过硫酸盐对含Cl~-或含Cr(Ⅵ)水中染料的降解实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过硫酸盐氧化是新型高级氧化技术(AOPs),在难降解废水处理方面具有良好的发展前景。印染废水是典型难生化有机废水,且常含有大量氯离子(Cl~-)。Cl~-对AOPs的影响,受到学者们广泛的关注。一般认为,Cl~-在AOPs反应中是一种有效的自由基捕获剂,不利于有机污染物的降解。与基于羟基自由基·OH的AOPs相比,很少有学者关注Cl~-对过硫酸盐高级氧化技术的影响。
     本文以水中典型的难降解有机物金橙Ⅱ(AO7)和罗丹明B(RhB)为模型污染物,研究了三种过氧化物(过二硫酸盐(PS)、过一硫酸盐(PMS)与过氧化氢(H_2O_2))在紫外光(UV)、热(25 ~ 70℃)、金属离子(Fe~(2+))活化条件下降解含Cl~-体系中有机物,并对降解动力学、影响因素进行了研究,同时初步探讨了其反应机理。此外,本文还探讨了含铬盐(Cr(Ⅵ))水中,两步法去除AO7与Cr(Ⅵ)。具体研究内容与结果如下:
     (1)以PS、PMS、H_2O_2三种常见的过氧化物为氧化剂,以海水作为Cl~-来源,以偶氮染料AO7为模型污染物,对UV活化条件下海水体系中AO7的降解进行了研究,并讨论了海水体系中的起主要降解作用的活性物种。结果表明:在海水体系中,254 nm波长的紫外光可以活化PS、PMS、H_2O_2降解AO7;自由基捕获实验表明PMS可直接被Cl~-活化。254 nm紫外光作用下,AO7在可见区和紫外区的官能团均都被破坏;AO7的降解速率随氧化物浓度增加而加快;海水中常见阴离子(Cl~-、SO_4~(2-)、HCO_3~-)对AO7的降解过程没有太大的影响。
     (2)以AO7为目标污染物,对热活化PS降解含Cl~-盐体系中AO7做了初步研究,并探讨了该过程中的起主要降解作用的活性物种。结果表明:在海水体系中,温度高于50℃可活化PS降解AO7,且AO7的降解速率随氧化物浓度增加而加快;自由基俘获实验证明,对AO7降解起主要作用的为SO4-·。
     (3)以PS、H_2O_2为氧化剂,研究了Fe~(2+)活化法,即传统的Fenton法、类Fenton法为技术手段,研究了三种体系(蒸馏水DW、海水NSW、模拟海水SSW)中AO7的降解情况。结果表明:NSW体系中,Fe~(2+)对PS几乎没有活化作用;而传统的Fenton法均可降解三种体系中的AO7,AO7降解效果顺序为DW > SSW > NSW;自由基实验表明,在NSW体系中,·OH是类Fenton氧化体系(Fe~(2+)活化H_2O_2体系,柠檬酸为螯合剂)的主要活性物质,对AO7的降解起到主导作用。
     (4)由(1)的研究结果知,Cl~-可直接活化PMS降解AO7。通过比较NaClO、Cl~-/PMS两个氧化体系对阴离子染料AO7和阳离子染料RhB的降解,进一步探讨了Cl~-活化PMS降解有机物的机理。结果表明Cl~-是一种高效活化PMS的方法,可以快速降解AO7及RhB。且Cl~-的浓度对Cl~-活化PMS有影响,其浓度越高,对有机物的降解效果就越好。通过俘获剂实验可知,HClO是Cl~-活化PMS的产物,对有机物的降解起主要作用。
     (5)有些印染废水中含有Cr(Ⅵ)。以AO7为目标污染物,以PMS及H_2O_2为氧化剂,分两步依次去除水中AO7和Cr(Ⅵ),即在第一步过程中利用Cr(Ⅵ)活化PMS降解AO7,并使体系的pH降低,从而以H_2O_2为氧化剂进行第二步反应,去除Cr(Ⅵ)。结果发现,Cr(Ⅵ)活化PMS可较快地降解高浓度的AO7(200 ~ 500 mg/L);且随着氧化剂浓度的增大,AO7的降解速率也随之增大。第二步过程中H_2O_2的加入可迅速降低Cr(Ⅵ)的浓度,H_2O_2浓度越大,Cr(Ⅵ)的还原速率也就越快。且H_2O_2的加入可增加AO7在紫外区的降解。
Advanced oxidation technologies, in which peroxydisulfate (PS) or peroxymonosulfate (PMS) is used as oxidant, came forth recently for the degradation of non-biodegradable contaminants. In other side, the high saline condition makes printing and dyeing wastewater more difficult to decontaminate. In this study, azo dye Acid Orange 7 (AO7) was chosen as a model contamination to study its degradation rate by heat, UV, or metal activated peroxide oxidation (PS, PMS and H_2O_2) in the solutions containing Cl~-. The influential factor and radical mechanism were also studied. Specific studies are as follows:
     1) The AO7 degradation rate of UV activated peroxide (PS, PMS and H_2O_2) oxidation in seawater (NSW) was studed. The results indicated that PS, PMS and H_2O_2 can be activated by UV (254 nm) in NSW, but can not be activated under UV (365 nm) except PMS. Moreover, UV activated PS could not only decolorize AO7 in visible spectrum but also in the ultraviolet spectrum.
