祁连山区出山径流对气候变化的响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国干旱区(包括新疆全境、甘肃河西走廊、青海柴达木盆地及内蒙古贺兰山以西地区)气候干旱、风大沙多,是我国生态环境最为严酷的地区。有水就有绿洲,无水则成荒漠,绿洲兴衰、植被演替咸决于水。然而在近几十年尺度上的水循环变化以及与之相伴随的其他环境变化,其幅度和速率都是空前的,导致水资源在人类-自然之间分配严重失衡,引发出众多的环境问题。如何在干旱区内陆河流域平衡人类需水和自然需水,实现人与自然和谐发展,需要理解区域水资源的量及变化趋势,区域气候模式、流域水文模型、生态系统模型和经济系统模型的综合集成将为这种理解奠定基础。
     鉴于此,本文以干旱区的祁连区作为研究区域,分析了其北坡三大流域(疏勒河流域、黑河流域和石羊河流域)上游1960-2000年的气温降水及径流的时间变化趋势,并探讨了径流与气温降水变化的关系;然后,在黑河流域上游应用美国农业部开发的分布式水文模型SWAT (Soil and Water Assessment Tool)进行水量平衡的模拟,验证SWAT模型在干旱区内陆河流域的适用性;最后尝试以区域气候模式(RegCM3)的输出数据作为SWAT模型的气象数据库输入数据,进行气候模式-水文模型的松散耦合,探讨以区域气候模式作为SWAT输入数据的可行性。研究可以为内陆河流域生态水文综合集成研究中区域气候模式和流域水文模型的集成提供参考。
     本研究主要得出了以下的主要结论·
     1)祁连山北坡三个流域的年降水量均有增加的趋势,但其趋势的显著性和变化阶段存在差异;三个流域年均温总体上均有升高的趋势,且趋势均具有显著性,升温的过程表现出很好的一致性;三个流域年出山径流流量的变化趋势不同,有增有减,且变化阶段存在差异;灰色关联分析的结果显示,不同流域的径流量变化与气温降水的关联程度不同。
     2) SWAT模型对于基流系数(Alpha_Bf)、气温下降率(Tlaps)、SCS径流曲线数(CN2)、浅层地下水径流系数(Gwqmn)、最大冠层蓄水量(Canmx)和土壤蒸发补偿系数(Esco)具有较高的敏感性:在利用实测的水文数据进行模型参数校准以后,SWAT模型在校准期模拟的模型效率系数为0.75,判定系数为0.86,在验证期的模型效率系数为0.64,判定系数为0.87,表明SWAT模型适用于黑河流域上游。
     3)区域气候模式的输出结果与气象实测资料的对比分析结果表明,RegCM3对于气温模拟的模拟效果最好,降水、相对湿度的模拟次之,风速的模拟最差。在利用RegCM3输出作为SWAT模型输入进行径流模拟的模型效率系数为0.29,判定系数为0.69,表明RegCM3和SWAT的耦合不成功,RegCM3的模拟效果需要进一步提高,气象观测数据仍是目前SWAT更有效的输入数据。
The Arid region of China (includes xinjiang province, Hexi Corridor of Gansu province, Qaidam basin and the west of Helan Mountain), with drought climate and strong wind, is the most rigorous region of eco-environmental problems. Vegetation succession and oasis development are controlled by water resource within the region. However, in recent decades, the unprecedented magnitude and rates of water cycle change, along with other environmental changes, lead to serious imbalance between human and natural. In order to balance the water requirements between human and natural, and accomplish sustainable development in inland basin, an integration of regional climate model, basin-scale hydrological model, ecosystem model and economic system model is needed.
     In this research, I chose Qilian Mountain in arid region of China as study area to analyze the 40 years (1960-2000) temporal trend of temperature, precipitation and runoff, related works mainly conducted at upper reaches of three inland river, which are Shule river, Heihe river and Shiyang river. After that, I studied the relationship between runoff variation and climate change. Subsequently, the SWAT model was employed to simulate the water balance at upper reach of Heihe river basin. Finally, I tried to coupling climate model with hydrological model, output data of regional climate model (RegCM3) was used as input data of SWAT during this procedure. Since the integration of regional climate model and regional hydrological model is a key issue in studies related to eco-hydrology synthetical research, so this study can provide useful reference for concerned problems.
     Some conclusions can be draw from this research:
     1) An increasing trend of annual precipitation can be detected at north-facing slopes of all the three basins, but the significances and variation periods are different. In general, mean annual temperature displays a significant increasing trend at three basins. Also, a good consistence of heating can be found. Variation trends and periods of mountainous runoff in these basins are different. Grey relation analysis showed that relationship between changes of runoff and temperature-precipitation are different among basins.
     2) SWAT model have high sensitivity for base flow coefficient (Alpha_Bf), the temperature laps rate (Tlaps), SCS runoff curve number (CN2), threshold water level in shallow aquifer for base flow (Gwqmn), the maximum canopy storage capacity (Canmx) and soil evaporation compensation coefficient (Esco). After calibrating the model parameters use observed data, the Nash-Suttcliffe coefficient reached 0.75 and coefficient of determination reaches 0.86 during calibration stage. The Nash-Suttcliffe coefficient and determination coefficient reached 0.64 and 0.87 in validation stage.
