红提葡萄贮藏保鲜过程中SO_2伤害的防止技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,红提葡萄的生产在我国发展迅速。红提葡萄产区和成熟期较集中,常温下易腐烂,上市时间短,典型的鲜食品种而不适宜大规模的加工,因此,红提葡萄生产的持续、健康、稳定的发展必须以贮藏保鲜业作为后盾。然而,红提葡萄的贮藏保鲜技术仍然没有完全解决。突出的问题是红提葡萄贮藏保鲜过程中极易发生SO_2伤害,严重影响了果实的商品价值和食用价值。本试验主要研究了防止红提葡萄贮藏保鲜过程中发生SO_2伤害的方法,同时,对可取代SO_2的保鲜剂和保鲜方法做了初步研究。主要研究结果如下:
     1.导致红提葡萄腐烂的主要病原菌为交链孢霉(Alternaria SPP.)。其次为灰葡萄孢霉(Botrytis cinerea)。
     2.对于灰葡萄孢霉,过氧乙酸、双氧水、对羟基苯甲酸乙酯的抑制能力最强,其次为次氯酸钠、冰醋酸,新洁尔灭、蜂胶、扑海因和次亚磷酸钠的抑制能力相对较弱,以上药剂的最小抑制浓度(MIC)依次为0.02%、0.02%、0.04%、0.08%、0.1%、0.4%、0.5%、0.16%、1.0%;对于交链孢霉,扑海因、新洁尔灭、对羟基苯甲酸乙酯抑制能力最强,其次为过氧乙酸、双氧水、次氯酸钠和冰醋酸,蜂胶和次亚磷酸钠抑制能力相对较弱,以上药剂的最小抑制浓度(MIC)依次为0.005%、0.025%、0.04%、0.02%、0.02%、0.08%、0.1%、0.5%、1.0%;其它药剂如苯甲酸钠、山梨酸钾、蔗糖脂肪酸酯、壳聚糖等对两种霉均没有抑制效果。
     3.用正常剂量的SO_2(7袋CT_2/5Kg果穗)配合2%多聚磷酸钠、2%酪氨酸钙、2%KI和0.5%I_2混合物、0.5%KI、I_2(1g/5Kg果穗),和低于正常剂量的SO_2(3袋CT_2/5Kg果穗)配合0.4%新洁尔灭、0.4%对羟基苯甲酸乙脂、包埋的0.4%对羟基苯甲酸乙脂、0.2%对羟基苯甲酸乙脂和0.2%新洁尔灭混合药剂、包埋的0.2%对羟基苯甲酸乙脂和0.2%新洁尔灭混合药剂、0.4%对羟基苯甲酸乙脂和1%BHT混合药剂、0.4%对羟基苯甲酸乙脂和2%KI混合药剂、1%蜂胶、1%蜂胶和0.2%植酸混合药剂处理红提葡萄,均可有效防止红提葡萄在MA条件下贮藏的SO_2伤害。但以上处理的防腐效果和防褐变效果不同,和单独使用正常剂量的SO_2相比较:SO_2配合I_2,优于其(正常剂量的SO_2,下同)防腐效果,但不能达到其防褐变效果;SO_2配合KI,接近其防腐效果,优于其防褐变效果;SO_2配合酪氨酸钙、多聚磷酸钠、KI与I_2混合物,接近其防腐效果,但不能达到其防褐变效果;SO_2配合包埋的对羟基苯甲酸乙脂和新洁尔灭,优于其防腐效果,接近其防褐变效果;SO_2配合蜂胶或蜂胶和植酸的混合药剂,接近其防腐效果,但不能达到其防褐变效果;其它药剂和SO_2配合,不能达到其防腐效果和防褐变效果。防止SO_2伤害和腐烂的最佳处理均为:低于正常剂量的SO_2配合包埋的对羟基苯甲酸乙脂和新洁尔灭。防止褐变的最佳处理为:正常剂量的SO_2配合KI。
     4.适宜浓度的SO_2(3袋CT_2/5Kg果穗)和O_3配合使用,无论是每d施加一定量O_3(浓度2μl/l、4μl/l),还是每7d施加一定量O_3(浓度为8 μl/l),均能有效防止红提葡萄在CA贮藏中的SO_2伤害,并具有显著优于正常剂量SO_2(7袋CT_2/5Kg果穗)的防腐效果。但防褐变效果根据O_3的剂量而定:2μl/l的O_3每d处理一次,或8μl/l
    
    的03每7d一次,均优于正常剂量502的防喝变效果:扭1/l的O:每d处理一次,不
    能达到正常剂量502的防褐变效果。
    5.适宜浓度的502和03配合使用,能抑制果实的还原糖、可滴定酸和VC的消耗,
    抑制果实MDA的产生,延缓果实的成熟和衰老。其效果优于单独使用50:类保鲜剂,
    更优于单独使用。3。
    6.药剂的包埋处理可显著提高药剂的防腐、保鲜能力。
    7.班具有优异的防褐变效果。BHT和植酸也具有一定的防褐变效果。
    8.单独使用03不能长期贮藏红提葡萄。幸1/l一1伽1/1的。3浓度每d处理一次或助l/l
    的03浓度每7d处理一次,果粒、穗轴和果梗均发生严重的褐变、腐烂现象。
    9.MA条件下,防止红提葡萄502伤害的最佳措施为:采前喷撒经包埋处理的0.2%
    对轻基苯甲酸乙脂和0.2%新洁尔灭混合药剂,入贮时在包装袋内放入低剂量的CTZ
    502类保鲜剂(4包/5Kg果穗)。在贮藏温度为一1℃、相对湿度为90%一95%条件下
    贮藏180d,果实的各项指标为:腐烂率3.09%、漂白指数1.98%、穗轴褐变指数14.84%、
    果梗褐变指数8*37%、还原糖含量14.巧%、可滴定酸含量0.42%、Vc含量0.52m留1009
    和50:残留量1.09m乡吸g。
    10.CA条件下,防止红提葡萄502伤害的最佳措施为:贮藏环境内保持一定浓度的
