基于超微细处理的猕猴桃籽油保健功能特性及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以猕猴桃果渣中的果籽为原料,采用超临界CO:萃取技术提取猕猴桃籽油,研究萃取分离条件与抗氧化稳定性,分析猕猴桃籽油的理化特性与质量指标,研究使其油滴粒度达到超微细状态的超高压处理条件及粒径分布特征,并通过动物试验模型进一步开展超微细猕猴桃籽油的保健功效特性研究与安全性评价,然后在此基础上对其开展软胶囊与护肤品类产品的开发应用研究。研究结果表明:
     ①超临界CO2萃取猕猴桃籽油的最佳条件为:果籽粉碎度40-60目,萃取压力30MPa,萃取温度48℃,CO2流量300kg/h,萃取时间210min,出油率34.4%;选择二级降压分离,可把超临界CO2萃取出的猕猴桃籽油中的游离脂肪酸与水分进一步分离出来,最佳分离条件为:分离釜Ⅰ的压力与温度分别为9MPa、42℃,分离釜Ⅱ的压力与温度分别为6MPa、室温,猕猴桃精油出油率可达32.3%;温度与光照条件均可加速氧化猕猴桃籽油,应注意低温避光保存,添加由0.1‰TBHQ、0.1‰BHT、0.05‰V。组成的复合抗氧化剂可提高其抗氧化稳定性。
     ②对猕猴桃籽油的不合格品进行精炼的最佳脱酸条件为:碱炼初温35℃,碱液浓度9%,下碱时间5min,搅拌转速60r/min,保温沉降8h;最佳脱水条件为:脱水温度105℃,脱水时间55min,搅拌转速45r/min,脱水真空度0.08Mpa;脱色条件为:加活性白土2.5%,脱色温度95℃,真空度0.08MPa,搅拌转速55-60r/min,时间30min,然后采用板框过滤机进行过滤;脱臭条件为:脱臭温度150℃,时间2.5h,真空度0.08Mpa,脱臭完成后充入N2破真空度,采用0~5℃低温贮藏。
     ③猕猴桃籽油的理化特征指标为:相对密度0.927,折光指数1.484,烟点160℃,皂化值182mgKOH/g,碘值171g I2/100g;脂肪酸组成中,主要含亚麻酸64.3%、亚油酸13.3%、油酸14.5%、棕榈酸5.6%、硬脂酸1.3%,是当今较为理想的天然多烯酸来源。
     ④采用超高压纳米均质技术制备超微细猕猴桃籽油的最佳条件为:操作压力135MPa,样品流量70L/h,对猕猴桃籽油处理3次,可使其油滴粒径最小;采用光子相关光谱法对普通猕猴桃籽油的油滴粒度进行检测,粒度大于2μm的油滴占97.891%,100%的油滴粒度小于6p m,平均粒径为3.0536μ m,表明普通猕猴桃籽油的油滴粒度处于微米级范围;100%超微细猕猴桃籽油的油滴粒径小于0.1972μ m,其中小于100nm的油滴所占比例高达88.594%,油滴平均粒径0.0634μ m,平均粒径比超微细处理之前的原油缩小48.2倍;经扫描电镜(SEM)分析,普通猕猴桃籽油的油滴杂乱无章,没有规整的几何形状,而超微细猕猴桃油的油滴分布较为分散,外形呈球型,比表面积相对较大。
     ⑤普通猕猴桃籽油和超微细猕猴桃籽油都能降低高脂饲料模型大鼠的血清TC和TG水平及提高HDL-C水平,但两者都对降低TG水平更为有效;超微细猕猴桃籽油比普通猕猴桃籽油调节血脂的功效更为显著,尤以低剂量的超微细猕猴桃籽油(0.335g/kg·BW)的功效更为突出,对高脂大鼠TC水平的降幅为48.67%,对TG水平的降幅为53.25%,对HDL-C水平的增幅为201.41%,比普通猕猴桃籽油对TC的降幅提高10.5倍,对TG的降幅提高2.3倍,对HDL-C的增幅提高9.2倍;超微细猕猴桃籽油和普通猕猴桃籽油都能降低溴代苯肝损伤模型小鼠组织中MDA的含量,但前者比对MDA的降幅比后者提高4.8倍;两种猕猴桃籽油均能极显著增强小鼠血清SOD的活力,前者增幅达到190.05%,比后者提高3.2倍;果蝇生存试验结果表明,两种猕猴桃籽油均可均显著延长果蝇的平均寿命和平均最高寿命,但前者功效更为明显。
     ⑥以超微细猕猴桃籽油喂饲大鼠30d,对大鼠的生长发育、血液学指标、血液生化指标没有影响,也未见病理形态学改变,可初步认定对人体安全。
     ⑦依据超微细猕猴桃籽油保健功能特性与安全性评价结果,以其为原料制备超微细猕猴桃籽油软胶囊,囊壳配比(水:明胶:甘油)为1:1:0.5时,软胶囊质量最佳;超微细猕猴桃籽油软胶囊的囊壳厚度定为0.60mm为宜,可防止崩解迟缓;软胶囊的最佳干燥条件为干燥温度25℃,相对湿度30%,干燥时间30h;软胶囊的崩解时限随储存温度的升高而延长,长期储存时控制温度低于35℃以下;以超微细猕猴桃籽油为基料,制备出乳液与膏霜护肤产品,人体斑贴试验结果表明对人体皮肤未引起不良反应。
     通过开展上述研究,进一步明确了超微细猕猴桃籽油更为显著的营养保健价值,扩宽了应用范围,也有利于进一步提高我国猕猴桃产业应用基础研究水平,完善超微细功能性油脂的功效研究理论体系。
The conditions of extraction, separation and anti-oxidative stability of the kiwi fruit seed oil which was extracted by the supercritical CO2were studied with the kiwi fruit seed from the fruit residue as raw material, and its physicochemical characters and quality indexes were determined and analyzed; the ultra-high pressure homogenizing conditions that made the kiwi fruit oil particle size reached the ultra fine state and the distribution characteristics of the particle diameter were researched, then further carried out the research on the health care effects of the kiwi fruit seed oil by ultra-fine processing and its safety evaluation through constructing the animal experimental model; and on this basis, also performed relevant application research, such as soft capsule and skin care product. The research results were as follows:
     ①Optimal conditions for extracting the kiwi fruit oil by the supercritical CO2method:fruit seed grinding degree,40-60mesh; extraction pressure,30MPa; extraction temperature,48℃; CO2flow rate,300kg/h; extraction time,210min; and oil yield,34.4%; the free fatty acid and water could be further separated from the kiwi fruit seed oil which was extracted by the supercritical CO2if two-step depressurization separation method was used, and optimal separation conditions were as follows:the pressure and temperature of the separation pot Ⅰ, respectively9MPa and42℃; those of the separation pot Ⅱ, respectively6MPa and room temperature; kiwi fruit oil rate,32.3%; both the temperature and illumination condition could accelerate the oxidation of the kiwi fruit seed oil, so it shall be low temperature stored preserved without light and the anti-oxidative stability could be improved by adding the composite antioxidant which was made up of0.1‰TBHQ,0.1‰BHT and0.05‰VC.