     2) High-temperature wastewater constitutes one of the largest groups of organic compounds that represent an increasing environmental danger. The goal of this section is to use the high-temperature wastewater as heat resource to activate PS to degrade contamination in wastewater containing Cl~-. The result indicated that high-temperature can activate PS to degrade AO7. The presence of Cl~- has little effect on the degradation of AO7.
     3) The aim of this experiment is to study the degradation of AO7 by PS and H_2O_2 under Fe~(2+) activated method. The results showed that AO7 can be degraded in the three systems (distilled water: DW; simulated seawater: SSW; seawater: NSW) by H_2O_2, but can’t be removed by PS in NSW. In Fe~(2+) activated H_2O_2 system, the degradation order is DW > SSW > NSW. The radical quenching experiments demonstrate that·OH plays a dominant role in the Fe~(2+) activated method.
     4) In this section, the PMS and NaClO were used as oxidants to compare the degradation of AO7 and Rhodamine B (RhB) by Cl~-/PMS and that by NaClO. The results show that Cl~- is an effective activation method. Cl~- activated PS could degrade AO7 rapidly. As the increasing of concentration of Cl~-, the degradation rate increases. The radical quenching experiments demonstrate that HClO plays a dominant role in the degradation of AO7 in Cl~-/PMS system.
     5) In this section, we have studied the oxidation capacity of the PMS/Cr(Ⅵ) redox system and the removal of Cr(Ⅵ) by 2st-stage which involves the reaction between H_2O_2 and Cr(Ⅵ). PMS was expected to be activated by Cr(Ⅵ) to degrade AO7 and used to low down the pH value of the solution in the oxidation process since it can dinegative H+. Afterwards, H_2O_2 was then used as a reductant to completely remove Cr(Ⅵ) from solution in the acid entironment benefitting from the 1st-stage. The result indicated that Cr(Ⅵ) can activate PMS and then degrade AO7. The use the acid condition making from the 1st-stage can completely removal Cr(Ⅵ) by H_2O_2 instead of adding other acid.
引文
[1]郭建博.高盐染料废水的生物降解及介提强化作用研究.大连:大连理工大学, 2005.
    [2]戴日成,张统,郭茜.印染废水水质特征及处理技术综述.给水排水, 2000, 26(10): 33 ~ 34.
    [3]朱虹.印染废水生物处理中剩余污泥减量化技术研究.上海:东华大学, 2005.
    [4]陈晓旸.基于硫酸自由基的高级氧化降解水中典型有机污染物研究.大连:大连理工大学, 2007.
    [5] Glaze W H, Kang J W, Chapin, D H. The chemistry of water and wastewater treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Science and Engineering, 1987, 9(4): 335 ~ 352.
    [6] Neyens E, Baeyens J, A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials, 2003, 98(1~3): 33 ~ 50.
    [7]张德莉,黄应平,罗光富,刘德富,马万红,赵进才. Fenton及Photo-Fenton反应研究进展.环境化学, 2006, 25 (2): 121 ~ 127.
    [8] Buxton G V, Greenstock C L, Helman W P, Ross A B. Critical review of rate constants for reactions of hydrated electrons chemical kinetic data base for combustion chemistry. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513 ~ 780.
    [9]程丽华,黄君礼. Fenton试剂的特性及其在废水处理中的应用.化学工程师, 2001, 84 (3): 24 ~ 25.
    [10]王滨松,黄君礼,张杰. Fenion试剂氧化活性染料废水的研究.哈尔滨工业大学学报, 2005, 37 (9): 1280 ~ 1282.
    [11]赵苏,杨合,孙晓巍.高级氧化技术机理及在水处理中的应用进展.能源环境保护, 2004, 18(3): 5 ~ 13.
    [12] Banerjee M, Konar R S. Polymerization of acrylonitrile initiated by K_2S_2O_8-Fe (Ⅱ) redox system. Journal of Polymer Science: Polymer Chemistry, 1984, 22(5): 1193 ~ 1195.
    [13] Zepp R G, Faust B C, Hoigne J. Hydroxyl radical formation in aqueous reactions (pH3-8) of iron(Ⅱ) with hydrogen peroxide: the photo-Fenton reaction. Environmental Science and Technology, 1992, 26(2): 313 ~ 319.
    [14] Fallmann H, Krutzler T, Bauer R, Malato S, Blanco J. Applicability of the photo-Fenton method for treating water containing pesiticides. Catalysis Today, 1999, 54(2): 309 ~ 310.
    [15] Oturan M A, Peiroten J, Chartrin P, Acher A J. Complete destruction of p-nitrophenol in aqueous medium by electro-Fenton method. Environmental Science and Technology, 2000, 34(16): 3474 ~ 3479.
    [16]张乃东,郑威. Fenton法在水处理中的发展趋势.化工进展, 2001, 20(12): 1 ~ 3.