     3) Comparison between output of regional climate model and observed data showed that, for simulation of temperature, RegCM3 displayed the best performance, following with precipitation and relative humidity, the worst is for the wind speed. Output of RegCM3 was inputted to SWAT model for the simulation of runoff, related Nash-Suttcliffe coefficient and determination coefficient are 0.29 and 0.69, indicated failure of coupling between RegCM3 and SWAT. In future works, improvement of RegCM3 results is needed, meteorological station observed data would still be the better input for SWAT. Keywords:climate change Qilian Mountain upper Heihe River runoff simulation SWAT RegCM3
引文
Abbott M, Bathurst J, Cunge J, et al. An introduction to the European Hydrological System--Systeme Hydrologique Europeen [J].Journal of Hydrology,1986,87(1-2):45-59.
    Bates BC, Kundzewicz ZW,Wu S, et al.气候变化与水[M].政府间气候变化专门委员会的技术报告,IPCC秘书处,日内瓦,2008.
    IPCC关于评估气候变化影响的适应对策和技术指南[M].WMO, UNEP,1994.
    Liang X, Xie Z, Huang M. A new parameterization for surface and groundwater interactions and its impact on water budgets with the variable infiltration capacity (VIC) land surface model [J]. J Geophys Res 2003,108(D16):8613-8629.
    Mukundan R, Radcliffe D, Risse L. Spatial resolution of soil data and channel erosion effects on SWAT model predictions of flow and sediment [J]. Journal of Soil and Water Conservation, 2010,65(2):92.
    Neitsch S, Arnold J, Kiniry J, et al. Soil and Water Assessment Tool, Theoretical Documentation: Version 2005 [M].2005.
    Ouyang W, Skidmore A, Hao F, et al. Soil erosion dynamics response to landscape pattern [J]. Science of The Total Environment,2009.408(6):1358-1366
    Shamseldin A. Application of a neural network technique to rainfall-runoff modelling [J]. Journal of Hydrology,1997,199(3-4):272-294.
    Tao F, Yokozawa M, Hayashi Y, et al. A perspective on water resources in China:interactions between climate change and soil degradation [J]. Climatic Change,2005,68(1):169-197.
    Watson R, Zinyowera M, Moss R, et al. Climate change 1995:impacts, adaptations and mitigation of climate change:scientific-technical analyses [M].Cambridge University Press Cambridge, 1996.
    WMO. Water Resources and Climate Change [M].Geneva,1987.
    Young K. A multivariate chain model for simulating climatic parameters from daily data [J]. Journal of Applied Meteorology,1994,33(6):661-671.
    陈梦熊.西北干旱区水文系统的演变与荒漠化[J].2007,27(1):1-4.
    陈楠,许吟隆,陈晓光,等.PRECIS模式对宁夏气候模拟能力的初步验证[J].气象科学,2008,28(001):94-99.
    程国栋,肖洪浪,徐中民,等.中国西北内陆河水问题及其应对策略——以黑河流域为例[J].冰川冻土,2006,28(003):406-413.
    程国栋,赵传燕.干旱区内陆河流域生态水文综合集成研究[J].地球科学进展,2008,23(1):1005-1012.
    冯明.气候变化对水文水资源的影响研究[D].武汉:武汉大学,2004.
    郭生练.水库调度综合自动化系统[M].武汉:武汉水利电力大学出版社,2000.
    何长高,董增川,陈卫宾,流域水文模型研究综述[J].江西水利科技,2008,34(001):20-25.
    李克让,陈育峰.中国全球气候变化影响研究方法的进展[J].地理研究,1999,18(2):214-219.
    李克让.全球气候变化及其影响研究进展和未来展望[J].地理学报,1996,51(z):511-141.
    林朝晖,刘辉志,谢正辉,等.陆面水文过程研究进展[J].大气科学,2008,32(4):935-949.
    刘曙光,李从先,丁坚,等.黄河三角洲整体冲淤平衡及其地质意义[J].海洋地质与第四纪 地质,2001,21(4):13-17.秦大河,丁一汇,苏纪兰,等.中国气候与环境演变评估(Ⅰ):中国气候与环境变化及未来趋势[J].气候变化研究进展,2005,1(1):4-9.
    秦大河,丁一汇.中国西部环境演变评估(第二卷)中国西部环境变化的预测[M].北京:科学出版社,2002.
    水利部水利信息中心.“八五”国家科技攻关计划(85-913-03-03)“气候变化对中国水文水资源影响及适应对策研究”技术报告[R],1996.
    水利部水利信息中心.国家“九五”重中之重科技攻关专题(96-908-03-02)“气候异常对中国水资源及水分循环影响评估模型研究”[R].2000.
    水利部水文局.国家“十五”科技攻关计划(2001-BA611B-02-04)“气候变化对中国淡水资源的影响阈值及综合评价”[R].2003.
    王国庆,张建云,刘九夫,等.气候变化对水文水资源影响研究综述[J].中国水利,2008,2:47-51.
