高功率毫米波返波管器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
返波管是输出功率最高的微波器件之一,也是基于超辐射机理的毫米波微波器件中功率和功率转换效率最高的器件。
     本论文分为三个部分,第一部分(第二章)研究的是相对论返波管的非线性理论,第二部分(第三章,第四章)是研究普通受激辐射毫米波返波管,第三部分(第4章)是对两种基于超辐射机理的毫米波返波管进行粒子模拟。
     本文在一系列假设条件下,给出相互作用区的电磁场表达式。在考虑反向波和同步波都与电子束相互作用条件下,利用Maxwell方程组推导出了相对论返波管的自洽非线性工作方程组。在MATLAB软件平台上编制了计算程序,计算出反向波包络随归一化长度之间的关系曲线,验证了方程组的正确性。
     对普通受激辐射毫米波返波管进行粒子模拟和优化设计,在电子束参数:电压170kV、电流800A、脉冲宽度4ns情况下,得到毫米波输出功率25MW、脉冲宽度3ns、效率21%和输出模式为TM_(01)。并给出了归一化输出功率与电子束半径和引导磁场的关系曲线。在第四章对上述模拟结果进行了实验验证,获得了如下的实验结果:在阴极外半径为2.25mm、阴阳极之间的距离为3.5mm、二极管电压~175kV,电流~785A情况下,获得最大辐射功率~18MW、脉冲宽度~3ns、输出模式为TE_(11)单一辐射模式,功率效率~12.9%,在重复频率10Hz情况下进行了运行。粒子模拟结果与实验结果基本一致,得到较好的实验结果,标志国内首次研制成功高功率窄脉冲重复频率的毫米波源。
     最后部分对基于超辐射机理的返波管进行了粒子模拟。对基于超辐射机理的毫米波返波管(D/λ=1)进行了粒子模拟,得到优化设计结果:电子束参数~200kV、电流~800A、脉冲底宽~1.2ns、上升前沿和下降沿都~0.1ns和引导磁场强度~3.7T,模拟得到输出功率~75MW、脉冲宽度~350ps、频率~36.5GHz、输出模式为TM_(01)模和功率效率~47%。并给出了归一化输出功率与引导磁场、电子束半径、电子束厚度、电子束脉冲宽度、二极管电压上升前沿、电子束电流和电子束电压之间的关系曲线。首次提出了带反射网的基于超辐射机理的毫米波返波管器件(D/λ=2.65),并进行了粒子模拟和优化设计。在电子束参数:电压幅值~240kV、电流~3kA、脉冲宽度~1.3ns、脉冲前
Backward-wave Oscillator (BWO) is one of the highest power microwave devices, is also the highest power and the highest efficiency millimeter wave microwave devices based on superradiance mechanism.The dissertation mainly involves three parts. In the part 1, consisting of chap.2, the nonlinear theory of relativistic backward wave oscillator (RBWO) is developed. In the part 2, consisting of chap.3 and chap.4, the normal stimulated radiation millimeter wave BWO is investigated. In the part 3, consisting of chap.5, the two millimeter backward wave oscillators based on superradiance mechanism are simulated.In the dissertation, the electric field and magnetic field in the area interacting between the electron beam and the electromagnetic field under a series of hypothesis is listed, the self-consistent nonlinear formulas of the RBWO are derived, the simulation procedure is edited on the MATLAB 6.1 and the curve of the slowly varying magnitude of the backward-wave versus the normalized length is calculated to test and verify the nonlinear formula of the BWO.In the part 2, using the 2.5D, relativistic, fully electromagnetic, PIC code KARAT, the millimeter wave BWO based on normal stimulated radiation is simulated, the results of the optimum design is followings: Employing an annular electron beam with pulse voltage ~ 170kV, current ~ 800A, pulse width ~ 4ns, the millimeter wave output with output power ~25MW, frequency ~39GHz, pulse width ~3ns, efficiency ~21% and mode TM_(01) is obtained. The normalized output power versus the radius of the electron beam and guiding magnetic field are presented. The experiment is carried out to verify the simulation results, the experiment results is followings: Utilizing an annular electron beam with voltage ~175kV, current ~785A, the outer radius of the cathode 2.25mm, the distance between the cathode and the anode 3.5mm, the millimeter wave with power ~18MW, pulse width ~3ns, efficiency ~12.9% and radiation mode TE_(11) is obtained, the experiment under the repetition rate 10Hz is also done. There is a good agreement between the numerical simulations and the experiment measurements.In the last part, the optimum designs of two millimeter wave BWO based on superradience mechanism are listed. The optimum design results of BWO (D/λ = 1) isfollowings, exploiting the electron beam with voltage ~200kV, current ~800A, pulse