     ②The refining technology of the rejected product of the kiwi fruit seed oil was optimized. And optimal acid removal conditions were as follows:initial temperature of the alkali refining,35℃; concentration of the alkali liquor,9%;alkali refining time,5min;whisk speed,60r/min; thermal subsidence,8h; and optimal dehydration conditions were as follows:temperature,105℃; time,55min; whisk speed,45r/min; vacuum degree,0.08Mpa; and decolorizing conditions were as follows:adding activated clay,2.5%; decolorizing temperature,95℃; vacuum degree,0.08MPa; whisk speed,55-60r/min; time,30min, and then filtering through the frame filter: and deodorization conditions were as follows:deodorization temperature,150℃; time,2.5h; vacuum degree,0.08Mpa; filling in N2to remove the vacuum degree after deodorization had been finished and storing at a low temperature of0-5℃.
     ③Physicochemical characteristic indexes of kiwi fruit seed oil were as follows: relative density,0.927; refraction Index,1.484; smoke point,160℃; saponification ratio,182mgKOH/g; iodine value,171g I2/100g; and main compositions of the fatty acid included:linolenic acid,64.3%; linoleic acid,13.3%; oleic acid,14.5%; palmitic acid,5.6%; and stearic acid,1.3%; and the kiwi fruit seed oil was the nowadays main source of the most ideal natural polyenoic acid.
     ④Optimal conditions for preparing the ultra-fine kiwi fruit seed oil through the ultra-high pressure homogenizing technology were as follows:operating pressure,135MPa; flow rate of sample,70L/h; the oil particle size can be made minimum if the kiwi fruit seed oil was treated3times; the photon correlation spectroscopy method was used to test the common kiwi fruit seed oil particle size:the oil droplets with the particle size more than2μm took up97.891%, the particle size of100%oil droplets was less than6μm and the average particle diameter was3.0536μm, all of which showed that the oil particle size of kiwi fruit seed oil was within the micron range; and oil particle size of100%ultra-fine kiwi fruit seed oil was less than0.1972μm, thereinto, oil droplets with the particle size less than100nm reached88.594%and the average particle size was0.0634μm, which was shrunk48.2times than that before the ultra-fine processing; SEM analyzed that the common kiwi fruit seed oil droplets were disorderly without regular geometric shapes, while those of the ultra-fine kiwi fruit seed oil were more dispersed and the shape was ball-type and the specific surface area was relatively large.
     ⑤The experiment of regulating blood lipid showed that both the common and ultra-fine kiwi fruit seed oils could reduce the TC and TG level, and enhance the HDL-C level of the white rats in the hyperlipemia animal model, however, both of them could more effectively reduce the TG level; the effectiveness for adjusting the blood fat of the ultra-fine kiwi fruit seed oil was more remarkable than that of the common kiwi fruit seed oil, especially the effectiveness of low-dosage ultra-fine kiwi fruit seed oil (0.335g/kg-BW) was outstanding; in details, the decreasing amplitude for TC level of the hyperlipidemic rats was48.67%, that for TG level was53.25%and the increasing amplitude for HDL-C level was201.41%, which were respectively10.5times of the TC and2.3times of the TG decreasing amplitude, and9.2times of the HDL-C increasing amplitude of the common kiwi fruit seed oil; and the oxidation resistance test showed that both the ultra-fine and common kiwi fruit seed oils could reduce the MDA content of the model mice of liver injury by monobromo-benzene, however, the decreasing amplitude of MDA of the former was4.8times of that of the later; both of the kiwi fruit seed oils could remarkably strengthen the SOD vitality in the blood serum of mice, but the increasing amplitude of the former can reach190.05%, which was3.2times of that of the later; the survival test results of the drosophila showed that both of the kiwi fruit seed oils could prolong the average life span and maximum life span, but the effectiveness of the former was more obvious than that of the later.
     ⑥After rats were fed by ultra-fine kiwi fruit seed oil for30d, their growth&development, hematology index and blood biochemical index were not affected, and pathomorphological changes were also not found, all of which could offer a preliminary determination that the ultra-fine kiwi fruit seed oil was safe for human body.
