z Y, Sugiura N, Xu X T, Yin D D. Organics removal of combined wastewater through shallow soil infiltration treatment: A field and laboratory study [J]. Journal of Hazardous Materials, 2007, 149(3): 657~665.
    [143] Tian J Y, Liang H, Li X, You S J, Tian S, L I G B. Membrane coagulation bioreactor (MCBR) for drinking water treatment [J]. Water Research, 2008, 42(14): 3910~3920.
    [144]何品晶,付强,邵立明,薛俊峰,李国建.渗滤液与城市污水合并处理过程的有机物去除特征[J].环境科学学报, 2005, 25(7): 954-958.
    [145]吴慧芳,王世和,孔火良,夏明芳.紫外分光光度法测定印染废水CODCr [J].印染, 2007, 33(2): 37~39.
    [146] Booske J H, Cooper R F, Dobson I. Mechanisms for nonthermal effects on ionic mobility during microwave processing of crystalline solids [J]. Journal of Materials Research, 1992, 7(2): 495~501.
    [147] Atmaca E. Treatment of landfill leachate by using electro-Fenton method [J]. Journal of Materials Research, 2008, 163(1): 109~114.
    [148] Deng Y, Englehard J D. Treatment of landfill leachate by the Fenton process [J]. Water Research, 2006, 40(20): 3683~3694.
    [149] Rivas F J, Beltran F J, Carvalho F, Alvarez P M. Oxone promoted wet air oxidation of landfill leachates [J]. Industrial and Engineering Chemistry Research, 2005, 44(4): 749~758.
    [150] Laat J D, Le G T, Legube B. A comparative study of the effects of chloride, sulfate and nitrate ions on the rates of decomposition of H2O2 and organic compounds by Fe(II)/H2O2 and Fe(III)/H2O2 [J]. Chemosphere, 2004. 55(5): 715~723.
    [151] Chu W, Lau T K. Ozonation of endocrine disrupting chemical BHA under the suppression effect by salt additive-with and without H2O2 [J]. Journal of Materials Research, 2007, 144(1~2): 249~254.
    [152] Liang C J, Wang Z S, Mohanty N. Influences of carbonate and chloride ions on persulfateoxidation of trichloroethylene at 20°C [J]. Science of the Total Environment, 2006, 370(2~3): 271~277.
    [153]杨世迎,陈友媛,胥慧真,王萍,刘玉红,王茂东.过硫酸盐活化高级氧化新技术[J].化学进展, 2008, 20(9): 1433~1438.
    [154] Anipsitakis G. P, Dionysiou D D, Gonzalez M A. Cobalt mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions [J]. Environment Science and Technology, 2006, 40(3): 1000~1007.
    [155] Guillard C, Lachheb H, Houas A, Ksibi M, Elaloui E, Herrmann J. Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2 [J]. Journal of Photochemistry and Photobiology A, 2003, 158(1): 27~36.
    [156] López-Grimau V, Gutiérrez M C. Decolourisation of simulated reactive dyebath effluents by electrochemical oxidation assisted by UV light [J]. Chemosphere, 2006, 62(1): 106~112.
    [157] Chan K H, Chu W. Degradation of atrazine by cobalt-mediated activation of peroxymonosulfate: Different cobalt counteranions in homogenous process and cobalt oxide catalysts in photolytic heterogeneous process [J]. Water Research, 2009, 43(9): 2513~2521.
    [158] Pollington S D, Bond G, Moyes R B. The influence of microwaves on the rate of reaction of propanlol with ethanoic acid [J]. Journal of Organic Chemistry, 1991, 56: 1313.
    [159] Dayal B, Rapole K R, Salen G, Shefer S, Tint G. S, Wilson S R. Microwave-induced rapid synthesis of bile acid conjugates [J].Synlett, 1996, 27(2): 861.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700