    502,如CTZ(3包/5Kg果穗),每d充入一定剂量的O:(取l/l)。在贮藏温度为一1℃、
    相对湿度为90%一95%、。23%~5%、COZ(5%条件下贮藏200d,果实的各项指标为:
    腐烂率5.00%、漂白指数2.18%、穗轴褐变指数9.09%、果梗褐变指数10.07%、还原
    糖含量10.09%、可滴定酸含量0.34%、VC含量o.68mg/ioog和50:残留量1.64m妙g。
In the recent years, the production of Red Globe table grape has been progressing rapidly. Red Globe table grape is a kind of fruit with relatively concentrative producing areas and harvesting time; it is perishable on normal temperature, and its marketable time is rather; short. .Moreover, being a typical table variety, the massive process is fairly difficult. Therefore, the storage and .fresh-keeping industry is vital to the continuous, healthyy and steady development of Red Globe grape's production. However, this technology has not been solved perfectly, in which the most outstanding problem is that grapes under storage are easy to incur SO2 Injure, which has a serious effect on their edible value and commercial value. The SO2 Injure preventing techniques were studied. In addition, some alternative fresh-keeping agents and methods were studied as well. Results showed:
    1. The leading pathogeny microbes resulted in decay was Alternariaspp, followed by Botrytis cinerea.
    2. To Botrytis cinerea, the most potent antibacterial agents were Peracetic acid, Hydrogen peroxide and Ethyl p-hydroxybenzoate, followed by Sodium hypochlorite and Acetic acid, Bromo-Geramium, Propolis, Iprodione and Sodium hypophosphite were relatively weak. The Minimum Inhibitory Concentrations (MIC) of the agents listed above were 0.02%, 0.02%, 0.04%, 0.08%, 0.1%, 0.4%, 0.5%, 0.4%, 0.16% and 1.0% respectively. As to Alternaria spp., Iprodione, Bromo-Geramium and Ethyl p-hydroxybenzoate had the most effective prohibiting power, witii Peracetic acid, Hydrogen peroxide, Sodium hypochlorite and Acetic acid in the secondary rank, Propolis and Sodium hypophosphite in the bottom of the hierarchy. The MIC for all of these agents could be 0.005%, 0.025%, 0.04%, 0.02%, 0.02%, 0.08%, 0.1%, 0.5% and 1.0% respectively. Nevertheless, other preservatives used commonly in food, such as Sodium benzoate, Sorbate, Sucrose Fatty Acid Ester and Chitosan, were totally ineffective to the two moulds.