     ⑦Prepared the ultra-fine kiwi fruit seed oil soft capsule with the ultra-fine kiwi fruit seed oil as raw material based on its health care functions and safety evaluation results. When the mixture ratio of the capsule shell (water:gelatin:glycerol) was1:1:0.5, the quality of the soft capsule was the best; it's proper to determine the thickness of the ultra-fine kiwi fruit seed oil capsule shell as0.60mm, which could avoid delay of disintegration; drying conditions of the soft capsule were as follows: drying temperature,25℃; relative humidity,30%; and drying time,30h; the disintegration time limited of the soft capsule was prolonged as the storage temperature increased, so the long-time storage temperature shall be controlled below35℃; prepared the skin protector serum and cream with skin care effect by using the ultra-fine kiwi fruit seed oil as the base material, and the cosmetic patch test results showed that adverse reactions for human skin were not caused by this product.
     The above study could not only further make clear the remarkable nutrition and health care value of the ultra-fine kiwi fruit seed oil so as to widen its range of application, but also be favorable to further improve the application basic research level of the kiwi fruit industry of China and perfect the theoretical system of effect research on the ultra-fine functional oils.
引文
[1]黄宏文.猕猴桃高效栽培[M].北京:金盾出版社,2001.1-4.
    [2]姜正旺,黄宏文,张忠慧,等.新西兰猕猴桃产业概况[J].果农之友,2003,9(6):38.
    [3]黄宏文,龚俊杰,王圣梅,等.猕猴桃属(Actinidia)植物的遗传多样性[J].生物多样性,2000,8(1):1-12.
    [4]Huang H W, Ferguson A R. Genetic resources of kiwifruit:domestication and breeding[J]. Hort Rev.,2007,(33):1-121.
    [5]陈庆红,顾霞,徐爱春,等.湖北省猕猴桃状况及发展应解决的主要问题[J].农业科技通讯,,2010,.40(11):16-17.
    [6]黄宏文,王瑛,张忠慧,等.我国猕猴桃的资源与产业化发展现状[A].见黄宏文主编.猕猴桃研究进展(Ⅲ)[C].北京:中国轻工出版社,2005.12-27.
    [7]韩礼星,黄贞光.猕猴桃优质丰产栽培技术彩色图说[M].北京:中国农业出版社出版,2002.20-35.
    [8]徐小彪,辜青青,李卫华.世界猕猴桃产销进展[J].现代园艺,2007,(2):24-25.
    [9]Esti M, Messia M C, Bertocchi P, et al. Chemical compounds and sensory assessment of kiwi fruit:Electrochemical and multivariate analyses[J]. Food Chemistry,1998,61(3):293-300.
    [10]Beever D J, Hopkirk G. Kiwifruit science and management[M]. New Zealand: New Zealand Society for Hortcultural,1990.485-510.
    [11]Lhalou E H. Actinidic acid a new triterpene phytoalexin from unripe kiwi fruit[J]. Biosci. Biotechnol. Biochem.,2001,65(2):480.
    [12]Whang J I. Phytochemical constituents of Actinidia arguta[J]. Saengyak Hakhoechi,2000,31(3):357.
    [13]Sashida Y. Triterpenoids from the fruit galls of Actinidia polygama[J]. Phytochemistry,1992,31(8):2801.
    [14]Sashida Y. Triterpenoids from callus tissue of Actinidia polygama[J]. Phytochemistry,1994,35(2):377-380.
    [15]李典鹏,韦金育,陈月圆,等.中越猕猴桃根化学成分研究[J]广西植物,2004,24(2):152-154.
    [16]陈巧鸿,杨培全.猕猴桃碱类的化学研究进展[J].华西药学杂志,2000,15(6):445-447.
    [17]Boldingh H. Seasonal concentrations of non-structural carbohydrates of five Actinidia species in fruit,leaf and fine root tissue[J]. Ann.Bot,2000,85(4):469.
    [18]Schroder R. Purification and characterization of a galactoglucomannan from kiwifruit(Actinidia deliciosa)[J]. Carbohydr Res,2001,331 (3):291.
    [19]李加兴,陈双平,麻成金,等.猕猴桃籽油保健功能研究[J].食品科学,2005,26(9):511-514.
    [20]吴怀恩,甄汉深,钟振国,等.猕猴桃属植物的研究进展[J].中药材,2004,27(1):59-63.
    [21]陈德轩.抗肿瘤植物药藤梨根[J].中药材,2004,27(2):86-87.
    [22]刘晓鹏,陈吉棣.猕猴桃复方口服液对大鼠降脂效果的实验研究[J].中国运动医学杂志,1998,17(1):50.
    [23]何素琴,曹兴亚.猕猴桃果汁降血脂作用的动物试验[J].川北医学院学报,1999,14(3):20.
    [24]薛美兰,侯建明,张秀珍,等.猕猴桃浓缩物对高脂血症大鼠血脂及红细胞膜流动性的影响[J].营养学报,2006,28(4):350-351.
    [25]Shephard R J, Shek P N. Heave exercise and immune function:Is there a connection[J]. Sports Med,1995,(16):491-497.
    [26]Pelers E M. Exercise and upper respiratory tract infection:a review[J]. Sports Med,1996,(11):9-14.
    [27]卢丹,俞立超,姚善泾.中华猕猴桃果多糖的分离纯化与抗肿瘤试验研究[J].营养卫生食品科学.2005,26(2):213-21.
    [28]Yoshizawa Y, Satoru K, Mimako U, et al. Dieffrentiation-inducing effects of small furit juices on HL-60 leukemic cells[J]. Agric. Food Chem.,2000,48(8):3177-3182.
    [29]Youssef I, Paloma M, Adrian M, et al. Antimutagenic effect of fruit and vegetable ethanolic extracts againet-N-nitrosamines evaluated by the ames test[J]. Agric. Food Chem.,1999,47(8):3257-3264.