    [17] Kang S F, Liao C H, Hung H P. Peroxidation treatment of dye manufacturing wastewater in the presence of ultraviolet light and ferrous ions. Journal of hazardous materials, 1999, 65(3): 317 ~ 333.
    [18]黄应平,刘德富,张水英,张德莉,马万红,赵进才.可见光/Fenton光催化降解有机染料.高等学校化学学报, 2005, 26 (12): 2273 ~ 2278.
    [19] Brillas E, Sauleda R, Casado J. Use of an anodic Fe/O_2 cell for wastewater treatment: degradation of aniline. Journal of the Electrochemieal Society, 1999, 146(12): 4539 ~ 4543.
    [20]徐向荣,王文华,李华斌. Fenton试剂与染料溶液的反应.环境科学, 1999, 20(3): 72 ~ 74.
    [21] Kremer M L. Complex virsus Free radical mechanism for the catalytic decomposition of H2O_2 by Fe3+. International Journal of Chemical Kinetics, 1985, 17: 1299 ~ 1314.
    [22] Kong S H, Watts R J, Choi J H. Treatment of petroleum-contaminated soils ssing iron mineral catalyzed hydrogen peroxide. Chemosphere, 1998, 37(8): 1473 ~ 1482.
    [23] Teel A L, Warberg C R, Atkinson D A. Comparison of mineral and soluble iron Fenton’s catalysts for treatment of Trichloroethylene. Water Resource, 2001, 35(4): 977 ~ 984.
    [24] Sun Y, Pignatello J J. Chemical treatment of pesticide waste. Evaluation of Fe (III) chelates for catalytic hydrogen peroxide oxidation of 2, 4-D at circumneutral pH. Journal of Agriculture and Food Chemistry, 1992, 40(2): 322 ~ 327.
    [25] Balmer, M E, Sulzberger B. Atrazine degradation in irradiated iron/oxalate system: effect of pH and oxalate. Environmental Science and Technology, 1999, 33(14): 2418 ~ 2424.
    [26]杨世迎,陈友媛,胥慧真,王萍,刘玉红,王茂东.过硫酸盐活化高级氧化新技术.化学进展, 2008, 20(9): 1433 ~ 1438.
    [27] Liang C J, Bruell C J, Marley M C, Sperry K L. Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1, 1, 1-trichloroethane (TCA) in aqueous systems and soilslurries. Soil Sediment Contamination, 2003, 12(2): 207 ~ 228.
    [28] Betterton E A, Hoffmann M R. Kinetics and mechanism of the oxidation of aqueous hydrogen sulfide by peroxymonosulfate. Environmental Science and Technology, 1990, 24(12): 1819 ~ 1824.
    [29] Gogate P R, Pandit A B. A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Advanced in Environment research, 2004, 8(3 ~ 4): 501 ~ 551.
    [30] Anipsitakis G P, Dionysiou D D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environmental Science and Technology, 2003, 37(20): 4790 ~ 4797.
    [31] Bandala E R, Peláez M A, Dionysiou D D, Gelover S, Garcia J, Macías D. Degradation of 2, 4-dichlorophenoxyacetic acid (2,4-D) using cobalt-peroxymonosulfate in Fenton-like process. Journal of Photochemistry and Photobiology A, 2007, 186(2 ~ 5): 357 ~ 363.
    [32] Du C M, Shi T H, Sun Y W, Zhuang X F. Decolorization of acid orange 7 solution by gas-liquid gliding arc discharge plasma. Journal of Hazardous materials, 2008, 154(1 ~ 3): 1192 ~ 1197.
    [33] Neta P, Huie R E, Ross A B. Rate constants for reactions of inorganic radicals in aqueous solution. Journal of Physical and Chemical Reference Data, 1988, 17(3): 1027 ~ 1284.
    [34] Huie R E, Clifton C L. Rate constants for hydrogen abstraction reactions of the sulfate radical, SO_4~-·Alkanes and ethers. International Journal of Chemical Kinetics, 1989, 21(8): 611 ~ 619.
    [35] Clifton C L, Huie R E. Rate constants for hydrogen abstraction reactions of the sulfate radical, SO_4~-·alcohols. International Journal of Chemical Kinetics, 1989, 21(8): 677 ~ 687.
    [36] Khursan S L, Semes'ko D G, Safiullin R L. Quantum-chemical modeling of the detachment of hydrogen atoms by the sulfate radical anion. Russian Journal of Physical Chemistry, 2006, 80(3): 366 ~ 371.
    [37] Padmaja S, Alfassi Z B, Neta P, Huie R E. Rate constants for reactions of SO4 radicals in acetonitrile. International Journal of Chemical Kinetics, 1993, 25(3): 193 ~ 198.
    [38] Neta P, Madhavan V, Zemel H, Fessenden R W. Rate constants and mechanism of reaction of sulfate radical anion with aromatic compounds. Journal of American Chemical Society, 1977, 99(1): 163 ~ 164.
    [39]储高升,张淑娟,姚思德,韩镇辉,都志文,张志成. SO_4~-·自由基氧化苯丙氨酸反应机理的图谱表征.中国科学B辑, 2002, 32 (3): 248 ~ 254.
