四种铝合金基颗粒增强复合材料离心铸造刹车盘的组织和性能比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了Al-19Si-3Mg、Al-21Si-5Mg、Al-21Si-5Mg-1Cu-1Ni-0.2Ti-0.4Mn三种自生颗粒增强过共晶铝硅合金基复合材料和一种外加SiC颗粒增强铝硅合金基复合材料的浆料制备和成形工艺,设计了一套可行的离心成形模具,采用商业软件ProCAST对离心成形凝固过程及其温度场进行了模拟,模拟结果表明640℃以上的浇温在300r/min,400r/min的转速条件下铸件能完全充型,这对设计离心成形工艺具有很高的参考价值。
     采用对Al-19Si-3Mg浆料浇注温度730℃、模具温度500℃、离心机转速800r/min(代号a),对Al-21Si-5Mg浆料浇注温度725℃、模具温度300℃、离心机转速400r/min(代号b1)和浇注温度780℃、模具温度400℃、离心机转速400r/min(代号b2)两种,对Al-21Si-5Mg-1Cu-1Ni-0.2Ti-0.4Mn浆料浇注温度794℃、模具温度300℃、离心机转速400r/min(代号c1)和浇注温度757℃、模具温度100℃、离心机转速400r/min(代号c2)两种,对ZL104基体浆料浇注温度640℃、模具温度400℃、离心机转速400r/min(代号d),对外加SiC颗粒增强铝硅合金基复合材料的浆料浇注温度720℃、模具温度600℃、离心机转速800r/min(代号e)共七种可行的离心成形工艺成功成形了七个刹车盘零件。对零件解剖后进行了T4和T6热处理,在盘状零件不同的径向位置进行取样,制作了63个试样。
     观察了这些试样的微观组织,发现Si含量越高初晶硅颗粒的体积分数越高;Mg含量为3%的试样中均未发现Mg2Si颗粒,而Mg含量为5%的试样中均明显发现Mg2Si颗粒;浇注温和模具温度度越低,初晶硅颗粒的粒径越小;固溶和时效处理使基体中的网状共晶组织转变成了短棒状,并出现棱角钝化、圆润化趋势。
     测试并比较了它们的耐磨性和硬度,发现增强相颗粒越小,颗粒体积分数越高,耐磨性越好;材料中的位错密度越高,其硬度越高。
     研究结果表明Al-21Si-5Mg-1Cu-1Ni-0.2Ti-0.4Mn材料在757℃浇温、100℃模温和离心机转速400r/min条件下浇铸,并进行T6热处理,可得到最高的硬度,(达HRB89.6),和较好的耐磨性,(在自行设计的耐磨性实验设备上磨损量为16.9mg),是一种做刹车盘的优良材料。
In this paper,slurry preparation and forming processes of three autogenous particle reinforced hypereutectic Al-Si alloy matrix composites, which were Al-19Si-3Mg, Al-21Si-5Mg and Al-21Si-5Mg-1Cu-1Ni-0.2Ti-0.4Mn, and a SiC particle reinforced Al-Si alloy matrix composites were studied. A feasible centrifugal casting mould was designed. And the centrifugal casting process and the temperature field of aluminum alloy brake disk and the mould were simulated by using commercial software ProCAST, the result of which indicated that when the pouring temperature was more than 640℃, and the centrifugal rotational speed was 300r/min or 400r/min, a full-filled casting could be obtained. This result was valuable for designing the forming processes.
     Seven feasible centrifugal casting forming processes, which were pouring temperature 730℃, mould temperature 500℃, centrifugal rotational speed 800r/min (marked‘a’) for Al-19Si-3Mg; pouring temperature 725℃, mould temperature 300℃centrifugal rotational speed 400r/min (marked‘b1’) and pouring temperature 780℃, mould temperature 400℃, centrifugal rotational speed 400r/min (marked‘b2’) for Al-19%Si-5%Mg; pouring temperature 794℃, mould temperature 300℃, centrifugal rotational speed 400r/min (marked‘c1’) and pouring temperature 757℃, mould temperature 100℃, centrifugal rotational speed 400r/min (marked‘c2’) for Al-21Si-5Mg-1Cu-1Ni-0.2Ti-0.4Mn; pouring temperature 640℃, mould temperature 400℃centrifugal rotational speed, 400r/min (marked‘d’) for ZL104; pouring temperature 720℃, mould temperature 600℃, centrifugal rotational speed 800r/min (marked‘e’) for SiC particle reinforced Al-Si alloy matrix composites, were used to form seven brake disks successfully. Everyone of those disks were dissected into three parts, the first one of which would directly dissect again while the second one of which would be T4-heat treated, and the third one would be T6-heat treated. Then samplinged those bake disks at different radial positions, and 63 samples were obtained.