    王守荣,朱川海,程磊,等.全球水循环与水资源[M].北京:气象出版社,2003.
    吴金栋,王馥棠.气候变化情景生成技术研究综述[J].气象,1998,24(002):3-8.
    曾庆存,林朝晖.地球系统动力学模式和模拟研究的进展[J].地球科学进展,2010,25(1):1-6.
    赵人俊.流域水文模拟[M].水利电力出版社,1984.
    郑婧,谢正辉,戴永久,等.陆面过程模型CoLM与区域气候模式RegCM3的耦合及初步评估[J].大气科学,2009,33(004):737-750.
    周天军,满文敏,张洁.过去千年气候变化的数值模拟研究进展[J].地球科学进展,2009,24(5):469-476.
    [1].聂雪花.祁连山灌木林水源涵养功能的研究[D].甘肃农业大学,2009.
    [2].申元村,汪久文,伍光和,等.中国绿洲[M].2001.
    [3].赵传燕,别强,彭焕华.祁连山北坡青海云杉林生境特征分析[J].地理学报,2010,65(1):113-121.
    [4].秦大河,丁一汇,苏纪兰,等.中国气候与环境演变评估(Ⅰ):中国气候与环境变化及未来趋势[J].气候变化研究进展,2005,1(1):4-9.
    Solomon S, Qin D, Manning M, et al. Climate change 2007:the physical science basis [M]. Cambridge University Press Cambridge and New York,2008.
    Van Belle G, Hughes J. Nonparametric tests for trend in water quality [J]. Water resources research, 1984,20(1):127-136.
    邓聚龙.灰色控制系统[M].华中工学院出版社,1985.
    邓聚龙.灰色系统基本方法[M].华中工学院出版社,1987.
    郝秀平,夏军,王蕊.气候变化对地表水环境的影响研究与展望[J].水文,2010,30(1):6772.
    秦大河,罗勇,陈振林,等.气候变化科学的最新进展:IPCC第四次评估综合报告解析[J].气候变化研究进展,2007,3(6):311-314.
    徐长春,陈亚宁,李卫红,等.塔里木河流域近50年气候变化及其水文过程响应[J].科学通报,2006,51(z1):21-30.
    张建云,王国庆,刘九夫.气候变化权威报告——IPCC报告[J].中国水利,2008,2:38-40.
    Allen R, Pereira L, Raes D, et al. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56[M]. FAO, Rome,1998,300.
    Eckhardt K, Arnold J. Automatic calibration of a distributed catchment model [J]. Journal of Hydrology,2001,251(1-2):103-109.
    Morris M. Factorial sampling plans for preliminary computational experiments [J]. Technometrics, 1991,33(2):161-174.
    Neitsch S, Arnold J, Kiniry J, et al. Soil and Water Assessment Tool, Theoretical Documentation: Version 2005 [M]. Temple, TX USDA Agricultural Research Service and Texas A&M Black land Research Center,2005.
    Sharpley A, Williams J. EPIC, Erosion/Productivity Impact Calculator:1. Model Documentation [M].1990.
    van Griensven A. Sensitivity, Auto-Calibration, Uncertainty and Model Evaluation in SWAT 2005 [M]. UNESCO:Belgium,2005.
    Van Griensven A, Francos A. Bauwens W. Sensitivity analysis and auto-calibration of an integral dynamic model for river water quality [J]. Diffuse/Non-point Pollution and Waterhsed Management,2002,45(9):325-332.
    丁飞,潘剑君.分布式水文模型SWAT的发展与研究动态[J].水土保持研究,2007,14(1):33-37.
    刘建立,徐绍辉,刘慧.几种土壤累积粒径分布模型的对比研究[J].水科学进展,2003,14(5):588-592.
    于峰,史正涛,李滨勇,等SWAT模型及其应用研究[J].水土保持应用技术,2008,5:1-5.
    Dickinson R, Henderson-Sellers A, Kennedy P, et al. Biosphere - atmosphere transfer scheme (BATS) version le as coupled to the NCAR Community Climate Mode[J]1.NCAR Tech. Note, NCAR/TN387+ STR,1993.
    Elguindi N, Bi X, Giorgi F, et al. RegCM Version 3.1 User's Guide[M]. PWCG Abdus Salam ICTP,2006.
    Giorgi F, Francisco R, Pal J. Effects of a subgrid-scale topography and land use scheme on the simulation of surface climate and hydrology. Part I:Effects of temperature and water vapor disaggregation[J]. Journal of Hydrometeorology, 2003,4(2).
    Holtslag A, BRUIJN D, Pan H. A high resolution air mass transformation model for short-range weather forecasting[J]. Monthly Weather Review,1990,118(8): 1561-1575.
    Kiehl J, Hack J, Bonan G, et al. Description of the NCAR Community Climate Model (CCM 3)[M]. NASA,1996(19980147981).
    秦大河,丁一汇,苏纪兰,等.中国气候与环境演变评估(Ⅰ):中国气候与环境变化及未来趋势[J].气候变化研究进展,2005,1(1):4-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700