树突状细胞靶向性DNA疫苗治疗哮喘的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,支气管哮喘(简称哮喘)已成为全球范围内变应性疾病中最常见的代表性疾病,发病率仍在持续增高,其发病机制尚未完全清楚,至今仍缺少有效而可行的措施来防治。20世纪80年代提出的“卫生学说”并不足以完全解释哮喘气道炎症的发生机制。但“卫生学说”强调了环境卫生因素对机体免疫反应的影响。近年的研究也发现,哮喘是一种对过敏原免疫耐受缺陷的疾患,其中树突状细胞(DC)可能是关键的调节因素之一。为此,本研究针对哮喘免疫耐受缺陷的复杂性和多样性,以及诱导免疫耐受途径的多样性。利用过敏原DNA疫苗诱导免疫耐受与Fc基因靶向DC诱导免疫耐受的两种策略结合起来,设计制备了具有高效免疫应答的重组变应原DNA疫苗(OVA-Fc-pcDNA_(3.1))。探讨其在小鼠体内诱导特异性免疫耐受的效力和在小鼠遭遇变应原致敏模型中的免疫保护力,并研究OVA-Fc-pcDNA_(3.1)靶向DC在诱导致敏/激发小鼠对过敏原特异性免疫耐受的作用机制,将它们与OVA-pcDNA_(3.1)相比较,观察诱导免疫耐受的作用的异同,以及其在应用中的免疫安全性的问题。为深入开发新型重组变应原DNA疫苗奠定理论基础。
     研究内容和方法:
     1.构建OVA- Fc-pcDNA_(3.1)重组质粒,将pcDNA_(3.1)、OVA-pcDNA_(3.1)及OVA- Fc-pcDNA_(3.1)重组质粒大量抽提并进行去内毒素、去RNA纯化。在此基础上,重组质粒在CHO细胞中的体外转染与表达;鉴定OVA- Fc融合蛋白能否透过CHO细胞膜进入到培养上清液中,RT-PCR方法检测其瞬时表达,ELISA检测其在CHO细胞中的表达。MTT法检测重组质粒的细胞毒性。
     2. 4~6周健康BALB/c小鼠,雌雄不限,体重16-20g。将小鼠随机分为五组,每组6只,分次分批滚动喂养。1组为正常对照组;2组为哮喘组,以0.01M PBS(pH 7.2)代替质粒治疗小鼠;3组为去内毒素的OVA- Fc - pcDNA_(3.1)质粒治疗组;4组为去内毒素的OVA- pcDNA_(3.1)质粒治疗组,5组为去内毒素的pcDNA_(3.1)质粒治疗组,给予空白质粒治疗。末次激发后取肺脏组织行病理学检查,观察变应性气道炎症的H.E.变化。ELISA检测末次激发后小鼠血清中OVA特异性IgE抗体水平、BALF中细胞因子IL-2、IL-4、IL-5、IL-10、IFN-γ水平。
     3.观察OVA-Fc-pcDNA_(3.1)疫苗对哮喘小鼠外周血T细胞压群的影响。4~6周健康BALB/c小鼠,雌雄不限,体重16-20g。将小鼠随机分为五组,每组6只,分批滚动喂养。1组为正常对照组;2组为哮喘预防组,以0.01M PBS(pH 7.2)代替质粒预防哮喘小鼠组;3组为去内毒素的OVA-Fc-pcDNA_(3.1)质粒预防组;4组为去内毒素的OVA- pcDNA_(3.1)质粒预防组,5组为去内毒素的pcDNA_(3.1)质粒预防组,给予空白质粒预防。末次激发后流式细胞计量仪检测末次激发后小鼠外周血CD_4~+、CD_8~+T细胞分类情况。
     4.观察OVA-Fc-pcDNA_(3.1)疫苗对哮喘小鼠脾脏T淋巴细胞的影响。4~6周健康BALB/c小鼠,雌雄不限,体重16-20g。将小鼠随机分为五组,每组6只,分批滚动喂养。1组为正常对照组;2组为哮喘组,以0.01M PBS(pH 7.2)代替质粒治疗小鼠;3组为去内毒素的OVA-Fc-pcDNA_(3.1)质粒治疗组;4组为去内毒素的OVA- pcDNA_(3.1)质粒治疗组,5组为去内毒素的pcDNA_(3.1)质粒治疗组,给予空白质粒治疗。末次激发后流式细胞计量仪检测末次激发后小鼠脾脏T淋巴细胞中Foxp3表达水平。
     5.观察OVA-Fc-pcDNA_(3.1)疫苗对哮喘小鼠树突状细胞的影响。4~6周健康BALB/c小鼠,雌雄不限,体重16-20g。将小鼠随机分为五组,每组6只,分批滚动喂养。1组为正常对照组;2组为哮喘组,以0.01M PBS(pH 7.2)代替质粒治疗小鼠;3组为去内毒素的OVA-Fc-pcDNA_(3.1)质粒治疗组;4组为去内毒素的OVA- pcDNA_(3.1)质粒治疗组,5组为去内毒素的pcDNA_(3.1)质粒治疗组,给予空白质粒治疗。末次激发后流式细胞计量仪检测末次激发后小鼠脾脏、肺脏DC共刺激分子的表达水平。
     6.观察OVA-Fc-pcDNA_(3.1)疫苗对哮喘小鼠免疫安全性的研究。4~6周健康BALB/c小鼠。动物和分组4~6周健康BALB/c小鼠,雌雄不限,体重16-20g。将小鼠随机分为五组,每组6只,分批滚动喂养。1组为正常对照组;2组为哮喘组,以0.01M PBS(pH 7.2)代替质粒治疗小鼠;3组为OVA-Fc-pcDNA_(3.1)质粒治疗组;4组为OVA- pcDNA_(3.1)质粒治疗组,5组为pcDNA_(3.1)质粒治疗组,给予空白质粒治疗。6组为去内毒素的OVA-Fc-pcDNA_(3.1)质粒治疗组;7组为去内毒素的OVA- pcDNA_(3.1)质粒治疗组,8组为去内毒素的pcDNA_(3.1)质粒治疗组,给予去内毒素的空白质粒治疗。末次激发后,从病理组织学和免疫学角度观察重组质粒的免疫安全性问题。
     结果:
     1.所构建的OVA-Fc-pcDNA_(3.1)重组质粒分别经双酶切和PCR鉴定,以及DNA双向测序证实目的基因插入成功。采用RT-PCR方法能够从重组质粒转染的CHO细胞中扩增出与目的基因大小一致的DNA片断。ELISA分析表明在CHO细胞培养上清中可获得目的基因表达产物。
     2. OVA致敏/激发小鼠肺部呈现显著变应性炎症,BALF中细胞总数和嗜酸性粒细胞(EOS)比例显著增高,BALF和血浆中IL-4、IL-5水平显著升高,IFN-γ水平显著降低。
     3.将不同质粒皮下免疫哮喘小鼠后,能显著地减轻致敏/激发小鼠肺部变应性炎症,减少BALF中细胞总数和EOS比例、降低BALF中IL-4、IL-5的水平和增高IFN-γ水平,其中OVA -Fc - pcDNA_(3.1)免疫处理最为显著,与正常组无显著差异。
     4.将不同质粒皮下免疫哮喘小鼠后,流式细胞仪检测各试验组小鼠脾脏T淋巴细胞中Foxp3的表达有不同程度升高,其中OVA -Fc - pcDNA_(3.1)免疫处理后升高最为显著。
     5.将不同质粒皮下免疫哮喘小鼠后,小鼠外周血中CD_4~+、CD_8~+T细胞数有显著升高,其中OVA -Fc - pcDNA_(3.1)免疫处理最为显著。
     6.将不同质粒皮下免疫哮喘小鼠后,流式细胞仪检测各试验组小鼠肺脏树突细胞表面协同刺激分子CD11cCD80和CD11cCD86的表达有不同程度减低,其中OVA -Fc - pcDNA_(3.1)免疫处理后降低最为显著。
     7.没有用去内毒素纯化的质粒免疫小鼠后存在一定免疫性损伤的危险性,如过敏反应、急性肺损伤效应。去内毒素纯化的质粒经皮下免疫哮喘小鼠后,能在小鼠体内激发显著的特异性体液免疫和细胞免疫应答,有效地保护免疫后小鼠减轻哮喘的气道炎症,保证了免疫的有效性和安全性。
     结论:
     1.本研究利用基因工程技术,构建重组质粒OVA-Fc-pcDNA_(3.1)。经双酶切、PCR和DNA双向测序鉴定后,证实重组质粒构建成功。采用RT-PCR方法能够从重组质粒转染的CHO细胞中扩增出与目的基因大小一致的DNA片断。ELISA分析表明在CHO细胞培养上清中可获得目的基因表达产物。并利用去内毒素质粒大量抽提纯化试剂盒,使OVA-Fc-pcDNA_(3.1)疫苗系统更安全无毒性。
     2.将不同质粒皮下免疫哮喘小鼠后,均可在小鼠体内诱导特异性体液免疫、细胞免疫和粘膜免疫应答。其免疫应答和免疫保护作用均以去内毒素的OVA-Fc-pcDNA_(3.1)疫苗最强,且对异种感染攻击具有相同交叉免疫保护作用。
     3.OVA-Fc-pcDNA_(3.1)可能通过下调小鼠肺脏树突细胞表面协同刺激分子CD11cCD80和CD11cCD86的表达,并进一步诱导OVA致敏/激发小鼠的调节性T细胞的产生,从而诱导过敏原特异性的“免疫耐受”。
     4.去内毒素的OVA-Fc-pcDNA_(3.1)疫苗免疫哮喘小鼠后均未引起过敏反应、免疫损伤以及急性肺损伤效应,不存在诱发免疫损伤的潜在危险性。
Background:Asthma is a chronic inflammatory disorder of the airways, characterized by Th2-dominated immune responses. Allergen gene vaccines have been shown to be effective in modulationing the allergic immune response in mouse models,especially shifting the immune response fron a Th2- to a Th1-dominated immune response. To enhance the effectivemess of DNA vaccination and potentially treat patients with ongoing airway inflammation,we constructed a DNA vaccination plasmid containing cDNA for a prototypic allergen,OVA,fused to the cDNA of a potent immune modulating Fc.This approach is based on fact that Fc,enhancing DCs’absorption,and is very powerful in driving the production of Th1 cytokine synthesis in na?ve and memory T cells.