    [40] Tabrizi G B, Mehrvar M. Integration of advanced oxidation technologies and biological processes: recent developments, trends, and advances. Journal of Environment Science and Health, Part A: Environmental Science, 2004, 39(11 ~ 12): 3029 ~ 3081.
    [41] Huang K C, Couttenye R A, Hoag G E. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere, 2002, 49(4): 413 ~ 420.
    [42] Killian P F. Peroxydisulfate Oxidation of PCBs, Chlorobenzenes, and MGP Waste. USA: University of Massachusetts Lowell, 2004.
    [43] Waldermer R, Tratnyek P, Johnson R, Nurmi J T. Oxidation of chlorinated ethenes by heat-activated persulfate: Kinetics and products. Environmental Science and Technology, 2007, 41(3): 1010 ~ 1015.
    [44] Huang K C, Zhao Z Q, Hoag G E, Dahmani A, Block, P A. Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere, 2005, 61(4): 551 ~ 560.
    [45] Hori H, Nagaoka Y, Murayama M, Kutsuna S. Efficient decomposition of perfluorocarboxylic acids and alternative fluorochemical surfactants in hot water. Environmental Science and Technology, 2008, 42(19): 7438 ~ 7443.
    [46] Maurino V, Calza P, Minero C, Pelizzetti E, Vincenti M. Light-assisted 1,4-Dioxane Degradation. Chemosphere, 1997, 35(11): 2675 ~ 2688.
    [47] Neppolian B, Choi H C, Sakthivel S, Arabindoo B, Murugesan V. Solar light induced and TiO_2 assisted degradation of textile dye reactive blue 4. Chemosphere, 2002, 46(8): 1173 ~ 1181.
    [48] Malato S, Blanco J, Richter C, Braun B, Maldonado M I. Enhancement of the rate of solar photocatalytic mineralization of organic pollutants by inorganic oxidizing species. Applied Catalysis B: Environmental, 1998, 17(4): 347 ~ 356.
    [49] Hori H, Yamamoto A, Hayakawa E, Taniyasu S, Yamashita N, Kutsuna S. Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant. Environmental Science and Technology, 2005, 39(7): 2383 ~ 2388.
    [50] Hori H, Yamamoto A, Koike K, Kutsunaa S, Osaka I, Arakawa R. Persulfate-inducedphotochemical decomposition of a fluorotelomer unsaturated carboxylic acid in water. Water Research, 2007, 41(13): 2962 ~ 2968.
    [51] Wei C, Lau T, Fung S C. Effects of combined and sequential addition of dual oxidants (H2O_2/S2O82-) on the aqueous carbofuran photodegradation. Journal of Agricultural and Food Chemistry, 2006, 54(26): 10047 ~ 10052.
    [52]张乃东,张曼霞,孙冰.硫酸根自由基处理水中甲基橙的初步研究.哈尔滨工业大学学报, 2006, 38(4): 636 ~ 638.
    [53] Lau T K, Wei C, Graham N J D. The aqueous degradation of butylated hydroxyanisole by UV/S2O82-: study of reaction mechanisms via dimerization and mineralization. Environment Science and Technology, 2007, 41(2): 613 ~ 619.
    [54] Eberson L. Electron Transfer Reactions in Organic Chemistry. Berlin: Springer-Verlag, 1987.
    [55] Liang C J, Bruell C J, Marley M C, Sperry K L. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere, 2004, 55(9): 1213 ~ 1223.
    [56] Tsao M S, Wilmarth W K. The aqueous chemistry of inorganic free radicals. I. the mechanism of the photolytic decomposition of aqueous persulfate ion and evidence regarding the sulfatehydroxyl radical interconversion equilibrium. The Journal of Physical Chemistry, 1959, 63(3): 346 ~ 353.
    [57] Killian P F, Bruell C J, Liang C J, M.C. Marley. Iron (Ⅱ) activeated persulfate oxidation of MGP contaminated soil. Soil and Sediment Contamination, 2007, 16(6): 523 ~ 537.
    [58] Liang C J, Bruell C J, Marley M C, Sperry K L. Persulfate oxidation for in situ remediation of TCE.II. Activated by chelated ferrous ion. Chemosphere, 2004, 55(9): 1225 ~ 1233.
    [59]郑伟,张金凤,王联红,孔令仁,杨曦.柠檬酸-Fe(Ⅱ)/K2S2O8对敌草隆降解的研究.环境化学, 2008, 27 (1): 19 ~ 22.
    [60]张金凤,杨曦,郑伟,高颖.水体系中Fe(Ⅱ)/K2S2O8降解敌草隆的研究.环境科学, 2008, 20(5): 1239 ~ 1243.
    [61]张乃东,张曼霞,彭永臻. S2O82-派生氧化法催化降解水中的甲基橙.催化学报, 2006, 27(5): 445 ~ 448.
    [62] Anipsitakis G P, Dionysiou D D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. EnvironmentalScience and Technology, 2003, 37(20): 4790 ~ 4797.