    duration ~ 1.2ns, the rising time ~0.1ns, the trailing time —0.1ns, the guiding magnetic filed ~3.7T, the millimeter wave with power ~~75MW, pulse width ~~35Ops, frequency ~~ 36.5GHz, power efficiency ~47% and the radiation mode TMoi is reached., The normalized output power versus guiding magnetic field, the radius of the electron beam, the thickness of the electron beam, the pulse width of the current, the rise time of the diode voltage, the current and the voltage are listed. The over-mode millimeter wave BWO (&/. = 2.65) with/ Areflection net based on superradiance mechanism is presented, simulated and designed, the designed results is following, exploiting the electron beam with voltage ~~240kV, current ~~ 3kA, pulse duration ~ 1.3ns, the rising time ~0.25ns, the trailing time ~0.2ns, the guiding magnetic filed ~4.7T, the millimeter wave with power ~750MW, pulse width ~200ps, frequency —36.5GHz and power efficiency ~ 104.2% is reached.. The working character of the BWO is developed, the normalized output power versus the rise time of the diode voltage is explain briefly.
引文
1、James Benford, John Swegle. High Power Microwave. Artech House, Norwood, MA, 1991
    2、Robert J.Barker,Edi Schamiloglu编写.中国工程物理研究院科技部翻译 高功率微波源和技术,内部资料
    3、V. L. Granatsein and I. Alexeff(eds). High Power Microwave Sources. Norwood, MA: Artech House, 1987
    4、Clayborne D. Taylor and D. V. Giri. High Power Microwave System and Effects. 先进防御技术通讯(外文版),1994年第19期
    5、S. P. Bugaev, V. A. Cherepenin, V. I. Kanave, V. I. Koshelev V. A. Popov, A. N. Vlasov. Investigation of millimeter Wavelength Range Relativistic Diffraction Generator. IEEE Trans. Plasma Sci., Vol 18, 1990, p518
    6、M. Friedman, V. Serlin, Y. Y. Lau and J. Krall, Relativistic Klystron Amplifier I: High Power Operation. Intence Microwave and Particle Beams Ⅱ, ed. Howard Brandt, Proc. SPIE, Vol. 1407, 1997, p. 2
    7、V. Serlin, M. Friedman, Y. Y. Lau and J. Krall. Relativistic Klystron Amplifier Ⅱ: High Frequency Operation. Intence Microwave and Particle Beams, ed. Howard Brandt, Proc. SPIE, Vol. 1407, 1997., p. 8
    8、S. P. Bugaev et al. Interaction of an Electron Beam and an Electromagnetic Field in a Multiwave 10~(10) W Cherenkov Generator. Sov. J. Comm. Yech. Electr., Vol. 32, No. 11, 1987, p79
    9、M. friedman, J. Krall, Y. Lau, and V. Serlin. Efficient Generation of Multi-Gigawatt RF Power by a Klystron-Like Amplifier. Rev. Sci. Instrum., Vol. 61, 1990, p. 171
    10、谢.彼.布加耶夫,伏.伊.卡纳韦茨,伏.伊.科舍列夫,伏.阿.切列佩宁.中国工程物理研究院翻译.相对论多波超高频发生器.绵阳:中国工程物理研究院出版社,1994