     Objective:We investigated the combined effect of OVA and Fc vaccination on asthma development in BALB/c mice.It would lay a foundation for developing a new DNA vaccine.The aim of the study was to analyze whether dendritic cells targeted with allergen-DNA conjugates are able to stimulate autologous CD_4~+ T cells, CD_8~+ T cells,or both from atopic individuals to produce TH1 cytokines instead of TH2 cytokines.
     Methods:1. Animals BALB/c mice,6–8 weeks old at the onset of experiments and sex matched within each experiment.Mice care and use were performed in accordance with the guidelines of Dutch Committee of Animal Experiments.2.DNA constructs and purification The PCR products of OVA and Fc were selected as target DNA fragments and cloned into pcDNA_(3.1) (+) to construct the recombinant plasmids OVA-pcDNA_(3.1)and OVA-Fc- pcDNA_(3.1) respectively. The recombinant plasmids were constructed and expressed successfully in CHO cell lines. All Plasmids were purified by the EndoFree Plasmid Giga Kit.The recombinant plasmids were identified by restriction enzyme analysis and PCR reaction and confirmed by DNA sequencing.3.Study groups BALB/c mice were divided into five groups. 4.Immunization protocols Except for the control group,BALAB/c mice from all groups were first sensitized with OVA (gradeⅡ)before vaccination with the DNA plasmids.OVA (50μɡ) absorbed to alum was adminiatered i.p. once on day 0 . On days 8 and 9 the mice were challenged with aerosols of 1% OVA (gradeⅡ) diluted in PBS for 30 min each day.On days 10 and 25 the different endoFree DNA constructs were injected i.m. in the quadriceps muscles (100μɡin 100μl 0.9%Nacl).On day 39 and 40 the mice were challenged with aerosols of 1% OVA (gradeⅤ) diluted in PBS for 30 min each day. Mice from control group received a mock sensitization with intraperitonealn alum alone and a mock challenge with aerosol PBS at the corresponding time. Mice were sacrificed within 1 days of the last OVA challenge. 5. Collection of bronchoalveolar lavage fluid(BALF) Mice were anesthetized with urethane 24 h after the last OVA challenge, and the abdominal cavity was opened. Blood samples for serum were collected from the vena cava . The tracheas were cannulated ,and BAL was performed by two lavages with 0.5 ml ice-cold PBS. The total cell number in BALF was determined. The BALF was centrifuged and supernatant used to test for cytokine prouduction and the cell pellet used to prepare slides for differential cell counting.Cytospin slides were fixed and stained with Diffquik for leucocyte differential analysis.and the number of monocytes, lymphocytes,and eosinophils in a total of 200 cells were counted in each slide. 6. Concentrations of cytokines in BALF were measured with commercial ELISA kits according to the manufacture’s instructions.Murine IFN-γ,IL-5 and IL-2,IL-10 ELISA kits.7.OVA-specific IgE assay Mice were bled et the time of sacrifice, and OVA-specific IgE was determined using a modified Ag-specific ELISA. 8. Generation of DCs from pulmonary and culture Pulmonary-derived DCs were enriched according to the published methods. The DCs were collected and immediately used in our assays. 9.Immunofluoresence and flow cytometry analysis Pulmonary-derived DCs were incubated with FITC-labeled CD_(11c), PE -labeled anti-CD_(80) (B7-1) MAb, PE-labeled anti-CD86 MAb on ice for 30 min and washed with PBS. Ten thousand cells were collected for each sample, and the data were analyzed with FACScan flow cytometer and CELLQUEST software. DCs of pulmonary express levels of the costimulatory molecules CD_(11c)CD_(80) and CD_(11c)CD_(86) surface marker.10.Flow cytometric analysis Autologous CD_4~+ and CD_8~+ T cells were stimulated with these targeted DCs,and proliferation and cytokine production were measured.Flow-cytometry assay was carried to detect the numbers of CD_4~+ and CD_8~+T cells in peripheral blood of mice at the 24 h after the last OVA challenge. FITC-labeled CD_4~+ and CD_8~+ Mab,hemolytic agentand IgG2a.11.Histopathology Formalin-fixed lungs were embedded in paraffin,sectioned in 6-μm thick slices,and stained with hematoxylin and eosin for routine hidtology. 12.Statistical analysis Results were shown as mean±SD.Statistical analysis was performed with the statistical software package SigmaStat.All assays were compared using ANOVA followed by least squares difference-t analysis.