    [63] Couttenye R A, Huang K C, Hoag G E, Suib S L. Evidence of sulfate free radical (SO_4) formation under heat-assisted persulfateoxidation of MTBE. Proceedings of the 19th petroleum hydrocarbons and organic chemicals in ground water: prevention, assessment, and rmediation. Atlanta, GA: 2002. 345 ~ 350.
    [64] Liang C J, Wang Z S, Bruell C J. Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere, 2007, 66(1): 106 ~ 113.
    [65] Syoufian A, Nakashima K. Degradation of methylene blue in aqueous dispersion of hollow titania photocatalyst: Optimization of reaction by peroxydisulfate electron scavenger. Journal of Colloid and Interface Science, 2007, 313(1): 213 ~ 218.
    [66] Block P A, Brown R A, Robinson D. Novel activation technologies for sodium persulfate in situ chemical oxidation. Proceedings of the Fourth International Conference on the Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA: 2004.
    [67] Liang C J, Lai M C. Trichloroethylene degradation by zero valent iron activated persulfate oxidation. Environmental Engineering Science, 2008, 25(7): 1071 ~ 1077.
    [68] Furukawa Y, Kim J W, Watkins J, Wilkin R T. Fromation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron. Environment Science and Technology, 2002, 36(24): 5469 ~ 5475.
    [69] Anipsitakis G P. Cobalt/peroxymonosulfate and related oxidizing reagents for water treatment. USA: University of Cincinnati, 2006.
    [70] Price G J, Keen F, and Clifton A A. Sonochemically-assisted modification of polyethylene surfaces. Macromolecules, 1996, 29(17): 5664 ~ 5670.
    [71] Memarian H R, Farhadi A. Sono-thermal oxidation of dihydropyrimidinones. Ultrason Sonochem, 2008, 15(6): 1015 ~ 1018.
    [72] Mohammad A, Gary K-C L, Ralph W. M. Effects of common inorganic anlons on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide. The Journal of Physical Chemistry, 1990, 94(17): 6820 ~ 6825.
    [73] Suzuko Y, Atsushi Y, Hiroyuki A. Photocatalytic degradation of chloroform in the gas phase on the porous TiO_2 pellets: effect of Cl accumulated on the catalyst surface. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 169(2): 191 ~ 196.
    [74] Cardoso J C, Lizier T M, Zanoni M V B. Highly ordered TiO_2 nanotube arrays and photoelectrocatalytic oxidation of aromatic amine. Applied Catalysis B: Environmental, 2010, 99(1 ~ 2): 96 ~ 102.
    [75] Muruganandham M, Shobana N, Swaminathan M. Optimization of solar photocatalytic degradation conditions of Reactive Yellow 14 azo dye in aqueous TiO_2. Journal of Molecular Catalysis A: Chemical, 2006, 246(1 ~ 2): 154 ~ 161.
    [76] Carneiro P A, Osugi M E, Sene J J, Anderson M A, Zanoni M V B. Evaluation of color removal and degradation of a reative textile azo dye on nanoporpous TiO_2 thin-film electrodes, Electrochimica Acta, 2004, 49(22 ~ 23): 3807 ~ 3820.
    [77] Guo J H, Mao L Q, Zhang J W, Feng C X. Role of Cl- ions in photooxidation of propylene on TiO_2 surface. Applied Surface Science, 2006, 256(7): 2132 ~ 2137.
    [78] Nakamura R, Imanishi A, Murakoshi K, Nakato Y. In situ FTIR studies of primary intermediates of photocatalytic reactions on nanocrystalline TiO_2 films in contact with aqueous solutions, Journal of the American Chemical Society, 2003, 125(24): 7443 ~ 7450.
    [79] Nakamura R, Nakato Y. Primary intermediates of oxygen photoevolution reaction on TiO_2 (Rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements, Journal of the American Chemical Society, 2004, 126(4): 1290 ~ 1298.
    [80] Chen H Y, Zahraa O, Bouchy M. Inhibition of the adsorption and photocatalytic degradation of an organic contaminant in an aqueous suspension of TiO_2 by inorganic ions, Journal of Photochemistry and Photobiology A: Chemistry, 1997, 108(1): 37 ~ 44.
    [81] Liang H C, Li X Z, Yang Y H, Sze K H. Effects of dissolved oxygen, pH, and anions on the 2,3-dichlorophenol degradation by photocatalytic reaction with anodic TiO_2 nanotube films. Chemosphere, 2008, 73(5): 805 ~ 812.
    [82] Vogtenhuber D, Podloucky R, Redinger J. Ab initio study of atomic Cl adsorption on stoichiometric and reduced rutile TiO_2(110) surfaces. Surface Science, 2000, (454 ~ 456): 369 ~ 373.
    [83] Wang K, Zhang J Y, Lou L P, Yang S Y, Chen Y X. UV or visible light induced photodegradation of AO7 on TiO_2 particles: the influence of inorganic anions. Journal of Photocaemistry and Photobiology A: Chemistry, 2004, 165(1 ~ 3): 201 ~ 207.