    [30]Yamazaki M. Study on kiwifruit's preventive effects on arterial sclerosis[R]. Newzealand:Zespri Information Center.2000.
    [31]Yamazaki M. Study on kiwifruit's benefits effects on blood compounent[R]. Newzealand:Zespri Information Center,2000.
    [32]林延鹏,杨娟,刘新民,等.SOD猕猴桃果汁对体液免疫、血清与红细胞丙二醛水平的影响[J].中国微生态学杂志,2000,12(3):166-168.
    [33]Yamazaki M. Antioxidative function of kiwi fruit and oxidative damage in host[J]. Bio Ind,2000,17(11):24.
    [34]杨艳杰,何弘水.猕猴桃根提取物抗氧化及保肝作用的研究[J].安徽农业科学,2008,36(19):8059-8061.
    [35]白新鹏,裘爱泳.美味猕猴桃根各部提取物降酶保肝作用的研究[J].中国食品学报,2006,6(1):248-249.
    [36]白新鹏,裘爱泳.美味猕猴桃根提取物保肝作用的实验研究[J].中药材,2006,8(29):824-827.
    [37]李香华,王鸿翔,赵爱明,等.补充猕猴桃饮料对大强度运动后机体免疫机能影响的观察[J].中国运动医学杂志,2003,22(2):187-188.
    [38]Basile A, Vuotto ML, Violante U, et al. Antibacterial activity in Actinidia Chinensis, feijoa sellowiana and aberia caffra[J]. International Journal of Antimicrobial Agents,1997,(8):199-203.
    [39]李加兴,陈双平,秦轶,等.猕猴桃果汁保健功能研究[J].食品工业科技,2006,27(6):162-165.
    [40]杨业鹏,高广花,薛宏伟,等.两种猕猴桃果汁对60Co-C照射小鼠骨髓细胞的保护作用[J].卫生研究,1999,6(28):361-362.
    [41]姚茂君,李加兴,张永康,等.猕猴桃果汁饮料生产相关工艺研究[J].吉首大学学报(自然科学版),1999,20(1):82-84.
    [42]李加兴,袁秋红,陈建伏,等.猕猴桃果粒果汁饮料生产工艺及其稳定性研究[J].食品科技,2007,32(4):148-151.
    [43]李加兴,刘飞,陈双平,等.猕猴桃果奶生产工艺及稳定性研究[J].食品与发酵工业,2008,34(3):173-176.
    [44]Kume H, Tsutsumi S. Kiwiwine preparation from kiwifruit[P]. Japan:JP05236931,1993-09-17.
    [45]Kikuhara I. Kiwi fruit vinegar and its manufacture[P]. Japan:JP63251075,1988-10-18.
    [46]姚茂君,曾小波.低糖猕猴桃脯的加工工艺研究[J].食品与发酵工业 2001(10):78-79.
    [47]李加兴,李伟,陈双平,等.猕猴桃粗纤维低糖饼干的研制[J].食品科学,2007.28(11):642-646.
    [48]李加兴,陈双平,王小勇,等.猕猴桃无籽果羹加工工艺研究[J].食品科学,2007,28(8):223-226.
    [49]李加兴,袁秋红,陈双平,等.猕猴桃果汁果肉型果冻的研制[J].食品科学,2007,28(7):600-603.
    [50]潘曼,钟海雁,李忠海,等.酶法制备猕猴桃渣膳食纤维工艺研究[J].经济林研究,2009,27(1):29-33.
    [51]申野,李坦,张成义,等.猕猴桃根蒽醌类化合物提取工艺的研究[J].北华大学学报(自然科学版),2008,9(3):220-222.
    [52]王岸娜,吴立根.猕猴桃多糖提取工艺的研究[J].食品研究与开发,2008,29(2):73-75.
    [53]孙敏,岳田利,袁亚宏.猕猴桃果汁多酚类物质的提取工艺研究[J].农产品加工·学刊,2007,94(3):40-43.
    [54]白新鹏,改进微波装置辅助提取猕猴桃根三萜类化合物的研究[J].农业工程学报,2006,22(8):188-193.
    [55]Wada M, Suzuki T, Yaguti Y, et al. The effects of pressure treatments with kiwi fruit protease on adult cattle semitendinosus muscle[J]. Food-Chemistry,2002, 78(2):167-171.
    [56]Roswitha S, Nicolas P, Sebastien J F, et al. Purification and characterisantion of a galactoglucomannan from kiwifruit(Actinidi deliciosa)[J]. Carbohudrate Research,2001, 331 (7):291-306.
    [57]Cano M P. HPLC separation of chlorophyll and carotenoid pigments of four kiwifruit culcultivars[J]. Journal of Agricultural and Food Chemistry,1991,39(10):17-20.
    [58]Gary R T, Matthias G. Volatile constituents of kiwi fruit[J]. Journal of Agricultural and Food Chemistry,1986,(34):576-578.
    [59]姚茂君.猕猴桃籽油不同提取方法的比较研究[J].食品科学,2006,27(10):242-244.
    [60]张郁松,赵雁武.超声波法提取猕猴桃籽油的工艺研究[J].中国粮油学报,2006,21(6):116-118.
    [61]姚茂君,曹镛,张永康,等.猕猴桃籽油软胶囊研究[J].食品与发酵工 业,2003,29(12):58-61.
    [62]姚茂君,刘飞.猕猴桃籽油的微胶囊化研究[J].食品与发酵工业,2006,32(11):59-62.
    [63]吴彩娥,许克勇,李元瑞,等.气流式锐孔法制作猕猴桃籽油微胶囊的研究[J].农业工程学报,2006,22(3):133-137.
    [64]欧阳玉祝,李志平,蒋建波.猕猴桃籽油的微胶囊化及稳定性研究[J].中国油脂,2004,29(12):51-53.