     After observing the microstructure, we found that the more the percentage composition of Si, the more the volume fraction of primary crystal Si particles, and that there wasn’t Mg2Si particles in those samples in which the percentage composition of Mg was 3% while there were obviously in those samples in which the percentage composition of Mg was 5%. We also found that the lower the pouring temperature and mould temperature, the smaller the primary crystal Si particles; and that T4 and T6 heat treatment translated the reticular eutectic structure in the matrix into short-pole-like shape.
     After testing and comparing the wear-resisting property and hardness of those samples, we found that the smaller the strengthen particles and the more the volume fraction of strengthen particles, the better the wear-resisting property, and that the higher dislocation density, the higher the hardness.
     This research indicated that when the pouring temperature was 757℃, the mould temperature was 100℃, and the centrifugal rotational speed was 400r/min, the material Al-21Si-5Mg-1Cu-1Ni-0.2Ti-0.4Mn could get the highest hardness, which was HRB 89.6, and a good wear-resisting property, the wearing quantity of which was 16.9mg tested by the equipment for wear resisting property experiment designed by ourself after T6 heat treatment. So it was an excellent material for forming brake disk.
引文
[1]胡保全,牛晋川.先进复合材料[M].北京:国防工业出版社,2006,1-13.
    [2]益小苏,杜善义,张立同.中国材料工程大典第10卷(复合材料工程)[M].北京:化学工业出版社,2006,485-550.
    [3]张玉龙.先进复合材料制造技术手册[M].北京:机械工业出版社,2003,586-631.
    [4] J.W.Kaczmar, K.Pietrzak, W.Wlosinski. The production and application of metal matrix composite materials [J]. Journal of Materials processing Technology, 2000, (106): 58-67.
    [5] X.Xia, H.J.Mcqueen, H.Zhu. Fracture Behavior of Particle Reinforced Metal Matrix Composites [J]. Applied Composite Material, 2002, (9):17-31.
    [6] Y.Sahin. Preparation and some properties of SiC particle reinforced aluminum alloy composites [J]. Materials and Design, 2003, (24):671-679.
    [7]吴树森.日本金属基复合材料的研究与应用[J].兵器材料科学与工程,1999, (2):56-60.
    [8]刘政,刘小梅.国外铝基复合材料的开发与应用[J].轻合金加工技术,1994,(1):7-10.
    [9] G.F.Harrison. Application of multi-scale modeling in aeroengine component assessment [J]. Materials Science and Engineering, 2004, (A365): 247-256.
    [10]王祝堂,卢载浩.铝基复合材料在交通运输中工具中的应用[J].轻合金加工技术,1998,(8):1-3.
    [11]黄金昌.铝基复合材料的新应用[J].稀有金属快报,1999,(5):24-25.
    [12]华林.金属基复合材料成分、性能和应用[J].汽车研究与开发,1995,(4):37-41.
    [13]胡永平,等.金属基复合材料的应用现状[J].铝加工,1998,(6):49-53.
    [14]姜世和,等.金属基复合材料的特性及其技术在工程中的应用前景[J].工艺与材料,2002,(6):21-24.
    [15]强颖怀,等. SiCp增强金属基复合材料的研究进展[J].轻金属,2003,(7):49-51.
    [16]张元好,曾大新.颗粒增强金属基复合材料的制备及应用[J].湖北汽车工业学院学报,2002,(4):24-28.
    [17]蒲泽林,等.颗粒增强金属基复合材料的制备方法综述[J].现代电力,2002,(6):31-37.