    [84] Shang J, Zhao F W, Zhu T, Wang Q, Song H, Zhang Y C. Electric-agitation-enhancedphotodegradation of rhodamine B over planar photoelectrocatalytic devices using a TiO_2 nanosized layer. Applied Catalysis B: Environmental, 2010, 96(1 ~ 2): 185 ~ 189.
    [85] Wardman P. Reduction potentials of one-electron couples involving free radicals in aqueoussolution. Journal of Physical and Chemical Reference Data, 1989, 18(4): 1637 ~ 1755.
    [86] Laat J D, Le T G. Effects of chloride ions on the iron(Ⅲ)-catalyzed decomposition of hydrogen peroxide and on the efficiency of the Fenton-like oxidation process. Applied Catalysis B: Environmental, 2006, 66(1 ~ 2):137 ~ 146.
    [87] Kiwi J, Lopez A, Nadtochenko V. Mechanism and kinetics of the OH- radical intervention during Fenton oxidation in the presence of a signigicant amount of radical scavenger (Cl-). Environment Science and Technology, 2000, 34(11): 2162 ~ 2168.
    [88] Laat J D, Le G T, Legube B. Acomparative study of the effects of chloride, sulfate and nitrate ions on the rates of decomposition of H2O_2 and organic compous by Fe(II)/H2O_2 and Fe(Ⅲ)/H2O_2. Chemosphere, 2004, 55(5): 715 ~ 723.
    [89] Xi C J, Chen Z S, Li Q L, Jin Z S. Effects of H+, Cl- and CH3COOH on the photocatalytic conversion of PtCl62- in aqueous TiO_2 dispersion. Journal of Photocaemistry and Photobiology A: Chemistry, 1995, 87(3): 249 ~ 255.
    [90] Taizo S, Shuzo K, Nobuaki N, Koji T. Effect of Pd-photodeposition over TiO_2 on product selectivity in photocatalytic degradation of vinyl chloride monomer. Journal of Molecular Catalysis A: Chemical, 2002, 189(2): 263 ~ 270.
    [91] Taizo S, Shuzo K, Nobuaki N, Koji T. Photocatalytic mineralization of vinyl chloride on TiO_2. Journal of Molecular Catalysis A: Chemical, 2001, 168(1 ~ 2): 233 ~ 240.
    [92] Macedo L C, Zaia D A M, Moore G J. Degradation of leather dye on TiO_2: A study of applied experimental parameters on photoelectrocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 185(1): 86 ~ 93.
    [93] Truong G L, Laat J D, Legube B. Effects of chloride and sulfate on the rate of oxidation of ferrous ion by H2O_2. Water Research, 2004, 38(9): 2384 ~ 2394.
    [94] Gallard H, Laat D, Legube B. Spectrophotometric study of the formation of iron(Ⅲ)-hydroperoxy complexes in homogeneous aqueous solutions. Water Research, 1999, 33(13): 2929 ~ 2936.
    [95] Walling C, Goosen A. Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide. Effect of organic substrates. Journal of the American Chemical Society, 1973, 95(9): 2987 ~ 2991.
    [96] Rabinowitch E, Stockmayer W H. Association of ferric ions with chloride, bromide and hydroxyl ions (a spectroscopic study). Journal of the American Chemical Society, 1942, 64(2): 335 ~ 347.
    [97] Byme R H, Sutin N. Ultraviolet spectroscopic study of ferric equilibria at high chloride concentrations. Journal of Solution Chemistry, 1981, 10(1): 51 ~ 67.
    [98] Rowley J K, Sutin N. Formation and dissociation of monochloroiron (Ⅲ) at high ionic strengths: equilibrium and kinetic measurements. Journal of Physical Chemistry, 1970, 74(10): 2043 ~ 2054.
    [99] Laat J D, Gallard H. Catalytic decomposition of hydrogen peroxide by Fe(Ⅲ) in homogeneous aqueous solution: mechanism and kinetic modeling. Environment Science and Technology, 1999, 33(16): 2726 ~ 2732.
    [100] Laat J D, Le T G. Kinetics and modeling of the Fe (Ⅲ)/H2O_2 system in the presence of sulfate in acidic aqueous solutions. Environment Science and Technology, 2005, 39(6): 1811 ~ 1818
    [101] Orozco S L, Bandala E R, Arancibia-Bulnes C A, Serrano B, Suárez-Parra R, Hernández-Pérez I. Effect of iron salt on the color removal of water containing the azo-dye reactive blue 69 using photo-assisted Fe(II)/H2O_2 and Fe(Ⅲ)/H2O_2 systems. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 198(2 ~ 3): 144 ~ 149.
    [102] Erick R B, Leslly B, Miguel P. Degradation of domoic acid toxin by UV-promoted Fenton-like processes in seawater. Desalination, 2009, 245(1 ~ 3): 135 ~ 145.
    [103] Lu M C, Chang Y F, Chen I M, Huang Y Y. Effect of chloride ions on the oxidation of aniline by Fenton’s reagent. Journal of Environmental Management, 2005, 75(2): 177 ~ 182.