     Results and methods:1.Histologic changes The inflammatory characteristics caused by OVA sensitization/challenge are shown in Figure 2-1, Figure 2-2, Figure 2-3, Figure 2-4, Figure 2-5. Histologic scores of peribronchiolitis,perivasculitis, alveolitis,and peribronchial eosinophilia in all groups with OVA sensitization/challeng (OVA, pcDNA_(3.1),OVA-pcDNA_(3.1),and OVA-Fc-pcDNA_(3.1) groups) were significantly higher than that in the control group. Comparison among all groups with OVA sensitization/challenge showed that the OVA-Fc-pcDNA_(3.1) group had significantly milder peribronchiolitis,perivasculitis,alveolitis, and peribronchial eosinophilia than other groups. 2.Cellular composition of the lung inflammatory responses In comparison with epithelial cells , which constituted the majorison of BAL cells in the control group,lymphocytes were the major inflammatory cells found in BALF from other groups that underwent OVA sensitization and challenge. The number of eosinophilsin the BALF of OVA, asthma, OVA-pcDNA_(3.1),and OVA-Fc-pcDNA_(3.1) groups were all significantly greater than in control group (p<0.01). The number of total cells and eosinophils in the OVA-Fc-pcDNA_(3.1) group was significantly lower than in the OVA, asthma,and OVA-pcDNA_(3.1) groups, with the lymphocyte number significantly lower than in the asthma, pcDNA_(3.1),and OVA-pcDNA_(3.1) groups. However, there was no difference in the number of monocytes and neutrophils between the four groups 3.Serum OVA-specific IgE OVA-sensitized/challenged mice (asthma, pcDNA_(3.1) , OVA-pcDNA_(3.1),and OVA-Fc-pcDNA_(3.1) groups) showed significantly higher serum OVA-specific IgE titers than control mice. There were significant differences among all of the OVA-sensitized or–challenged groups.OVA-specific IgE was very high in OVA-immunized BALB/c mice.Vaccination with the different DNA vectors after immunization with OVA significantly reduced the level of OVA-specific IgE. The inhibitory effect on IgE production was strongest with the OVA-Fc fusion construct..4.Cytokine production in BALF The levels of IFN-γ,IL-2,IL-5,and IL-10 in BALF were assayed by ELISA.As showed in Figure 5, all OVA-sensitized/challenged groups (asthma, pcDNA_(3.1), and pcDNA_(3.1)/OVA groups) had significantly lower IL-10,IL-2,IFN-γand higher IL-5 level than the control.IL-10 in OVA-Fc- pcDNA_(3.1) group was significantly higher than in the asthma, pcDNA_(3.1),and OVA-pcDNA_(3.1) groups. 5. The numbers of CD_4~+ and CD_8~+ T cells in OVA-Fc- pcDNA_(3.1) groups were higher significantly than in the asthma, pcDNA_(3.1)and OVA-pcDNA_(3.1) groups.6.CD11cCD80 and CD11cCD86 were up-regulated on pulmonary-derived DCs from BALB/c mice sensitized and challenged with OVA. Vaccination with OVA-Fc- pcDNA_(3.1) resulted in a dramatic decrease of CD11cCD80 and CD11cCD86. targeted DCs of pulmonary express lower levels of the costimulatory molecules CD11cCD80 and CD11cCD86 compared with that of asthma DCs.
     Conclusion:1.DNA sequencing and restriction endonuclease digestion analysis indicated that the eukarytotic expression vector OVA-Fc-pcDNA_(3.1) had been concess of this plasmid constructed successfully.OVA-Fc expression could be detected in CHO cells by Western blotting,ELISA,and flow cytometry.2.EndoFree OVA-Fc-pcDNA_(3.1) decreased asthmatic inflammation in OVA-ensitized/challended mouse model .Moreover,our studies,demonstrating that endoFree OVA-Fc fusion constructs have much greater immunogenicity than allergen-only cDNA constructs,suggest that EndoFree allergen-Fc DNA constructs may provide,effective,and potentially curative therapy for allergic disease and asthma.DCs can be targeted with OVA-DNA conjugates very efficiently by using Fc vector yielding DCs with high T-cell stimulatory capacities,directing the atopic-allergic immune response from Th2 dominance toward Th1 dominance.3.The data demonstrated that EndoFree OVA-Fc- pcDNA_(3.1) recombinant plasmid inhibits lung inflammation and serum IgE in vivo. This effect may be due to reduced expression of CD11cCD80 and CD11cCD86 by DCs.4.EndoFree OVA-Fc DNA vaccine not only can enhance immunity effect of vaccine but also is safe and innocuous to mice.
引文
1. Lambrecht BN. Dendritic cells and the regulation of the allergic immune response. Allergy.2005;60:271.
    2. Wells JW, Cowled CJ, Giorgini A, Kemeny DM, Noble A.Regulation of allergic airway inflammation by class I-restricted allergen presentation and CD8 T-cell infiltration. J Allergy Clin Immunol.2007;119(1):226-234.
    3. Boruchov AM, Heller G, Veri MC, Bonvini E, Ravetch JV, Young JW. Activating and inhibitory IgG Fc receptors on human DCs mediate opposing functions. J. Clin. Invest. 2005;115:2914-2923.
    4. El Shikh ME, El Sayed R, Szakal AK, Tew JG.Follicular dendritic cell (FDC)-FcgammaRIIB engagement via immune complexes induces the activated FDC phenotype associated with secondary follicle development.Eur J Immunol.2006; 36(10):2715-2724.
    5. Benitez-Ribas D, Adema GJ, Winkels G, Klasen IS, Punt CJ, Figdor CG, de Vries IJ.Plasmacytoid dendritic cells of melanoma patients present exogenous proteins to CD4+ T cells after Fc gamma RII-mediated uptake. J Exp Med.2006;203(7):1629-1635.
    6. Liu Y, Gao X, Masuda E, Redecha PB, Blank MC, Pricop L. Regulated Expression of Fc{gamma}R in Human Dendritic Cells Controls Cross-Presentation of Antigen -Antibody Complexes.J.Immunol.2006;177:8440-8447.
    7. Armelle Regnault, Danielle Lankar, Valérie Lacabanne, et al.FcγReceptor- mediated Induction of Dendritic Cell Maturation and Major Histocompatibility Complex Class I-restricted Antigen Presentation after Immune Complex Internalization.J. Exp. Med., 1999;189( 2):371-380.
    8. Samsom JN, van Berkel LA, van Helvoort JM L M, Unger WWJ, Jansen W, Thepen T, Mebius RE, Verbeek SS, Kraal G. Fc{gamma}RIIB Regulates Nasal and Oral Tolerance: A Role for Dendritic Cells.J.Immunol. 2005;174:5279-5287.