    11、J. Nation. On the coupling of a high-current relativistic electron beam to a slow wave structure. Appl. Phys. Lett. Vol(17) 49, 1970
    12、Ya. F. Zagulov, V. Ya. Borisov, G. D. Vlasov, A. A. Makushev, V. V. Lopatin, A. S. EI'chaninov and B. M. Kovalchuk. pulsed high-current nanosecond electron accelerator with pulsing frequency of up to 100Hz. Prib.Tekh. Eksp. Vol(5) 18, 1976
    13、V. I. Belousov, B. V. Bunkin, A. V. Gaponov-Grekhov, A. S. EI'chaninov F. Ya. Zagulov, N. F. Kovalev, S. D. Korovin etc. Intense microwave emission from periodic relativistic electron bunches. Pis'ma Zh. Tekh. Fiz 4, 1978. p1443
    14、S. D. Korovin, V. V. Rostov and A. V. Smorgonskii. A pulsed-periodic relativistic carcinotron. Izv, VUZRadiofiz, vol 29, 1980. p1278
    15、V. S. Ivanov, N. F. Kovalev, S. I. Krementsov, M. D. Raiser. Relativistic millimeter Carcinotron. Sov. Tech, Phys. Lett. vol 4. 1978. p329
    16、文光俊.高效率高功率相对论返波振荡器的研究.博士学位论文,电子科技大学,1998。P1
    17、Y. Carmel, K. Minami, W. R. Lou etc. High power microwave generator by excition of a plasma-filled rippled boundary resonator. IEEE Trans Plasma Sciences. vol (18)3. 1990. p497-506
    18、A. A. Eltchaninov, S. D. Korovin, V. V. Rostov, I. V. Pegel, G. A. Mesyats, S. N. Rukin, V. G. Shapk, M. I. Yalandin and N. S. Ginzburg. Production of short microwave pulses with a peak power exceeding the driving electron beam power. Laser and Particles Beams. vol 21. 2003. p187-196
    19、A. A. Eltchaninov, S. D. Korovin, G. A. Mesyats I. V. Pegel V. V. Rotov V. G. Shapk and M. I. Yalandin. Review of studies of superradiative microwave generation in X band and Ka band relativistic BWOs (Review). IEEE Trans on Plasma Science. vol 32(3). 2004. p1093-1099
    20、Sinus 700 Generator Technical Description. Institute of High Current Electronics Siberian Divison Russian Academy of Science. 1996
    21、F. J. Agee, C. E. Baum, W. D. Prather, J. M. Lehr, J. P. O'Loughlin, J. W. Burger, S. H. Schoenberg, D. W. Scholfield, etc. Ultra-wideband transmitter research. IEEE Transactions on Plasma Science. Vol26(3), 1998. p860-871
    22、W. D. Prather, C. E. Baum, J. M. Lehr, J. P. O'Loughlin, S. H. Schoenburg, R. J. Torres, T. C. Tran, D. W. Scholfield etc. Ultra-wideband source and antenna research. IEEE Transactions on Plasma Science. Vol28(5), 2000. p1624-1629
    23、D. V. Giri, J. M. Lehr, W. D. Prather, C. E. Baum, R. J. Torres. Intermediate and far fields of a reflector antenna energized by a hydrogen spark-gap switched pulser. IEEE Transactions on Plasma Science. Vol28(5), 2000. p1631-1635
    24、S. N. Rukin, G. A. Mesyats, S. A. Darznek, S. K. Lyubutin, A. V. Ponomarev, B. G. Slovikovsky, S. P. Timoshenkov, A. I. Bushlyakov, S. N. Tsiranov, Sos-based pulsed power: development and applications. The 12th IEEE int. Pulsed Power Conference. Canifomia USA. 1999. p153-156
    25、Yu. A. Kotov, G. A. Mesyats, S. N. Rukin, et al. A novel nanosecond semiconductor opening switch for megavolt repetitive pulsed power technology: experiment and applications. The Ⅸ Int. IEEE pulsed power conference, vol 1. 1993. p134