    [104] TrovóA G, Nogueira R F P, Agüera A, Fernandez-Alba A R, Sirtori C, Malato S. Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evalution. Water Research, 2009, 43(16): 3922 ~ 3931.
    [105] Buxton G V, Bydder M, Salmon G A, Williams J E. The reactivity of chlorine atoms in aqueous solution. PartⅢ. The reactions of Cl? with solutes. Physical Chemistry Chemical Physics, 2000, (2): 237 ~ 245.
    [106] Sajiki J, Yonekubo J. Leaching of bisphenol A (BPA) to seawater from polycarbonate plastic and its degradation by reactive oxygen species. Chemosphere, 2003, 51(1): 55 ~ 62.
    [107] Sajiki J, Yonekubo J. Inhibition of seawater on bisphenol A (BPA) degradation by Fenton reagents. Environment International, 2004, 30(2): 145 ~ 150.
    [108] Alegre M L, Geronés M, Rosso J A, Bertolotti S G, Braun A M, Mártir D O, Gonzalez M C. Kinetic study of the reactions of chlorine atoms and Cl_2-~·radical anions in aqueous solutions. 1. reaction with benzene. Journal of Physical Chemistry A, 2000, 104(14): 3117 ~ 3125.
    [109] Yu X, Bao Z, Barker J R. Free radical reactions involving Cl·, Cl_2-~·, and SO_4~-·in the 248 nm photolysis of aqueous solutions containing S_2O_8~(2-) and Cl-. The journal of physical chemistry. A, 2004, 108(2): 295 ~ 308.
    [110] Lente G, Kalmár J, Baranyai Z, Kun A, Kék I, Bajusz D, Takács M, Veres L, Fábián I. One-versus two-electron oxidation with peroxomonosulfate ion: Reactions with iron(II), vanadium(IV), halide ions, and photoreaction with cerium(Ⅲ). Inorganic Chemistry, 2009, 48(4): 1763 ~ 1773.
    [111]徐新华,陈调庆,杨雪涛.活性染料染色废水的光助Fenton处理实验研究.污染防治技术, 1999, 12(4): 228 ~ 230.
    [112] Buxton G V, Greenstock C L, Helman W P, Ross A B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution. Journal of Physical and Chemical Reference Data, 1988, 17: 513 ~ 886.
    [113] Anipsitakis G P, Dionysiou D D, Gonzalez M A. Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions. Environment Science and Technology, 2006, 40(3): 1000 ~ 1007
    [114] Liang C J, Wang Z S, Mohanty N. Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20°C. Science of The Total Environment, 2006, 370(2 ~ 3): 271 ~ 177.
    [115] Zhao J Y, Zhang Y B, Quan X, Chen S. Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature.Separation and Purfication Technology, 2010, 71(3): 302 ~ 307.
    [116] Li S X, Wei D, Mak N K, Cai Z W, Xu X R, Li H B, Jiang Y. Degradation of diphenylamine by persulfate: Performance optimization, kinetics and mechanism. Journal of Hazardous Materials, 2009, 164(1): 26 ~ 31.
    [117] Xu X R, Li X Z. Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion. Sparation and Purification Technology, 2010, 72(1): 105 ~ 111.
    [118] Burbano A A, Dionysiou D D, Makram T, Suidan M T, Richardson T L. Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent. Water Research, 2005, 39(1): 107 ~ 118.
    [119] Nebot E, Casanueva J F, Casanueva T, Fernández-Bastón M M, Sales D. In situ experimental study for the optimization of chlorine dosage in seawater cooling systems. Applied Thermal Engineering, 2006, 26(16): 1893 ~ 1900.
    [120]崔有为,王淑莹,朱岩,李桂星,甘湘庆,彭永臻.海水代用及其含盐污水的生物处理.工业水处理, 2005, 25: 1 ~ 5.
    [121] Klavarioti M, Mantzavinos D, Kassinos D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environment International, 2009, 35(2): 402 ~ 417.
    [122] Yang S Y, Wang P, Yang X, Wei G, Zhang W Y, Shan L. A novel advanced oxidation process to degrade organic pollutants in wastewater: microwave-activated persulfate oxidation. Journal of Environmental Science, 2009, 21(9): 1175 ~ 1178.
    [123] Huang Y H, Huang Y F, Huang C I, Chen C Y. Efficient decolorization of azo dye Reactive Black B involving aromatic fragment degradation in buffered Co~(2+)/PMS oxidative processes with a ppb level dosage of Co~(2+)-catalyst. Journal of Hazardous materials, 2009, 170(2 ~ 3): 1110 ~ 1118.
    [124] Rastogi A, Al-Abed S R, Dionysiou D D. Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(Ⅱ) mediated advanced oxidation of chlorophenols. Water Research, 2009, 43(3): 684 ~ 694.
    [125] Liang C J, Huang C F, Mohanty N, Kurakalva R M. A rapid spectrophotometric determination of persulfate anion in ISCO. Chemosphere, 2008, 73(9): 1540 ~ 1543.
    [126] Flanagan J, Griffith W P, Skapski A C. The active principle of caro’s acid, HSO_5~-: x-raycrystal structure of KHSO5·H2O. Journal of the Chemical Society, Chemical Communications, 1984, 23: 1574 ~ 1579.