    [18]齐海波,等. SiCp/Al复合材料搅拌熔融搅拌熔炼-液态模锻成型工艺研究[J].材料科学与工程,2000,(1):96-99.
    [19]任德亮,等. SiCp/Al复合材料搅拌铸造制备工艺的研究[J].铸造技术,1999,(2):41-43.
    [20]梅志,袁洪娣.液态搅拌法制备复合材料质量分析及其改进[J].电子显微学报,1998,17(5):575-576.
    [21]张秋明,等.电磁搅拌法制备复合材料过程的工艺优化[J].中国有色金属学报,2002,(S1):142-146.
    [22]康智涛,等. 6066/ SiC喷射共沉复合材料的半固态加工[J].中国有色金属学报,1998,(12):595-599.
    [23]张广安,等.短碳纤维增强铝基复合材料的半固态加工[J].金属成形工艺,2003,(2):30-32.
    [24]王宏坤,等. SipC/ZL102复合材料的半固态流动变形性能[J].中国有色金属学报,2002,(4):774-778.
    [25] R.W.Hamilto, etc. Direct semi-solid forming of a power SiC-Al PMMC: flow analysis[J]. Composites, 2003, (A34): 333-339.
    [26]康智涛,等. 6066/ SiC喷射共沉复合材料的半固态加工[J].中国有色金属学报,1998,(12):595-599.
    [27]张恩霞. SiCp/ZL102复合材料成形性能与复杂压铸件制备[D].南京:南京理工大学,2002.
    [28] L.M.Tham, M.Gupta, L.Cheng. Effect of reinforcement volume fraction on the evolution of reinforcement size during the extrusion of Al-SiC composites[J]. Materials Science and Engineering, 2002, (A326): 355-363.
    [29]严峰等.热挤压对SiCw/MB15镁基复合材料组织和性能的影响[J].稀有金属材料与工程,2003,32(8):647-649.
    [30]张文龙等.挤压铸造SiCw/1050A复合材料的冷轧[J].轻合金加工技术,2000,28(6):37-40.
    [31] W.L. Zhang, etc. Rolling and annealing textures of a SiCw/Al composite[J]. Materials Letters, 2004, (58): 3414-3418.
    [32]王大真,等. SiC增强铝基复合材料切削加工中刀-屑摩擦模型及其磨损性能研究[J].摩擦学学报,2000,20(2):85-89.
    [33] Ibrahim Ciftci, etc. Evaluations of tool wear when machining SiCp-reinforced Al-2014 alloy matrix composites[J]. Materials and Design, 2004, (25):251-255.
    [34]吴震宇等. SiC颗粒增强铝基复合材料高速铣削工艺研究.工具技术,2004,38(3):15-17
    [35] Frank Muller, John Monaghan. Non conventional mashing of particle reinforced metal matrix composites[J]. Journal of Materials Processing Technology, 2001, (118): 278-285.
    [36] S.Durante, etc. Aluminum-based MMC mashing with diamond coated cutting tools[J]. Suface and Coatings Technology, 1997, (94): 632-640.
    [37]王基才,等.颗粒增强金属基复合材料的研究现状及展望[J].硬质合金,2003,1:51-55.
    [38]张元好,曾大新.颗粒增强金属基复合材料的制备及应用[J].湖北汽车工业学院学报,2002,4:24-28.
    [39]蒲泽林,等.颗粒增强金属基复合材料的制备方法综述[J].现代电力,2002,6:31-37.
    [40]强颖怀,等. SiCp增强金属基复合材料的研究进展[J].轻金属,2003,7:49-51.
    [41]吴人洁.复合材料[M].天津:天津大学出版社,2000.
    [42] S.J and V. M. Self-propagating High Temperature Synthesis [J].J Master.1992, 27(23): 6249-6252.
    [43]刘萍. Mg2Si增强过共晶Al-Si合金及其自生复合材料的研究[D].江西:江西理工大学,2005.
    [44] WANG Zhi-fu, GUO Feng, CAO Chong-de, etc. Rapid solidification of Al-18% Si hypereutectic alloy indrop tube [J]. Trans Nonferrous Met Soc China, 2000,10(6): 769-771.