    [65]Zulema P, Miguuel P, Carmelo G, et al. Determination of catechins by means of extraction with pressurized liquids[J]. Journal of Chromatography A,2004,10(26): 19-23.
    [66]乔小云,李俏,陆晓和.白术挥发油提取工艺研究[J].医药导报,2001,20(9):551-552.
    [67]董明,齐树亭.溶剂法提取紫花苜蓿籽油[J].食品研究与开发,2006,27(9):63-64.
    [68]徐东翔.植物资源化学[M].长沙:湖南科技出版社,2004,13-16.
    [69]魏贞伟.低温压榨法生产黑大豆油及其理化特性的研究[J].食品科技,2008,33(9):135-137.
    [70]张学愈,盛勇,邹俊,等.压榨法提取温莪术挥发油收率及药效学研究[J].四川中医,2007,25(9):44-45.
    [71]王晓杰,马越,杨国伟,等.水蒸气蒸馏法提取佛手挥发油的工艺研究[J].食品科技,2009,(3):92-94.
    [72]Boutekedjiret C, Bentahar F. Extraction of rosemary essential oil by steam distillation and hydrodistillation[J]. Flavour and Fragrance Journal,2003,18(6):481-484.
    [73]Rajaei A, Barzegar M, Yamini Y. Supercritical fluid extraction of tea seed oil and its comparison with solvent extraction[J]. Eur. Food Res. Technol.2005,(220):401-405.
    [74]Cao X, Ito Y. Supercritical fluid extraction of grape seed oil and subsequent separation of free fatty acids by high-speed counter-current chromatography[J]. Chromatogr.A,2003(1021):117-124.
    [75]Herrero M, Cifuentes A, Ibanez E. Sub-and supercritical fluid extraction of functional ingredients from different natural sources:plants, food-by-products, algae and microalgae:areview[J]. Food Chem.,2006,98 (1):136-148.
    [76]Reverchon E, Marco I D. Supercritical fluid extraction and fractionation of natural matter[J]. Supercrit Fluids,2006,38 (2):146-166.
    [77]Rosenthal A, Pyle D I, Niranjan K. Aqueous and enzymatic processes for edible oil extraction[J]. Enzyme and Microbial Technology.1996,19(11):402-420.
    [78]Aparna S, Khare S K, Gupta M N. Enzyme-assisted aqueous extraction of peanut oil[J]. Am Oil Chem Soc,2002,79(3):215-218.
    [79]Rosenthal A. Simultaneous aqueous and enzymatic extraction of oil and protein from soybeans PHD thesis[D]. England:University of Reading,1996.
    [80]钱俊青,谢祥茂.酶法提取植物油的工艺方法及特点[J].中国油脂,2003,28(4):14-17.
    [81]钱俊青.低含油量油料(大豆)酶法提取油脂的研究[D].杭州:浙江大学,2001.
    [82]杨艳,吴素玲,张卫明,等.微波辅助水蒸汽蒸馏法和无溶剂微波萃取法提取孜然精油工艺的研究[J].食品科学,2009,30(8):42-46.
    [83]邓湘庆,龚盛昭.微波辅助萃取当归精油条件优化[J].食品与机械,2007,23(5):70-73.
    [84]Calinescu I. Microwave assisted extraction of essential oils from vegetal material[J]. Farmacia,2002,50(5):83-89.
    [85]胡爱军,冯棋琴,郑捷.超声波强化提取油茶籽油的研究[J].中国油脂,2009,34(2):17-19.
    [86]蒋思萍,高平.青稞胚芽油超声提取的制备方法[P].中国:CN101233920,2008-08-06.
    [87]Gamiz G L, Castro M D. Continuous subcritical water extraction of medicinal plant essential oil:comparison with conventional techniques[J]. Talanta,2000,51(6): 1179-1185.
    [88]Fernandez P L, Jimenez C M M, Castro M D. HPLC determination of catechins and caffeine in tea, Differentiation of green,black and instant teas[J]. Analyst,2000,125(3):481-485.
    [89]郭丽,朱林,杜先锋,等.微胶囊双水相提取柑桔精油的工艺优化[J].农业工程学报,2007,23(1):229-233.
    [90]孔保华.降血压、血脂功能性食品[M].北京:化学工业出版社,2004,91-92.
    [91]吴时敏.功能性油脂[M].北京:中国轻工业出版社,2004,93-100.
    [92]王明霞.a-亚麻酸的纯化和改性研究[D].北京:中国农业科学院,2007.
    [93]许继取.亚麻酸对高脂大鼠血脂影响及促进肝脏SR-BI表达机制研究[D].武汉:华中科技大学,2006.
    [94]陈祐旭.辅助调节血脂作用试验报告单[R].长沙:湖南省公共卫生检测检验中 心,2002.
    [95]张康健,王蓝.药用植物资源开发利用学[M].北京:中国林业出版社,1997.136-140.
    [96]Berry E M, Hirseh J. Does Dietary Linolenic Acid Influence Blood Pressure[J]. Am J Clin Nutr,1986,44(3):336-340.
    [97]邹宇晓,吴娱明,廖森泰,等.缫丝蛹油的理化性质及其降血糖作用研究[J].中国食品学报,2008,8(3):33-36.
    [98]Ghafoorunissa, Ibrahim A, Natarajan S. Substituting dietary linoleic acid with alpha-linolenic acid improves insulin sensitivity in sucrose fed rats[J]. Biochim Biophys Acta,2005,1733(1):67-75.
    [99]陈杰斌,胡浩忠,姚炳华,等.纳米a-亚麻酸对病毒性心肌炎小鼠心肌损伤的保护作用[J].中国新药杂志,2009,29(1):67-69.