    9. Kraft S,Novak N.Fc receptors as determinants of allergic reactions.Trends Immunol. 2006;27(2):88-95.
    10. Suzuki R, Utoguchi N, Kawamura K, Kadowaki N, Okada N, Takizawa T, Uchiyama T, Maruyama K.Development of Effective Antigen Delivery Carrier to Dendritic Cells via Fc Receptor in Cancer Immunotherapy. Yakugaku Zasshi.2007 ;127(2):301-306.
    11. Stefka B, Petkova, Konstantin N, Konstantinov, Thomas J, Sproule, Bonnie L, Lyons, Moheeb Al Awwami, Derry C. Roopenian.Human antibodies induce arthritis in mice deficient in the low-affinity inhibitory IgG receptor FcR gamma IIB.J. Exp.Med., 2006; 203:275 - 280.
    12. 王耀丽,钱桂生,郭波等.OVA-Fc 融合基因疫苗对哮喘小鼠的疗效观察.免疫学杂志,2006;22(5):527-530.
    13. 倪 兵,李艳秋,吴玉章.基于 DC 的肿瘤疫苗.免疫学杂志,2001,17(3):S32-S35.
    14. Kalinski P,Hilkens CM,Wierenga EA,et al.T-cell priming by type-1 and type-2 polarized dendritic cells:the con cept of a third signal.Immunol Today,1999, 20(12):561-567.
    15. van Mierlo GJ,Boonman ZF,Dumortier HM,etal.Activation of dendritic cells thatcross-present tumor-derived antigen licenses CD8+ CTL to cause tumor eradication.J Immunol,2004,173(11):6753-6759.
    16. Jeannin P,Renno T,Goetsch L,et al.OmpA targets dendritic cells,induces their maturation and delivers antigen into MHC class I presentation pathway.Nat Immunol,2000,1(6):502-509.
    17. 唐 艳,倪 兵,吴玉章.人黑色素瘤抗原 MAGE23 基因的克隆与表达.免疫学杂志,2001,17(6):406-409.
    18. Zhu B,Chen ZT,Cheng XM,et al.Identification of HLA-A*0201-restricted CTL epitope from TRAG-3 antigen.Clin Cancer Res,2003,9(5):1850-1857.
    19. Kutzler MA,Weiner DB.Developing DNA vaccines that call to dendritic cells.J Clin Invest,2004,114(9):1241-1244.
    20. Gurunathan S,Klinman DM,Seder RA.DNA vaccines:Immunology , application, and optimization. Ann Rev Immunol , 2000,18 :927-974.
    21. Wallet MA,Sen P,Tisch R. Immunoregulation of Dendritic Cells. Clin Med Res 2005;3: 166-175.
    22. Bonifaz L,Bonnyay D,Mahnke K,et al. Efficient Targeting of Protein Antigen to the Dendritic Cell Receptor DEC-205 in the Steady State Leads to Antigen Presentation on Major Histocompatibility Complex Class I Products and Peripheral CD8+ T Cell Tolerance. J. Exp. Med. 2002;196: 1627-1638.
    23. Li J,Sun Y,Garen A. Immunization and immunotherapy for cancers involving infection by a human papillomavirus in a mouse model. Proc. Natl. Acad. Sci. USA 2002;99: 16232-16236.
    24. Villinger F,Mayne AE,Bostik P,et al. Evidence for Antibody-Mediated Enhancement of Simian Immunodeficiency Virus (SIV) Gag Antigen Processing and Cross Presentation in SIV-Infected Rhesus Macaques. J. Virol. 2002;77: 10-24.
    25. Nguyen LT,Radhakrishnan S,Ciric B,et al. Cross-linking the B7 Family Molecule B7-DC Directly Activates Immune Functions of Dendritic Cells. J. Exp. Med. 2002;196: 1393-1398.
    26. Zwaveling S,Vierboom MPM,Ferreira Mota SC,et al. Antitumor Efficacy of Wild-Type p53-specific CD4+ T-Helper Cells. Cancer Res. 2002;62: 6187-6193.
    27. den Haan J MM, Bevan M J. Constitutive versus Activation-dependent Cross-Presentation of Immune Complexes by CD8+ and CD8- Dendritic Cells In Vivo. J Exp Med. 2002;196: 817-827.
    28. Wu Y-Z,Zhao J-P,Wan Y,et al. Mimovirus: a Novel Form of Vaccine That Induces Hepatitis B Virus-Specific Cytotoxic T-Lymphocyte Responses In Vivo. J. Virol. 2002;76: 10264-10269.
    29. 沈华浩,王苹莉.支气管哮喘小鼠模型应用评价,中华结核和呼吸杂志,2005;28(4): 284-286.
    30. Maecker HT, Hansen G, Walter DM, et al. Vaccination with allergen-IL-18 fusion DNA protects against, and reverses established, airway hyperreactivity in a murine asthma model. J Immunol 2001;166:959-965.
    31. 程晓明,王长征,李淑平等.哮喘致敏小鼠模型的建立及脾脏 CD4+T 细胞的分离。第三军医大学学报,2001;23(3):369-370.
    32. Rafiq K,Bergtold A,Clynes R. Immune complex-mediated antigen presentation induces tumor immunity. J. Clin. Invest. 2002;110: 71-79.
    33. Gnjatic S,Jager E,Chen W,et al. CD8+ T cell responses against a dominant cryptic HLA-A2 epitope after NY-ESO-1 peptide immunization of cancer patients. Proc. Natl. Acad. Sci. USA 2002;99: 11813-11818.
    34. Akiyama K,Ebihara S,Yada A,et al. Targeting Apoptotic Tumor Cells to Fc{gamma}R Provides Efficient and Versatile Vaccination Against Tumors by Dendritic Cells. J. Immunol. 2003;170: 1641-1648 .
    35. Wolpoe ME,Lutz ER,Ercolini AM,et al. HER-2/neu-Specific Monoclonal Antibodies Collaborate with HER-2/neu-Targeted Granulocyte Macrophage Colony-Stimulating Factor Secreting Whole Cell Vaccination to Augment CD8+ T Cell Effector Function and Tumor-Free Survival in Her-2/neu-Transgenic Mice. J. Immunol. 2003;171: 2161-2169.
    36. Lambert SL,Okada CY,Levy R. TCR Vaccines against a Murine T Cell Lymphoma: A Primary Role for Antibodies of the IgG2c Class in Tumor Protection. J. Immunol. 2004;172: 929-936.
    37. Tan PS,Gavin AL,Barnes N,et al. Unique Monoclonal Antibodies Define Expression of Fc{gamma}RI on Macrophages and Mast Cell Lines and Demonstrate Heterogeneity Among Subcutaneous and Other Dendritic Cells. J. Immunol. 2003; 170: 2549-2556.
    38. Fernandez N,Renedo M,Alonso S,et al. Release of Arachidonic Acid by Stimulation of Opsonic Receptors in Human Monocytes: THE Fc{gamma}R AND THE COMPLEMENT RECEPTOR 3 PATHWAYS. J. Biol. Chem. 2003 ; 278: 52179-52187.
    39. Banki Z, Kacani L,Mullauer B,et al. Cross-Linking of CD32 Induces Maturation of Human Monocyte-Derived Dendritic Cells Via NF-{kappa}B Signaling Pathway. J. Immunol. 2003;170: 3963-3970.