    26、G. A. Mesyats, S. N. Rukin, S. K. Lyubutin, et al. Semiconductor opening switch research at IER The X int. IEEE pulsed power conference, vol 1. 1995 p298
    27、S. A. Darznek, G. A. Mesyats, S. N. Rukin, S. N. Tsiranov. Theoretical model of the SOS effect. The Ⅹ Ⅰ Int. conference on high power particle beam. Vol 2. 1996. p1241
    28、S. K. Lyubutin, G.A.Mesyats, S. N. Rukin, B. G. Slovikovskii. Repetitive nanosecond all-solid-state pulsers based on SOS diodes. The Ⅹ Ⅰ int. IEEE pulsed power conference, vol 2. 1997. p992
    29、S. K. Lyubutin, G. A. Mesyats, S. N. Rukin, B. G. Slovikovskii. Repetitive short pulse SOS generator. The 12th Int. IEEE pulsed power conference, USA. 1999
    30、N. S. Ginzburg, N. Yu. Novozhilova, I. V. Zotova, A. S. Sergeev, N. Yu. Peskov, A. D. R. Phelps, S. M. Wiggins, V. G. Shpak, M. I. Yalandin et al. Generation of powerful subnanosecond microwave pulses by intense electron bunches moving in a periodic backward wave structure in the superradiative regime. Physical Review E. Vol 60(3). 1999. p3297-3304
    31、M. I. Yalandin, V. G. Shpak, S. A. Shunailov, M. R. Oulmaskoulov, N. S. Ginzburg, et al. Generation of powerful subnanosecond microwave pulses in the range of 38-150GHz. IEEE Transactions on Plasma Science. Vol 28(5), 2000. p1615-1619
    32、A. I. Klimov, S. D. Korovin, V. V. Rostov, M. R. Ulamaskulov, V. G. Shpak, S. A. Shunailov, and M. I. Yalandin. Highly efficient generation of subnanosecond microwave pulses in Ka-band relativistic BWO. IEEE Transactions on Plasma Science. Vol30(3), 2002. p1120-1124
    33、刘盛刚主编著.微波电子学导论.第一版,成都:国防工业出版社,1985:p327 p523
    34、杨祥林,张兆镗,张祖舜编著.微波器件原理.第一版,北京:电子工业出版社,1994:p170
    35、B. Levush, T. M. Antonsen, A. Bromborsky, Wei-Ran Lou and Y. Camael. Theory of Relativistic backward-wave oscillators with end reflections. IEEE Transactions on Plasma Science. Vol20(3), 1996. p263-280
    36、S. M. Miller, T. M. Antonsen, B. Levush and A. N. Vlasov. Cyclotron resonances in relativistic BWO's operating near cutoff. IEEE Transactions on Plasma Science. Vol24(3), 1996. p859-869
    37、K. Schunemann and D. M. Vavriv. Thery of the clinotron: a grating backward-wave oscillator with inclined electron beam. IEEE Transactions on electron devices. Vol46(11), 1999. p2245-2252
    38、张运俭.周期慢波结构中超辐射机理的初步研究.硕士论文,中国工程物理研究院,2003.
    39、张可潜,李德杰著.微波与光电子学中的电磁理论.第二版,北京:电子工业出版社,2001
    40、User's Manual for Code KARAT. V. P. Tarakanov, Berkeley Research Associates, Inc., Springfield, VA, 1994.
    41、Birdsall, C. K., and A. B. Langdon. Plasma physics via Computer Simulation [M]. New York: McGraw-Hill, 1985
    42、邵祸球.等离子体离子模拟[M].北京:科学出版社,2002.
    43、[美]朱国瑞.刘盛纲泽.开放谐振腔的时域分析[M].成都:电子科技大学出版社,1996.
    44、朱国瑞等.开放腔的频域分析[J].Int. J. Of Infrared and Millimeter Waves,1992;13:1571~1598.
    45、魏因施泰因著,徐承和、刘国政、廖正久泽.开放腔和开放波导[M].北京:科学出版社,1987.
    46、王长清,祝西里.电磁场计算中的时域有限差分法[M],北京大学出版社,1994.
    47、高本庆.时域有限差分法[M],国防工业出版社,1995.
    48、王秉中.计算电磁学[M],科学出版社,2002.