    [100]杨倩.a-亚麻酸新资源及其抗血栓作用研究[D].西安:第四军医大学,2008.
    [101]Albert C M, Oh K, Whang W, et al. Dietary alpha-Linolenic acid intake and risk of sudden cardiac death and coronary heart disease[J]. Circulation,2005, 112(21):3232-3238.
    [102]姚思宇,赵鹏,李彬,等.a-亚麻酸对小鼠免疫功能影响的实验研究[J].中国热带医学,2007,7(3):334-337.
    [103]Munsterman A S, Bertone A L, Zachos T A, et al. Effects of the omega-3 fatty acid, alpha-linolenic acid on lipopolysaccharide-challenged synovial explants from horses[J]. Am J Vet Res,2005,66(9):1503-1508.
    [104]曹景玉,吴力群,郭卫东,等.ω-3多不饱和脂肪酸对肝癌细胞生长抑制的作用及机制[J].中国普通过科杂志,2009,18(2):150-155.
    [105]Dwivedi C, Natarajan K, Matthees D P. Chemopreventive effects of dietary flaxseed oil on colon tumor development[J]. Nutr Cancer,2005,51(1):52-58.
    [106]徐章华,邵玉芬.a-亚麻酸对大鼠行为、视网膜及肝脑脂肪酸构成的影响[J].中国公共卫生,2002,18(3):301-303.
    [107]田枫,齐晓旭,郑振辉.a-亚麻酸对大鼠学习记忆功能和海马神经元的影响[J].中国老年学杂志.2009,,29(6):664-666.
    [108]朱保忠,李琳.a-亚麻酸与抗氧化剂联用对果蝇寿命及小鼠抗氧化能力的影响[J].中国组织工程研究与临床康复,2008.12(7):1264-1267.
    [109]陈祐旭.延缓衰老作用试验报告单[R].长沙:湖南省公共卫生检测检验中心,2002.
    [110]王彦武,赵鹏,刘荣珍,等.a-亚麻酸减肥功能的实验研究[J].中国热带医学,2005,5(4):863-864.
    [111]梁颖,刘金宝,王军,等.a-亚麻酸对草酸钙结石大鼠尿纤溶活性影响的实验研究[J].新疆医科大学学报,2006,29(5):415-417.
    [112]张薇,贾国良,王四旺,等.a-亚麻酸对高糖导致的人脐静脉内皮细胞损伤的影响[J].心脏杂志,2008,20(3):301-304.
    [113]杨柏崇,李元瑞.猕猴桃籽油的超临界二氧化碳萃取研究[J].食品科学.2003,24(7):104-107.
    [114]李加兴,李敏利,陈建伏,等.超临界二氧化碳萃取猕猴桃籽油分离工艺优化[J].食品科学,2010,31(12):89-92.
    [115]麻成金,李加兴,姚茂君,等.超临界CO2萃取猕猴桃籽油的工业化生产研究[J].中国粮油学报,2006,21(2):75-78.
    [116]李加兴,孙金玉,陈双平,等.猕猴桃籽油的抗氧化稳定性研究[J].食品与机械,2006,22(4):88-90.
    [117]Alan D D, Ricardo U M D. n-3 Long-chain polyunsaturated fatty acids for optimal function during brain development and ageing[J]. Asia Pac J Clin Nutr,2008,17(S1):185-188.
    [118]Mohammad A, Syed M N. Taxonomic perspective of plant species yielding vegetable oils used in cosmetics and skin care products[J]. African Journal of Biotechnology,2005,4(1):36-44.
    [119]Tanaka J J, Shao J S, Kasajima N K, et al. Suppressive effect of defatted kiwi fruit seed extract on acute inflammation and skin pigmentation[J]. Food Sci. Technol. Res.,2007,13(4),310-314.
    [120]Guglielmini G. Nanostructured novel carrier for topical application[J]. Clinics in Dermatology,2008,26(4):341-346.
    [121]曹万新,徐延丽.功能性油脂的研究进展[J].中国油脂,2004,29(12):42-45.
    [122]孙志芳,高荫榆,郑渊月.功能性油脂的研究进展[J].中国食品添加剂,2005,(3):4-7.
    [123]刘建成.鱼腥草超微粉特性及其指纹图谱研究[D].福州:福建农林大学.2007.
    [124]杨安树,陈红兵.纳米技术在食品加工中的应用[J].食品科技,2007,(9):12-15.
    [125]张慜,王亮.超微粉碎在食品加工中的研究进展[J].无锡轻工大学学报,2003,22(4):106-110.
    [126]翟文俊,岳红.超微粉碎辅助提取石榴籽油的研究[J].食品科技,2009,34(4):173-175.
    [127]潘年松,邹俊,张学愈,等.超临界CO2萃取温莪术粉体挥发油收率的比较[J].华西药学杂志,2007,22(4):385-387.
    [128]陈体强,吴锦忠.超微粉碎后超临界CO2萃取灵芝孢子挥发油组分的GC-MS分析[J].天然产物研究与开发,2006,18(6):982-985.
    [129]黄建蓉,李琳,李冰.超微粉碎对食品物料的影响[J].粮食与饲料工业,2007,(7):25-27.
    [130]沈洁,李华,高锦明.超微粉碎技术在中药和保健食品中的应用[J].食品研究与开发,2005,26(6):178-181.
    [131]高福成.现代食品工程高新技术[M].北京:中国轻工业出版社,1998.51-52.
    [132]梁治齐.微胶囊技术及其应用[M].北京:中国轻工业出版社,1999.134.
    [133]李莹,靳烨,黄少磊,等.微胶囊技术的应用及其常用壁材[J].农产品加工,2008,(1):65-68.