    3. Using SO2 with the normal dosage (7bags CTi/SKg grape fruits), mixed with 2%Sodium polyphosphate, 2%Calcium caseinate, 0.5%Potassium iodide, Iodine (1g/5kg grape fruit )or mixed agents including 2%Potassium iodide and 0.5%odine, could prevent SO2 Injure effectively. And Using SO2 with dosage less than normal
    
    
    (3bags CT2/5kg grapefruit), mixed with 0.4%Bromo-Geramium, 0.4%Ethyl p-hydroxybenzoate, 0.4% Ethyl p-hydroxybenzoate microencapsulated, the mixed agents microencapsulated including 0.2%Bromo-Geramium and 0.2%Ethyl p-hydroxybenzoate, the mixed agents including 0.2%Bromo-Geramium and 0.2%Ethyl p-hydroxybenzoate, 1% Propolis or the mixed agents including 1% Propolis and 0.2% Phytic acid could prevent SOj Injure effectively as well.
    However, using SOa of different dosages mixed other agents, these treatments were different in inhibiting decay and browning comparing with just use 862 of the normal dosage: mixed with Iodine, had better inhibition effect on decay, but had worse effects on browning; mixed with Potassium iodide, had better inhibition effect on browning while the effects on decay are not so good; mixed with agents such as Calcium casemate,. Sodium polyphosphate, mixed agents including Potassium iodide and Iodine, had the same good effects on decay, but effects on browning would be worse; mixed with the mixed agents microencapsulated, iscluding Bromo-Gcramium and Ethyl p-hydroxybenzoate, had better inhibition effects on decay and the same browning inhibiting effects; mixed with Propolis or the mixed agents including Propolis and Phytic acid, had the same effects on decay, but didn't have so good effects in browning; mixed with the other agents, couldn't be so good in inhibiting browning and decay. Using SO2 with dosage less t
    han normal (3bags CT2/5Kg grape fruit), mixed with the mixed agents microencapsulated, including Bromo-Geramium and Ethyl p-hydroxybenzoate, was the best treatment to prevent SO2 Injure or decay. SO2 with normal dosage, mixed with Potassium iodide, was the best treatment to prevent browning.
    4. Integrated with O3, no matter it's a
引文
[1] 修德仁,周延文.红地球葡萄贮藏保鲜技术[J].保鲜与加工,2002,2(5):24~26.
    [2] 孙益知,红地球葡萄优质丰产技术[M].北京:中国农业出版社,1999.
    [3] 张华云,王善广,高海燕,等.葡萄SO2伤害与影响因素研究[J].保鲜与加工,2002,2(5):17~19.
    [4] 石志平,梁丽雅.巨峰与红地球葡萄贮藏特性比较[J].保鲜与加工.2002,1(4):18.
    [5] 葛毅强,谭敦炎,张维一,等.SO2对鲜食葡萄采后熏蒸处理的组织解剖研究[J].西北植物学报,1997,17(4):516~521.
    [6] 高海燕,葡萄SO_2伤害敏感性与果皮结构及生理生化特性关系的研究[D].西北农林科技大学硕士论文,2001.
    [7] 孔秋莲,葡萄采后贮藏中SO2伤害机制及调控措施研究[D].沈阳农业大学博士论文,1999.
    [8] K.E.Nelson, and H.B.Richardson. Storage Temperature and Sulfur Dioxide Treatment in Relation to Decay and Bleaching of Stored Table Grapes.Phytopathology, 1967, (57): 950~955.
    [9] J.L.Smilanick, et.al. Influence of sulfur dioxide fumigant does on residues and control of posthervest decay of grapes Ame.J.Oenology and Vitic, 1990, (41): 131~136.
    [10] Donald A.Luvisi, et.al. Sulfur Dioxide Fumigation of Table Grapes.University of California Division of Agricuture and Natural Resources. Bulletin, 1992.
    [11] 田志宏,田勇,曾庆伟,等.影响红地球葡萄贮运保鲜主要因素及其调控技术[J].保鲜与加工,2003,3(3):6~8
    [12] 中国科学院上海植物生理研究所,上海市植物生理学会.现代植物生理学实验指南[M].北京:科学技术出版社,1999.