    40. Morgan AW, Keyte V H, Babbage S J, et al. Fc{gamma}RIIIA-158V and rheumatoid arthritis: a confirmation study. Rheumatology (Oxford) 2003; 42: 528-533.
    41. Sedlik C,Orbach D,Veron P,et al. A Critical Role for Syk Protein Tyrosine Kinase in Fc Receptor-Mediated Antigen Presentation and Induction of Dendritic Cell Maturation. J. Immunol. 2003;170: 846-852.
    42. Hardin JA. Directing Autoimmunity to Nucleoprotein Particles: The Impact of Dendritic Cells and Interferon {alpha} in Lupus. J. Exp. Med. 2003;197: 681-685.
    43. Heit A,Maurer T,Hochrein H,et al. Cutting Edge: Toll-Like Receptor 9 Expression Is Not Required for CpG DNA-Aided Cross-Presentation of DNA-Conjugated Antigens but Essential for Cross-Priming of CD8 T Cells. J. Immunol. 2003;170: 2802-2805.
    44. Verbovetski I,Bychkov H, Trahtemberg U,et al. Opsonization of Apoptotic Cells by Autologous iC3b Facilitates Clearance by Immature Dendritic Cells, Down-regulates DR and CD86,and Up-regulates CC Chemokine Receptor 7. J Exp Med. 2002;196: 1553-1561.
    45. Geissmann F,Dieu-Nosjean MC,Dezutter C,et al. Accumulation of Immature Langerhans Cells in Human Lymph Nodes Draining Chronically Inflamed Skin. J. Exp. Med. 2002;196: 417-430.
    46. Delamarre L,Holcombe H,Mellman I. Presentation of Exogenous Antigens on Major Histocompatibility Complex (MHC) Class I and MHC Class II Molecules Is Differentially Regulated during Dendritic Cell Maturation. J. Exp. Med. 2003;198: 111-122.
    47. Li, Xiu-Min. Beyond allergen avoidance: update on developing therapies for peanut allergy. Curr Opin Allergy Clin Immunol, 2005,5(3):287-292.
    48. Buhl, Roland. Anti-IgE antibodies for the treatment of asthma. Current Opinion in Internal Medicine,2005,4(2):184-191.
    49. Trujillo-Vargas CM, Mayer KD, Bickert T,et al.Vaccinations with T-helper type 1 directing adjuvants have different suppressive effects on the development of allergen-induced T-helper type 2 responses. Clin Exp Allergy, 2005, 35(8):1003-1013.
    50. Biet F, Duez C, Kremer L,et al. Recombinant Mycobacterium bovis BCG producing IL-18 reduces IL-5 production and bronchoalveolar eosinophilia induced by an allergic reaction. Allergy, 2005 ,60(8):1065-1072.
    51. 朱波,程晓明,郭波等.树突状细胞靶向性 DNA 疫苗的构建及其在 CHO 细胞的表达.免疫学杂志,2005 ,21(3):163-165.
    52. 王耀丽,钱桂生,程晓明.调节性 T 淋巴细胞在支气管哮喘中的作用.中华结核和呼吸杂志 ,2005,28(12):856-858.
    53. Moron VG,Rueda P,Sedlik C,et al. In Vivo,Dendritic Cells Can Cross-Present Virus-Like Particles Using an Endosome-to-Cytosol Pathway. J. Immunol. 2003; 171: 2242-2250.
    54. Fausch SC,Da Silva DM,Kast WM. Differential Uptake and Cross-Presentation of Human Papillomavirus Virus-like Particles by Dendritic Cells and Langerhans Cells. Cancer Res. 2003;63: 3478-3482.
    55. Bell J,Gray D. Antigen-capturing Cells Can Masquerade as Memory B Cells. J. Exp. Med. 2003;197: 1233-1244.
    56. Ebihara S,Endo S,Ito K,et al. Immortalized Dendritic Cell Line with Efficient Cross-Priming Ability Established from Transgenic Mice Harboring the Temperature-Sensitive SV40 Large T-Antigen Gene. J Biochem (Tokyo) 2004;136: 321-328.
    57. West MA,Wallin RPA,Matthews SP,et al. Enhanced Dendritic Cell Antigen Capture via Toll-Like Receptor-Induced Actin Remodeling. Science 2004;305: 1153-1157.
    58. Vermeulen M,Giordano M,Trevani A S,et al. Acidosis Improves Uptake of Antigens and MHC Class I-Restricted Presentation by Dendritic Cells. J. Immunol. 2004;172: 3196-3204.
    59. Prina E, Abdi SZ, Lebastard M,et al. Dendritic cells as host cells for the promastigote and amastigote stages of Leishmania amazonensis: the role of opsonins in parasite uptake and dendritic cell maturation. J. Cell Sci. 2004;117: 315-325.
    60. Romani L,Montagnoli C,Bozza S,et al. The exploitation of distinct recognition receptors in dendritic cells determines the full range of host immune relationships with Candida albicans. Int Immunol 2004;16: 149-161.
    61. Benvenuti F,Lagaudriere-Gesbert C,Grandjean I,et al. Dendritic Cell Maturation Controls Adhesion, Synapse Formation, and the Duration of the Interactions with Naive T Lymphocytes. J. Immunol. 2004;172: 292-301.
    62. Buatois V,Baillet M,Becart S,et al. MHC Class II-Peptide Complexes in Dendritic Cell Lipid Microdomains Initiate the CD4 Th1 Phenotype. J. Immunol. 2003;171: 5812-5819.
    63. Weng W-K,Levy R. Two Immunoglobulin G Fragment C Receptor Polymorphisms Independently Predict Response to Rituximab in Patients With Follicular Lymphoma. J. Clin. Oncol. 2003; 21: 3940-3947.
    64. Anderson CF,Lucas M,Gutierrez-Kobeh L,et al. T Cell Biasing by Activated Dendritic Cells. J. Immunol. 2004;173: 955-961.
    65. Boule MW,Broughton C,Mackay F,et al. Toll-like Receptor 9-Dependent and -Independent Dendritic Cell Activation by Chromatin-Immunoglobulin G Complexes. J. Exp. Med. 2004,199: 1631-1640.
    66. Munz C. Epstein-Barr Virus Nuclear Antigen 1: from Immunologically Invisible to a Promising T Cell Target. J. Exp. Med. 2004;199: 1301-1304.
    67. Maraskovsky E,Sjolander S,Drane DP,et al. NY-ESO-1 Protein Formulated in ISCOMATRIX Adjuvant Is a Potent Anticancer Vaccine Inducing Both Humoral and CD8+ T-Cell-Mediated Immunity and Protection against NY-ESO-1+ Tumors. Clin. Cancer Res. 2004;10: 2879-2890.
    68. Ramakrishna V,Treml JF,Vitale L,et al. Mannose Receptor Targeting of Tumor Antigen pmel17 to Human Dendritic Cells Directs Anti-Melanoma T Cell Responses via Multiple HLA Molecules. J. Immunol. 2004;172: 2845-2852.
    69. Brady LJ. Antibody-Mediated Immunomodulation: a Strategy To Improve Host Responses against Microbial Antigens. Infect. Immun. 2005;73: 671-678.
    70. Heit A,Huster KM,Schmitz F,et al. CpG-DNA Aided Cross-Priming by Cross-Presenting B Cells. J. Immunol. 2004;172: 1501-1507.