    [134]刘晓庚,谢亚桐.微胶囊制备方法的比较[J].粮食与食品工业,2005,12(1):28-31.
    [135]董志俭,张晓鸣,许时婴,等.复合凝聚球状多核薄荷油微胶囊的耐热性研究[J].食品科学,2009,30(5):120-123.
    [136]麻成金,马美湖,黄群,等.喷雾干燥法制备微胶囊化杜仲籽油的研究[J].中国粮油学报,2008,23(6):141-144.
    [137]赵斌,张根旺,杨天奎,等.磷脂微胶囊化乳化液稳定性的研究[J].中国粮油学报,2008,23(6):127-133.
    [138]冯岩,张晓鸣,路宏波,等.复合凝聚法制备VE微胶囊工艺的研究[J].食品与机械,2008,24(3):39-43,54.
    [139]孙忠于,王海滨.微胶囊的功能特性及其在食品工业中应用[J].武汉工业学院学报,2008,27(2):23-27.
    [140]邵庆辉,古国榜,章莉娟.微乳化技术在纳米材料制备中的应用研究[J].化工新型材料,2001,29(1):9-12.
    [141]黄国平,温其标,罗志刚,等.微乳技术在食品化学中的应用[J].食品科 技,2003,(1):7-10.
    [142]刘玮琳,刘成梅,刘伟,等.O/W型中链脂肪酸微乳的制备及其性质研究[J].食品科学,2009,30(6):102-105.
    [143]钱伟,张春枝,吴文忠.O/W型微乳法制备纳米植物甾醇酯[J].安微农业科学,2009,37(8):3771-3772.
    [144]吴旭锦,朱小甫,欧阳五庆.紫苏子油纳米乳及紫苏子油在储存期过氧化值的变化[J].粮油加工,2009,39(1):56-58.
    [145]杨易.微乳技术研究方兴未艾[N].中国医药报,2006-8-19(8).
    [146]毛立科,许洪高,高彦祥.高压均质技术与食品乳状液[J].食品与机械,2007,23(5):146-149.
    [147]艾秀娟,陈建海,平渊,等.高压均质技术在纳米制剂制备中的应用[J].医药导报,2007,26(9):1055-1058.
    [148]雒亚洲,鲁永强,王文磊.高压均质机的原理及应用[J].中国乳品工业,2007,35(10):55-58.
    [149]林玉川.我国老年人心血管疾病的现状分析与对策研究[J].井冈山医专学报,2008,15(3):12-13.
    [150]食品市场资讯.美、日心血管类保健食品现状与发展趋势[J].中国食品学报,2007,7(4):119.
    [151]金宗濂,陈文.我国保健(功能)食品产业的创新与发展[J].北京联合大学学报(自然科学版),2008,22(4):1-6.
    [152]王萍,张银波,江木兰.多不饱和脂肪酸的研究进展[J].中国油脂,2008,33(12):42-46.
    [153]功能性食品发展喜忧参半[J].食品安全导刊,2009,(02):21-23.
    [154]席文娣.我国功能食品生产存在的问题及研究方向[J].甘肃科技,2008,24(05):57-59.
    [155]张辉.富含多不饱和脂肪酸动物产品开发的研究进展[J].青海畜牧兽医杂志,1997,27(05):41-42.
    [156]洪坦,周红梅.金纳多对中国植物药发展的启示[J].中国医药导报,2007,4(35):98-99.
    [157]贺立泽,王佩贤,王伟.德国植物药行业发展探析[J].亚太传统医 药,2007,3(11):20-22.
    [158]戴宇.我国药品市场的发展趋势[J].中国医药指南,2008,6(14):95-96.
    [159]化妆品用植物精油的发展[J].国内外香化信息,2008,(12):3-4.
    [160]杨柏崇,李元瑞.猕猴桃籽油的超临界二氧化碳萃取研究[J].食品科学,2003,24(7):104-107.
    [161]张德权,胡晓丹.食品超临界CO2流体技术[M].北京:化学工业出版社2005.185-187.
    [162]杨柏崇,李元瑞.猕猴桃籽油的超临界二氧化碳萃取研究[J].食品科学,2003,24(7):104-107.
    [163]梁瑞红,谢明勇,施玉峰.紫草色素超临界萃取与有机溶剂萃取之比较[J].食品科学,2004,25(3):130-132.
    [164]陈元,杨基础.超临界二氧化碳萃取亚麻籽油的研究[J].天然产物研究与开发,2003,13(3):14-19.
    [165]邱榕.鱼油脂肪酸酯与超临界CO2相平衡测定及关联方法[J].江苏理工大学学报(自然科学版),1998,19(3):15-19.
    [166]王明霞,黄凤洪.多不饱和脂肪酸萃取中超临界技术的应用进展[J].中国油脂,2005,30(8):60-63.
    [167]魏东.微胶囊多不饱和脂肪酸粉末的氧化稳定性研究[J].食品工业科技,2007,28(7):88-93.
    [168]韩军岐,张有林,陈雷.葵花籽油的超声波提取及抗氧化研究[J].食品工业科技,2005,26(1):52-54.
    [169]王毕妮,张富新,李建科.松籽油的抗氧化稳定性研究[J],食品工业科技2005,26(7):96-98.
    [170]梁先长,李加兴,田向荣,等.尿素包合法纯化火棘籽油亚油酸与鲨烯的工艺研究[J].食品科学,2011,32(16):127-131.
    [171]张炳文,宋永生等.植物性食品资源开发中的高新技术—超微细粉碎技术[J].现代商贸工业,2003,7:38-40.
    [172]Bouwmeester H, Dekkers S, Noordam M, et al. Review of health safety aspects of nanotechnologies in food production[J]. Regulatory Toxicology and Pharmacology,2009,53(1):52-62.