    [13] 赵世杰,许长城,邹琦,等.植物组织中丙二醛测定方法的改进[J].植物生理学通讯,1994,30(3):207~210.
    [14] 韩雅珊.食品化学实验指导[M].北京:中国农业出版社,1994.
    [15] 杨惠芬,李明元,沈文.食品卫生理化检验标准手册[M].北京:中国轻工出版社,1997.
    [16] 张华云,王善广,修德仁,等.SO_2对红地球葡萄的伤害及调控技术[J].中外葡萄与葡萄酒,2000,(3):19~20.
    [17] 贾俊平,何晓群,金永进.统计学[M].北京:中国人民大学出版社,2000.
    [18] 李知行.葡萄病虫害防治[M].北京:金盾出版社,1992.
    [19] 王森.红地球葡萄主要病原菌的发生与综合防治[J].中外葡萄与葡萄酒,2002(1):43~44.
    [20] Harvey JM, Pentzer WT. Market disease of grapes and other small fruits[J]. In U.S. Dep Agr Handbook, 1960, 189: 37~39.
    [21] Mandal NC, Dasgupta MK. Postharvest diseases of perishables in west Bengal(India)[J]. Fruits, 1984, 38: 571~578.
    [22] Nelson KE. Harvesting and handing California table grapes for market[J]. Univ Calif Div Agri Sci Publ, 1985, 1913~1915.
    
    
    [23] Bernad F, selim kermasha, Catherine N, et al. Encapsulation in the food Industry: a review[J]. International Journal of Food Science and Nutrition, 1990(50): 213~224
    [24] 宋华宾.微胶囊技术在防腐剂中的应用[J].肉禽蛋,1990(3):40~46.
    [25] 乞永燕.蜂胶乙醇提取物抗氧化性能研究[J].食品科学,2000,(4):43
    [26] 霍君生,邓春景.蜂胶对鸡蛋高温贮藏生理及蛋壳表皮超微结构的影响[J].河北农业大学学报.1994,(3):103.
    [27] 唐金贤,李素英.蜂胶治疗癌症的理论研究[J].蜜蜂杂志,1995,(2):6.
    [28] 葛毅强,叶强,张维—.SO_2对采后葡萄中某些生理生化的影响[J].植物生理学通讯,1998,34(3):185~187.
    [29] 霍君生.果蔬采后生理衰变机制探讨[J].植物抗性生理研究,1992,255~260.
    [30] 刘曼西.有机酸对马铃薯多酚氧化酶活性的研究[J].植物生理学通讯,1991,27(5):350~353.
    [31] 林哲甫,张维钦:香蕉果肉组织的多酚氧化酶[J].植物生理学报,1965,(2):94.
    [32] 王慧,阿地力.葡萄贮藏中有机酸代谢与果实褐变的关系[J].干旱区研究,1992,9(4):68~71.
    [33] Kozlowski TI. Postharvest decay control of grapes by using sodium metabisulfite in cartons enclosed in plastic bags[J]. An J Enol Vitic, 1986, 37: 132~136.
    [34] 周山涛.果品贮藏加工学[M].北京:中国农业出版社,1998.
    [35] 雯茜姆·艾买提.贮藏中三种葡萄呼吸速率及耐藏性的观测[J].干旱区研究,1991,(3):19~21.
    [36] 郭毅强,张唯一.SO_2对葡萄采后呼吸强度及内源乙烯的影响[J].园艺学报,1997,24(2):120~124.
    [37] Roy D, Wong PKY, Engelbrecht RS, et al. Mechanism of enterovirsal in activation by ozone[J]. Appl Environ Microbiol 1981, 41(3): 718.
    [38] Mudd JB Reavitt R, Ongun A. Reaction of ozone with a mino acids and their derivatives following exposure to ozone and ultraviolet radiations[J]. Arch Biochem Biophys 1954, 51: 208.
    [39] 王芳.臭氧消毒研究进展[J].中国消毒学杂志,1998,2,26~27.
    [40] 李汉忠,沈家鹏.臭氧在冷库中的应用[J].冷藏技术,1993,3,60~63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700