    49、S. J. Smith, E. M. Purcell. Visible light from localized surface changes moving across a grating. Phys. Vol 92, 1953. p1069
    50、R. H. Dicke. Coherenc in spontaneous radiation processes. Phys. Vol 93. 1954. p99
    51、D. A. Jaroszynski et al. Superradiance in a short-pulse FEL oscillator. Phys. Rev. Lett, Vol 78. 1997. p1699
    52、N. S. Ginzburg et al. Experiment observation of cyclotron superradiance under group synchronism conditions. Phys. Rev. Lett. Vol 78. 1997. p2365
    53、W. Heitler. The quantum theory of radiation, first edition, Oxford, Clarendon press, 1936
    54、R. Bonifacio et al. Superradiance evolution of pulse in a free-electron laser. Phys. Rev. Lett. Vol 44. 1991. p3441
    55、R. Bonifacio, C. Maroli, N. Piovella. Slippage and superradiance in the high-gain: linear theory. Optics Comm., Vol 68. 1988. p369
    56、N. S. Ginburg et al. Theory of superradiance of electron bunch moving in waveguide under group synchronism condition. Nucl. Instrum. Methods Phys. Res. A. Vol 34. 2000. p445
    57、V. P. Gubanov et al. High peak power and high average power subnanosecond Ka-band relativistic BWO. 14th international conference on high power beams. 2002. p163-266
    58、张运俭,陈洪斌,孟凡宝.低引导磁场下相对论亚纳秒电子束毫米波返波管振荡器的粒子模拟,Vol 27(9),2003
    59、陈洪斌,孟凡宝.胡林林等.高功率窄脉冲8毫米波返波管粒子模拟和实验研究.全国863重点实验室学术会议.2003-2004
    60、阮成礼.毫米波理论与技术.第一版,成都:电子科技大学出版社,2001
    61、Technical Manual for compact High-current pulsed power source (RADAN303B), V. G. Shpak, Electrophysics institute of Ural branch of Russian academy of science. 2003
    62、Technical Manual for microwave generator, V. G. Shpak, Electrophysics institute of Ural branch of Russian academy of science. 2003
    63、张永辉,陈洪斌,康强.重复频率电子束源技术研究,高能物理与核物理,Vol26(8),2002.p876-881
    64、E. J. Michael, E. T. Laster. Intense annular relativistic electron beam generation in foilless diodes. J. Appl. Phys., Vol 51(10), 1980. p5212-5214
    65、MAGIC User's manual, MAGIC user's Group Mission Research Corporation, 2000
    66、W. Glock and S. Lenke. Pulsed high voltage flashover of vacuum dielectric interfaces. Cornell Lab. of plasma studies. August 1969
    67、T. H. Martin, A. H. Guenther and M. Kristiansen. J. C. Martin on pulsed power. New York and London: Plenum press, 1996. p253
    68、陈吕华,刘国渝,宋志敏,范菊平.引导磁场对相对论返波管微波功率的影响.强激光与粒子束.Vol 12(6).2000.p745-748.
    69、Alexander N. Vlasov, Anton S. Ilyin and Yuval Carmal. Cyclotron effects in relativistic backward-wave oscillators operatoring at low magnetic fields. IEEE Transactions on plasma science. Vol 26(3). 1998. p605-613
    70、Technical Manual for high voltage subnanosecond former, V. G. Shpak, Electrophysics institute of Ural branch of Russian academy of science. 2003
    71、S. P. Bugaev, V. I. Kanavets, A. I. Klimov, V. I. Koshelev, A. I. Slepkov and V. A. Cherepenin. Interaction of an electron beam and an electromagnetic field in a multiwave 10~(10)W cherenkov generator. Sov. J. Comm. Tech. Electr., Vol 32(11), 1987. p79
    72、M. V. Friedman, V. Serlin, Y. Lau and J. Krall. Relativistic klystron amplifier 1-high power operation. In H. E. Brandt(Ed.), intense microwave and particle beams Ⅱ. Proceeding SPIE 1407(1992). P2
    73、I. Shih, D. B. Chang, "Experimental investigation of radiation from the interaction of an electron beam and a conducting grating", Opt. Lett, 15, 559(1990).
    74、W. Heitler, The Quantum Theory of Radiation, Clarendon Press, Oxford, 1936, first edition, pp. 112.
    75、E. U. Condon and G. H. Shortly, The Theory of Atomic Specra, Cambridge University Press, Cambridge, 1935, pp. 45-49.
    76、E. L. Burdette and G. Hughes, "Cerenkov radiation in dielectric-lined waveguides", Phys. Rev. A14, 1766(1976).
    77、N. S. Ginburg, N. Yu. Nobozhilova, I. V. Zotova et al, Phys Rev E, 60, 3297(1978).
    78、N. S. Ginzburg, et al, "Increasing of Peak Power of Superradiantion Pulses by Variation of Accelerating Voltage", 14th International Conferrence on High-Power Beams, 2002: 291~294
    79、陈吕华,刘国治和肖仁珍.相对论返波管慢波结构电动力学特性研究.全国第五届高功率微波学术研讨会.珠海.2002.p7-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700