    [173]张炳文,郝征红.超微粉碎技术在可食与药用动物资源开发中的应用[J].食品工业科技,2004(3):138-139.
    [174]代元忠,张秀梅,赵永强.超高压对撞技术装备在制药行业中的应用[J].中国医药工业杂志,2005,36(1):62-63.
    [175]代元忠,赵永强,马国涛,等.超高压对撞技术装备在食品和生物工程中的应用[J].包装与食品机械,2004,22(3):30-34.
    [176]董青云.粒度测试的基本知识和基本方法[J].电子测试,2007,(1):14-21.
    [177]王雪青,苗惠,胡萍.膳食中多不饱和脂肪酸营养与生理功能的研究进展[J].食品科学,2004,25(11):337-339.
    [178]毛峰,秦振华.长链多不饱和脂肪酸与人体健康[176].医药产业资讯,2006,3(3):40-41.
    [179]郑建仙.功能性食品学[M].北京:中国轻工业出版社,2003,56-57.
    [180]张洪涛,单雷,毕玉平.n-6和n-3多不饱和脂肪酸在人和动物体内的功能关系[J].山东农业科学,2006,38(2):115-120.
    [181]Latruffe N, Hassell S J. Peroxisomes:biochemistry, molecular biology and genetic diseases video programme for teaching students[J]. Biochem.Educ.,2000,28(3):136-138.
    [182]Nakamura M T, Cho H P, Clarke S D. Regulation of hepatic delta-6 desaturase expression and its role in the polyunsaturated fatty acid inhibition of fatty acid synthase gene expression in mice[J]. J. Nutr.,2000,130(6):1561-1565.
    [183]李佳洁,李江华.纳米保健食品安全性及研究动向[J].食品科学,2011,32(17):366-370.
    [184]李小运.试论保健食品的安全性[J].中国食物与营养,2009,(10):10-12.
    [185]Peter H H, Irene B H, Oleg V S. Nanoparticles-known and unknown health risks[J]. Journal of Nanobiotechnology,2004,2(12):1-15.
    [186]Brumfiel G. A little known knowledge[J]. Nature,2003,424,246-248.
    [187]陈双平,李敏利,王小勇,等.影响猕猴桃籽油软胶囊崩解时限因素研究[J].中医药学刊,2006,24(50):937-938.
    [188]初世龙,时玉静.鱼油烯康软胶囊生产中应注意的几个问题[J].制剂技术.2002,11(10):60-62.
    [189]黄敏,张钧寿,谢跃进.软胶囊剂稳定性研究进展[J].中国医药工业杂 志,2000,31(3):137-140.
    [190]白阳,吴红棉,范秀萍,等.软胶囊囊壳配方的研制[J],现代食品科技,2011,27(9):1113-1115.
    [191]彭智聪,李芳艳.软胶囊有待解决问题的探讨[J].中药园地,2004,26(4):50-51.
    [192]邓宇峰.采用复合壁材的ω3多不饱和脂肪酸微胶囊化[J].食品与发酵工业,2001,27(6):30-34.
    [193]冯卫华,刘邻渭,许克勇.猕猴桃籽油微胶囊化技术研究[J].农业工程学报,2004,20(1):234-237.
    [194]张海满,刘福祯.a-亚麻酸的功能、资源及生产方法[J].中国油脂,2000,25(6):192-194.
    [195]吴彩娥,许克勇,李元瑞,等.尿素包合法富集猕猴桃籽油中a-亚麻酸[J].农业机械学报,2005,36(5):57-60,64.
    [196]宋燕青,邓树海,张四喜,等.蚕蛹油中a-亚麻酸的尿素包合法纯化与含量测定[J].中国生化药物杂志,2007,28(5):330-332.
    [197]刘峰,王正式,王仲妮.a-亚麻酸的分离技术及功能[J].食品与药品,2007,9(08A):60-63.
    [198]李婷婷,吴彩娥,许克勇,等.分子蒸馏技术富集猕猴桃籽油中a-亚麻酸的研究[J].农业机械学报,2007,38(5):96-99.
    [199]韩君涛.从冷榨亚麻籽油中分离、纯化a-亚麻酸的方法[P].中国:CN101402558A,2009-4-8.
    [200]蒋艳忠,胡小明,杨克迪.硝酸银络合法浓缩蚕蛹油中a-亚麻酸的研究[J].食品工业科技,2008,29(4):205-206,209.
    [201]司秉坤,赵余庆.硝酸银络合法提纯亚麻子中a-LNA的工艺研究[J].亚太传统医药,2005,1(3):93-95.
    [202]张建强,李思政,苏中兴.冷冻结晶法和尿素包合法降低播娘蒿籽油中芥酸的研究[J].中国油脂,2007,32(8):44-45.
    [203]胡晓军,郭忠贤,赵毅,等.冷冻丙酮法提纯a-亚麻酸的研究[J].中国麻业,2005,27(2):89-93.
    [204]张氽,阚建全,陈宗道.硝酸银-硅胶纯化a-亚麻酸的研究[J].离子交换与吸附,2005,21(1):47-54.
    [205]Ryu S N. Method for separating and purifying alpha-linolenic acid from perilla oil[P]. US:5672726.2005-5-6.
    [206]谷克仁,汪学德,刘玉兰,等.从富含亚麻酸油脂中分段水解、分子蒸馏制备a-亚麻酸的方法[P].中国:CN101245359A,2008-8-20.
    [207]魏决,罗雯,陈玲.酶法从紫苏子油中制取a-亚麻酸工艺研究—脂肪酶水解工艺的探讨[J].食品科学,2005,26(1):131-133.
    [208]毛爱民.以膜分离技术从植物油中提取a-亚麻酸的工艺方法[P].中国:CN141080A,2003-4-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700