    [127] Kolthoff I M, Miller I K. The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium. Journal of the American Chemical Society, 1951, 73(7): 3055 ~ 3059.
    [128] Reints W, Pratt D A, Korth H G, Mulder P. O-O bond dissociation enthalpy in di(trifluoromethyl) peroxide (CF3OOCF3) as determined by very low pressure pyrolysis. Density functional theory computations on O-O and O-H bonds in (fluorinated) derivatives. Journal of Physical Chemistry A, 2000, 104(46): 10713 ~ 10720.
    [129] Dogliotti L, Hayon E. Flash photolysis of peroxydisulfate ions in aqueous solutions. The sulfate and ozonide radical anions. Journal of Physical Chemistry, 1967, 71(8): 2511 ~ 2516.
    [130] Hunt J P, Taube H. The photochemical decomposition of hydrogen peroxide, quantum yields, tracer and fractionation effects. Journal of the American Chemical Society, 1952, 74(23): 5999 ~ 6002.
    [131] Hayon E, Treinin A, Wilf J. Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. SO_2~-, SO_3~-, SO_4~-, and SO_5~- radicals. Journal of the American Chemical Society, 1972, 94(1): 47 ~ 57.
    [132] Mertens R, Sonntag C V. Photolysis (λ= 254 nm) of tetrachloroethene in aqueous solutions. Journal of Photochemistry and Photobiology. A, 1995, 85(1 ~ 2): 1 ~ 9.
    [133] Wicktor F, Donati A, Herrmann H, Zellner R. Laser based spectroscopic and kinetic investigations of reactions of the Cl atom with oxygenated hydrocarbons in aqueous solution. Physical Chemistry Chemical Physics, 2003, 5(12): 2562 ~ 2572.
    [134] Jacobi H W, Wicktor F, Herrmann H, Zellner R. A laser flash photolysis kinetic study of reactions of the Cl2_-~·radical anion with oxygenated hydrocarbons in aqueous solution. International Journal of Chemical Kinetics, 1999, 31(3): 169 ~ 181.
    [135] Padmaja S, Neta P, Huie R E. Rate constants and temperature effects for reactions of Cl2_-~·with unsaturated alcohols and hydrocarbons in aqueous and acetonitrile/water solutions. Journal of Physical Chemistry, 1992, 96(8): 3354 ~ 3359.
    [136] Anastasio C, Matthew B M. A chemical probe technique for the determination of reactive halogen species in aqueous solution: Part 2 - chloride solutions and mixed bromide/chloridesolutions. Atmospheric Chemistry and Physics Discussions, 2006, 6(1): 941 ~ 979.
    [137] Neta P, Maruthamuthu P, Carton P M, Fessenden R W. Formation and reactivity of the amino radical. Journal of Physical Chemistry, 1978, 82(17): 1875 ~ 1878.
    [138] Yang S Y, Wang P, Yang X, Shan L, Zhang W Y, Shao X, Niu R. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide. Journal of Hazardous materials, 2010, 179(1 ~ 3): 552 ~ 558.
    [139] Cuypers C, Grotenhuis T, Joziasse J, Rulkens W. Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments. Environmental Science and Technology, 2000, 34(10): 2057 ~ 2063.
    [140]张正斌,刘莲生.海洋物理化学.北京:科学出版社, 1989.
    [141] Perez-Benito J F, Arias C. A kinetic study of the chromium(Ⅵ)-hydrogen peroxide reaction. Role of the diperoxochromate(Ⅵ) intermediates. Journal of Physical Chemistry A, 1997, 101(26): 4726 ~ 4733.
    [142] Bokare A D, Choi W Y. Chromate-induced activation of hydrogen peroxide for oxidative degradation of aqueous organic pollutants. Environmental Science and Technology, 2010, 44(19): 7232 ~ 7237.
    [143] Anipsitakis G P, Dionysiu D D. Radical generation by the interaction of transition metals with common oxidants. Environmental Science and Technology, 2004, 38(13): 3705 ~ 3712.
    [144] Douglas A, Griend V. Kinetics and mechanism of chromate reduction with hydrogen peroxide in base. Inorganic Chemistry, 2002, 41(26): 7042 ~ 7048.
    [145] Kawanishi S, Inoue S, Sano S. Mechanism of DNA cleavage induced by sodium chromate(Ⅵ) in the presence of hydrogen peroxide. The Journal of Biological Chemistry, 1986, 261: 5952 ~ 5958.
    [146] Yuranova T, Enea O, Mielczarski E, Mielczarski J, Albers P, Kiwi J. Fenton immobilized photo-assisted catalysis through a Fe/C structured fabric. Applied Catalysis B: Environmental, 2004, 49(1): 39 ~ 50.
    [147] Chen X Y, Qiao X L, Wang D G, Lin J, Chen J W. Kinetics of oxidative decolorization and mineralization of Acid Orange 7 by dark and photoassisted Co~(2+)-catalyzed peroxymonosulfate system. Chemosphere, 2007, 67(4): 802 ~ 808.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700