    71. Maillard P,Lavergne J-P,Siberil S,et al. Fc{gamma} Receptor-like Activity of Hepatitis C Virus Core Protein. J. Biol. Chem. 2004;279: 2430-2437.
    72. Schnurr M,Chen Q,Shin A,et al. Tumor antigen processing and presentation depend critically on dendritic cell type and the mode of antigen delivery. Blood 2005;105: 2465-2472.
    73. Radstake TRDJ, van der Voort R,ten Brummelhuis M,et al. Increased expression of CCL18,CCL19,and CCL17 by dendritic cells from patients with rheumatoid arthritis, and regulation by Fc gamma receptors. Ann Rheum Dis 2005;64: 359-367 .
    74. Tobar JA,Gonzalez PA,Kalergis AM. Salmonella Escape from Antigen Presentation Can Be Overcome by Targeting Bacteria to Fc{gamma} Receptors on Dendritic Cells. J. Immunol. 2004;173: 4058-4065.
    75. Ratzinger G,Baggers J,de Cos MA,et al. Mature Human Langerhans Cells Derived from CD34+ Hematopoietic Progenitors Stimulate Greater Cytolytic T Lymphocyte Activity in the Absence of Bioactive IL-12p70,by Either Single Peptide Presentation or Cross-Priming,Than Do Dermal-Interstitial or Monocyte-Derived Dendritic Cells. J. Immunol. 2004;173: 2780-2791.
    76. Marie JC,Saltel F,Escola J-M,et al. Cell Surface Delivery of the Measles Virus Nucleoprotein: a Viral Strategy To Induce Immunosuppression. J. Virol. 2004;78: 11952-11961.
    77. Chen W,Pang K,Masterman K-A,et al. Reversal in the Immunodominance Hierarchy in Secondary CD8+ T Cell Responses to Influenza A Virus: Roles for Cross-Presentation and Lysis-Independent Immunodomination. J. Immunol. 2004; 173: 5021-5027.
    78. Abdel-Motal U,Wang S,Lu S,Wigglesworth K,et al. Increased Immunogenicity of Human Immunodeficiency Virus gp120 Engineered To Express Gal{alpha}1-3Gal{beta}1-4GlcNAc-R Epitopes. J. Virol. 2006;80: 6943-6951.
    79. Blachere NE, Morris HK,Braun D,et al. IL-2 Is Required for the Activation of Memory CD8+ T Cells via Antigen Cross-Presentation.. J. Immunol. 2006;176: 7288-7300.
    80. Kobayashi H,Ngato T,Sato K,et al. In vitro Peptide Immunization of Target Tax Protein Human T-Cell Leukemia Virus Type 1-Specific CD4+ Helper T Lymphocytes. Clin. Cancer Res. 2006;12: 3814-3822.
    81. Park K-D,Marti L,Kurtzberg J,et al. In vitro priming and expansion of cytomegalovirus-specific Th1 and Tc1 T cells from naive cord blood lymphocytes. Blood 2006;108: 1770-1773.
    82. Zhang R,Becnel L,Li M,et al.C-reactive protein impairs human CD14+ monocyte-derived dendritic cell differentiation, maturation and function. Eur J Immunol. 2006 ;36(11):2993-3006.
    83. Bozzacco L,Trumpfheller C,Siegal FP,et al. DEC-205 receptor on dendritic cells mediates presentation of HIV gag protein to CD8+ T cells in a spectrum of human MHC I haplotypes. Proc. Natl. Acad. Sci. USA2007;104: 1289-1294 .
    84. Otten MA,Groenveld I,van de Winkel JG,van Egmond M.Inefficient antigen presentation via the IgA Fc receptor (FcalphaRI) on dendritic cells. Immunobiology. 2006;211(6-8):503-510.
    85. Woelbing F,Kostka SL,Moelle K,et al. Uptake of Leishmania major by dendritic cells is mediated by Fc{gamma} receptors and facilitates acquisition of protective immunity. J. Exp. Med. 2006;203: 177-188.
    86. Guriec N,Daniel C,Le Ster K,et al. Cytokine-regulated expression and inhibitory function of Fc{gamma}RIIB1 and -B2 receptors in human dendritic cells. J. Leukoc. Biol. 2006;79: 59-70.
    87. Accapezzato D,Visco V,Francavilla V,et al. Chloroquine enhances human CD8+ T cell responses against soluble antigens in vivo. J. Exp. Med. 2005;202: 817-828 .
    88. Holl V,Peressin M,Schmidt S,et al. Efficient inhibition of HIV-1 replication in human immature monocyte-derived dendritic cells by purified anti-HIV-1 IgG without induction of maturation. Blood 2006;107: 4466-4474.
    89. Schuurhuis DH,van Montfoort N,Ioan-Facsinay A,et al. Immune complex-loaded dendritic cells are superior to soluble immune complexes as antitumor vaccine. J. Immunol. 2006;176: 4573-4580.
    90. Kitamura K,Takeda K,Koya T,et al. Critical Role of the Fc Receptor {gamma}-Chain on APCs in the Development of Allergen-Induced Airway Hyperresponsiveness and Inflammation. J. Immunol. 2007;178: 480-488 .
    91. Radstake TR,Franke B,Wenink MH,et al.The functional variant of the inhibitory Fcgamma receptor IIb (CD32B) is associated with the rate of radiologic joint damage and dendritic cell function in rheumatoid arthritis. Arthritis Rheum. 2006;54(12):3828-3837.
    92. Tacken PJ,de Vries IJM,Gijzen K,et al. Effective induction of naive and recall T-cell responses by targeting antigen to human dendritic cells via a humanized anti-DC-SIGN antibody. Blood 2005;106: 1278-1285.
    93. Hahn C-L,Schenkein HA,Tew J G. Endocarditis-Associated Oral Streptococci Promote Rapid Differentiation of Monocytes into Mature Dendritic Cells. Infect. Immun. 2005;73: 5015-5021.
    94. Rossi M,Young JW. Human Dendritic Cells: Potent Antigen-Presenting Cells at the Crossroads of Innate and Adaptive Immunity. J. Immunol. 2005;175: 1373-1381.
    95. Moghaddami M,Cleland LG,Mayrhofer G. MHC II+ CD45+ cells from synovium-rich tissues of normal rats: phenotype comparison with macrophage and dendritic cell lineages and differentiation into mature dendritic cells in vitro. Int Immunol 2005;17: 1103-1115.
    96. Godefroy E , Moreau-Aubry A , Diez E , et al. {alpha}v{beta}3-dependent cross-presentation of matrix metalloproteinase-2 by melanoma cells gives rise to a new tumor antigen. J. Exp. Med. 2005;202: 61-72.
    97. Ohmura M,Yamamoto M,Tomiyama-Miyaji C,et al. Nontoxic Shiga Toxin Derivatives from Escherichia coli Possess Adjuvant Activity for the Augmentation of Antigen-Specific Immune Responses via Dendritic Cell Activation. Infect. Immun. 2005;73: 4088-4097.
    98. Bayry J,Lacroix-Desmazes S,Kazatchkine MD,et al. Modulation of Dendritic Cell Maturation and Function by B Lymphocytes. J. Immunol. 2005;175: 15-20.