    [45] LIU Chang-ming, HE Nai-jun, LI Hua-ji. Semi-solid characteristics and thixoforming of hypereutectic Al-Si alloy [J]. Trans Nonferrous Met Soc China, 2000, 10(3): 309-313.
    [46]王艳,边秀房,徐昌业,等.直流磁场作用下Al-18Si合金的凝固行为[J].金属学报,2000,36(2):159-161.
    [47]甄子胜,赵爱民,毛卫民,等.喷射沉积高硅合金显微组织及形成机理[J].中国有色金属学报,2000,10(6):815-818.
    [48]于思荣,任露泉,庞宇平.离心加速条件下金属液中粒子的相互作用[J].中国有色金属学报, 2001, 11(1): 63-67.
    [49]于思荣,张新平,何镇明.离心法制备梯度功能材料中内生颗粒的分布[J].中国有色金属学报,2001,11(2):216-220.
    [50]李荣德,徐玉桥,马冰,等.离心铸造Al-Fe合金凝固过程中的固相迁移运动[J].中国有色金属学报,2000,10(3):353-357.
    [51]王渠东,丁文江,金俊泽.离心铸造过共晶Al-Si合金自生表面复合材料[J].复合材料学报,1998,15(3):7-10.
    [52]魏朋义,傅恒志.熔体搅拌对铝硅共晶合金的变质作用[J].中国有色金属学报,1996,6(1):98-102.
    [53] ZHANG Ying-yuan. Internal friction peak and damping mechanism in high damping aluminium alloy laminate[J]. Trans Nonferrous Met Soc China, 2001, 11(1):123-127.
    [54]徐东辉,张忠明,王锦程,等. Al/SiC复合材料室温下阻尼特性的数值模拟[J].中国有色金属学报,1999,9(2):335-338.
    [55]罗兵辉,谢佑卿.铁含量对Al-Si-Fe合金微观组织及内耗性能的影响[J].中国有色金属学报,2001,11(1):51-54.
    [56]第一机械工业部机械科学研究院材料研究所.金相图谱(下篇:有色金属部分)[M].北京:机械工业出版社,1959.
    [57]张伯明.离心铸造.北京:机械工业出版社,2004,1-310.
    [58] Yasuyoshi FUKUI. Fundamental investigation of functionally gradient material manufactur- ing system using centrifugal force [J]. E International Journal, SeriesⅢ, 1991, 34(1):144-148.
    [59] Steinlage,Roeder. Centrifugal casting of components. [J]. American Ceramic Soc, vo1.75, No.5, 1996:9 2-94.
    [60]赵建华,陈红兵.浅谈铸造过程模拟仿真技术[J].大型铸锻件,2007,(4):11-14.
    [61]米国发,刘翔宇,王狂飞.铸造充型过程数值模拟的研究进展及应用[J].河南理工大学学报(自然科学版),2007,26(3):334-339.
    [62]胡红军. ProCAST软件的特点及其在铸件成形过程中的应用[J].热加工工艺,2005,(1):70-71.
    [63]马敏团,陈鹏波,黄引平,王伟. ProCAST在铸造工艺优化中的应用[J].热加工工艺,2006,35(1):52-57.
    [64]陈位铭,金胜灿.铝合金压铸工艺的数值模拟及应用[J].·材料·工艺·设备·,2005,(6):32-35.
    [65]周玉辉,吴卫.压铸过程温度场的数值模拟及其在ProCAST中的应用[J].电加工与模具,2005,(5):42 - 45.
    [66]刘小刚,康进武,黄天佑,边敦亭,张良红.大型轧钢机机架凝固过程温度场应力场模拟分析[J].铸造,2009,55(9):922-926.
    [67]任志峰,孙斌煜,孟繁霞.基于procast的不锈钢双辊铸轧过程中温度场数值模拟[J].山西冶金,2007,30(2):18-26.
    [68]王春欢,胡红军,罗静.基于Procast软件的熔模铸造计算机模拟[J].铸造技术,2007,28(10):1360-1362.
    [69]徐自立,孙红光.离心铸造梯度功能材料凝固过程的数值模拟[J].武汉科技学院学报,2007,20(10):37-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700