    99. Ossendorp F,Fu N,Camps M,et al. Differential Expression Regulation of the {alpha} and {beta} Subunits of the PA28 Proteasome Activator in Mature Dendritic Cells. J. Immunol. 2005;174: 7815-7822.
    100. He Q,Moore TT,Eko FO,et al. Molecular Basis for the Potency of IL-10-Deficient Dendritic Cells as a Highly Efficient APC System for Activating Th1 Response. J. Immunol. 2005;174: 4860-4869.
    101. O'Neill SK,Shlomchik MJ,Glant TT,et al. Antigen-Specific B Cells Are Required as APCs and Autoantibody-Producing Cells for Induction of Severe Autoimmune Arthritis. J. Immunol. 2005;174: 3781-3788.
    102. Pasquier B,Lepelletier Y,Baude C,et al. Differential expression and function of IgA receptors (CD89 and CD71) during maturation of dendritic cells. J. Leukoc. Biol. 2004;76: 1134-1141 .
    103. Janda J,Schoneberger P,Skoberne M,et al. Cross-Presentation of Listeria-Derived CD8 T Cell Epitopes Requires Unstable Bacterial Translation Products. J. Immunol. 2004;173: 5644-5651.
    104. Ruedl C,Schwarz K,Jegerlehner A,et al. Virus-Like Particles as Carriers for T-Cell Epitopes: Limited Inhibition of T-Cell Priming by Carrier-Specific Antibodies. J. Virol. 2005;79: 717-724.
    105. Dhodapkar KM,Dhodapkar MV. Recruiting dendritic cells to improve antibody therapy of cancer. Proc. Natl. Acad. Sci. USA 2005;102: 6243-6244.
    106. Groh V,Li YQ,Cioca D,et al. From The Cover: Efficient cross-priming of tumor antigen-specific T cells by dendritic cells sensitized with diverse anti-MICA opsonized tumor cells. Proc. Natl. Acad. Sci. USA 2005;102: 6461-6466.
    107. Mende I,Hoffmann P,Wolf A,et al. Highly efficient antigen targeting to M-DC8+ dendritic cells via Fc{gamma}RIII/CD16-specific antibody conjugates. Int Immunol 2005;17: 539-547.
    108. Kanazawa N.Dendritic cell immunoreceptors: C-type lectin receptors for pattern-recognition and signaling on antigen-presenting cells. J Dermatol Sci. 2007 ;45(2):77-86.
    109. Yoshida M,Masuda A,Kuo TT,et al.IgG transport across mucosal barriers by neonatal Fc receptor for IgG and mucosal immunity. Springer Semin Immunopathol. 2006 ;28(4):397-403.
    110. Lazar GA,Dang W,Karki S,et al. Engineered antibody Fc variants with enhanced effector function.. Proc. Natl. Acad. Sci. USA 2006;103: 4005-4010.
    111. Berntzen G,Brekke OH,Mousavi SA,et al. Characterization of an Fc{gamma}RI-binding peptide selected by phage display. Protein Eng Des Sel 2006;19: 121-128.
    112. Martinez D,Vermeulen M,Trevani A , et al. Extracellular Acidosis Induces Neutrophil Activation by a Mechanism Dependent on Activation of Phosphatidylinositol 3-Kinase/Akt and ERK Pathways. J. Immunol. 2006;176: 1163-1171 .
    113. DHODAPKAR K M,BANERJEE D,STEINMAN R M. Harnessing the Immune System Against Human Glioma. Ann. N. Y. Acad. Sci. 2005;1062: 13-21 .
    114. Barrat F J,Meeker T,Gregorio J,et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J. Exp. Med. 2005;202: 1131-1139.
    115. Dai YD,Jensen KP,Lehuen A,et al. A Peptide of Glutamic Acid Decarboxylase 65 Can Recruit and Expand a Diabetogenic T Cell Clone, BDC2.5, in the Pancreas. J. Immunol. 2005;175: 3621-3627.
    116. Chargelegue D,Drake PMW,Obregon P,et al. Highly Immunogenic and Protective Recombinant Vaccine Candidate Expressed in Transgenic Plants. Infect. Immun. 2005;73: 5915-5922.
    117. Hanna J,Gonen-Gross T,Fitchett J,et al. Novel APC-like properties of human NK cells directly regulate T cell activation. J. Clin. Invest. 2004;114: 1612-1623.
    118. de Bono JS,Rha SY,Stephenson J,et al. Phase I trial of a murine antibody to MUC1 in patients with metastatic cancer: evidence for the activation of humoral and cellular antitumor immunity. Ann Oncol 2004;15:1825-1833.
    119. Hazenbos WLW, Clausen BE,Takeda J,et al. GPI-anchor deficiency in myeloid cells causes impaired Fc{gamma}R effector functions. Blood 2004;104: 2825-2831.
    120. Matsuo M,Nagata Y,Sato E,et al. IFN-{gamma} enables cross-presentation of exogenous protein antigen in human Langerhans cells by potentiating maturation. Proc. Natl. Acad. Sci. USA 2004;101: 14467-14472.
    121. Bevaart L,Van Ojik HH,Sun AW,et al. CpG oligodeoxynucleotides enhance Fc{gamma}RI-mediated cross presentation by dendritic cells. Int Immunol 2004;16: 1091-1098.
    122. Getahun A,Dahlstrom J,Wernersson S,et al. IgG2a-Mediated Enhancement of Antibody and T Cell Responses and Its Relation to Inhibitory and Activating Fc{gamma} Receptors. J. Immunol. 2004;172: 5269-5276.
    1. Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self2tolerance maintained by activated T cells exp ressing IL22 recep toralpha2chains ( CD25 ) . Breakdown of a single mechanism of self2tolerance causes various autoimmune diseases. J Immunol, 1995,155: 1151-1164.
    2. Berthelot JM, Maugars Y. Role for supp ressor T cells in thepathogenesis of autoimmune diseases ( including rheumatoidarthritis) . Facts and hypotheses. Joint Bone Sp ine, 2004, 71: 374-380.
    3. Umetsu DT,Akbari O, Dekruyff RH. Regulatory T cells control thedevelopment of allergic disease and asthma. J Allergy Clin Immunol, 2003, 112: 480-487.
    4. Groux H,O′Garra A, BiglerM, et al. A CD +4 T2cell subset inhibitsantigen2specific T2cell responses and p revents colitis. Nature, 1997,389: 737-742.
    5. Wahl SM,Vazquez N, ChenW. Regulatory T cells and transcrip tionfactors: gatekeepers in allergic inflammation. Curr Op in Immunol,2004, 16: 768-774.
    6. Thomp son C, Powrie F. Regulatory T cells. Curr Op in Pharmacol,2004, 4: 408-414.
    7. Barck C, Lundahl J, Hallden G, et al. Brief exposures to NO2augment the allergic inflammation in asthmatics. Environ Res,2005, 97: 58-66.
    8. Dakhama A, Park JW, Taube C, et al. The role of virus2specificimmunoglobulin E in airway hyperresponsiveness. Am J Resp ir Crit CareMed, 2004, 170: 952-959.
    9. Peek EJ, Richards DF, Faith A, et al. Interleukin2102secreting“regulatory”T cells induced by glucocorticoids and beta-2agonists.Am J Resp ir CellMol Biol, 2005, 33: 105-111.
    10. Yagi H,Nomura T,Nakamura K, et al. Crucial role of FOXP3 in thedevelopment and function of human CD +25 CD +4 regulatory T cells.Int Immunol, 2004, 16: 1643-1656.
    11. Stock P,Akbari O,Berry G, et al. Induction of T helper type 12likeregulatory cells that exp ress Foxp3 and p rotect against airway hyper2reactivity. Nat Immunol, 2004, 5: 1149-1156.
    12. Wing K, Larsson P, Sandstrom K, et al. CD +4 CD +25 FOXP +3regulatory T cellsfrom human thymus and cord blood supp ressantigen2specific T cell responses. Immunology, 2005, 115: 516-525.
    13. Baratelli F, Lin Y, Zhu L, et al. Prostaglandin E2 Induces FOXP3Gene Exp ression and T Regulatory Cell Function in Human CD +4 TCells. J Immunol, 2005, 175: 1483-1490.
    14. Karagiannidis C, Akdis M, Holopainen P, et al. Glucocorticoidsup regulate FOXP3 exp ression and regulatory T cells in asthma. JAllergy Clin Immunol, 2004, 114: 1425-1433.
    15. Akbari O, Umetsu DT. Role of regulatory dendritic cells in allergyand asthma. CurrAllergy Asthma Rep, 2005, 5: 56-61.
    16. Kuipers H, Lambrecht BN. The interp lay of dendritic cells, Th2 cellsand regulatory T cells in asthma. Curr Op in Immunol, 2004, 16:702-708.
    17. Hawiger D, Masilamani RF, Bettelli E, et al. Immunologicalunresponsiveness characterized by increased exp ression of CD5 onperipheral T cells induced by dendritic cells in vivo. Immunity,2004, 20: 695-705.
    18. BeyerM,Bartz H, Horner K, et al. Sustained increases in numbers ofpulmonary dendritic cells after resp iratory syncytial virus infection. JAllergy Clin Immunol, 2004, 113: 127-133.
    19. Sllanpaa N, Magureanu CG, Murumagi A, et al. Autoimmuneregulator induced changes in the gene exp ression p rofile of human monocyte2dendritic cell2lineage. Mol Immunol, 2004, 41: 1185-1198.
    20. Shi HZ,Qin XJ. CD4 CD25 regulatory T lymphocytes in allergy andasthma. Allergy, 2005, 60: 986-995.
    21. Robinson DS. The role of regulatory T lymphocytes in asthmapathogenesis. CurrAllergy Asthma Rep, 2005, 5: 136-141.
    1. Lambrecht BN. Dendritic cells and the regulation of the allergic immune response. Allergy.2005;60:271.
    2. Wells JW, Cowled CJ, Giorgini A, Kemeny DM, Noble A.Regulation of allergic airway inflammation by class I-restricted allergen presentation and CD8 T-cell infiltration. J Allergy Clin Immunol.2007;119(1):226-234.
    3. Boruchov AM, Heller G, Veri MC, Bonvini E, Ravetch JV, Young JW. Activating and inhibitory IgG Fc receptors on human DCs mediate opposing functions. J. Clin. Invest. 2005;115:2914-2923.
    4. El Shikh ME, El Sayed R, Szakal AK, Tew JG.Follicular dendritic cell (FDC)-FcgammaRIIB engagement via immune complexes induces the activated FDC phenotype associated with secondary follicle development.Eur J Immunol.2006; 36(10):2715-2724.
    5. Benitez-Ribas D, Adema GJ, Winkels G, Klasen IS, Punt CJ, Figdor CG, de Vries IJ.Plasmacytoid dendritic cells of melanoma patients present exogenous proteins to CD4+ T cells after Fc gamma RII-mediated uptake. J Exp Med.2006;203(7):1629-1635.
    6. Liu Y, Gao X, Masuda E, Redecha PB, Blank MC, Pricop L. Regulated Expression of Fc{gamma}R in Human Dendritic Cells Controls Cross-Presentation of Antigen -Antibody Complexes.J.Immunol.2006;177:8440-8447.
    7. Armelle Regnault , Danielle Lankar , Valérie Lacabanne , et al.FcγReceptor-mediated Induction of Dendritic Cell Maturation and Major Histocompatibility Complex Class I-restricted Antigen Presentation after Immune Complex Internalization.J. Exp. Med., 1999;189( 2):371-380.
    8. Samsom JN, van Berkel LA, van Helvoort JM L M, Unger WWJ, Jansen W, Thepen T, Mebius RE, Verbeek SS, Kraal G. Fc{gamma}RIIB Regulates Nasal and Oral Tolerance: A Role for Dendritic Cells.J.Immunol. 2005;174:5279-5287.
    9. Kraft S,Novak N.Fc receptors as determinants of allergic reactions.Trends Immunol. 2006;27(2):88-95.
    10. Suzuki R, Utoguchi N, Kawamura K, Kadowaki N, Okada N, Takizawa T,Uchiyama T, Maruyama K.Development of Effective Antigen Delivery Carrier to Dendritic Cells via Fc Receptor in Cancer Immunotherapy. Yakugaku Zasshi.2007 ;127(2):301-306.
    11. Stefka B, Petkova, Konstantin N, Konstantinov, Thomas J, Sproule, Bonnie L, Lyons, Moheeb Al Awwami, Derry C. Roopenian.Human antibodies induce arthritis in mice deficient in the low-affinity inhibitory IgG receptor FcR gamma IIB.J. Exp.Med., 2006; 203:275 - 280.
    12. 王耀丽,钱桂生,郭波,刘素秀,冯梅清,吴丽娟,程晓明.OVA-Fc 融合基因疫苗对哮喘小鼠的疗效观察.免疫学杂志,2006;22(5):527-530.
    13. Hazenbos WLW, Clausen BE,Takeda J,et al. GPI-anchor deficiency in myeloid cells causes impaired Fc{gamma}R effector functions. Blood 2004;104: 2825-2831.
    14. Matsuo M,Nagata Y,Sato E,et al. IFN-{gamma} enables cross-presentation of exogenous protein antigen in human Langerhans cells by potentiating maturation. Proc. Natl. Acad. Sci. USA 2004;101: 14467-14472.
    15. Bevaart L,Van Ojik HH,Sun AW,et al. CpG oligodeoxynucleotides enhance Fc{gamma}RI-mediated cross presentation by dendritic cells. Int Immunol 2004;16: 1091-1098.
    16. Getahun A,Dahlstrom J,Wernersson S,et al. IgG2a-Mediated Enhancement of Antibody and T Cell Responses and Its Relation to Inhibitory and Activating Fc{gamma} Receptors. J. Immunol. 2004;172: 5269-5276.
    17. El Shikh ME,El Sayed R,Szakal AK,Tew JG.Follicular dendritic cell (FDC)-FcgammaRIIB engagement via immune complexes induces the activated FDC phenotype associated with secondary follicle development. Eur J Immunol. 2006;36(10):2715-2724.
    18. Otten MA,Groenveld I,van de Winkel JG,van Egmond M.Inefficient antigen presentation via the IgA Fc receptor (FcalphaRI) on dendritic cells. Immunobiology. 2006;211(6-8):503-510.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700