黄瓜性别分化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄瓜是研究植物性别分化的经典材料,对黄瓜进行性别分化研究,具有重要的理论价值和实践意义。本研究以强雄性系黄瓜ZH-20和全雌性系黄瓜GY1为材料,对黄瓜性别分化和表达机理进行了研究。
     通过石蜡切片对黄瓜花芽分化和雌、雄花的发育进行了详细的形态学观察。结果表明黄瓜雌、雄花的发育过程可细分为10个时期。黄瓜单性花的分化和发育过程经历了无性期、两性期和单性期。两种性器官原基在发育的起始都出现,在两性期(时期5)之前雌、雄花之间不存在明显的形态学上的差异,花芽从两性期开始进一步分化,雌花花芽中心凹陷形成下位子房,雄花雄蕊体积快速增大,最终发育形成单性的雌、雄花。
     在黄瓜性别分化形态学研究的基础上,进一步考察了单性花中未形成有功能器官的相反性别原基的发育。通过形态学,组织化学,同工酶和蛋白质电泳等方法分析了黄瓜雄花中心皮的发育状况,结果发现黄瓜雄花心皮能不断地进行细胞分裂,体积也不断增大,心皮中RNA含量较为丰富;雄花心皮在发育后期出现特化的组织结构,至雄花开花期时,形成类似雌花胎座的结构,但没有分化出胚珠;雄花心皮在不同发育时期过氧化物同工酶和酯酶同工酶谱带和表达量均存在差异,发育后期仍能合成新的蛋白质,进一步表明在成熟的雄花中心皮不再处于原基状态。这些结果都表明雄花中的心皮处于不断的发育之中,但其发育模式与雌花中的心皮有着明显的差异。
     采用RT-PCR技术克隆到黄瓜亚精胺合成酶基因长为297的cDNA片断,结合3-RACE,5-RACE技术,拼接后获得了全长为1398bp的cDNA(CsSPDS),该基因具有一个951个碱基的开放阅读框(ORF),编码长为317个氨基酸残基的蛋白质。CsSPDS的氨基酸序列与其它已知的亚精胺合成酶具有高度的同源性,其与咖啡亚精胺合成酶同源性最高(identity,87%)。不同器官杂交表达分析表明CsSPDS主要在幼根、幼叶和花芽等快速生长发育的组织中表达。我们还分析了乙烯利处理后从雄向雌的性逆转过程中CsSPDS的表达状况,结果表明三叶期黄瓜茎尖在处理后2小时CsSPDS表达量降低,处理后4小时开始增加,到8小时时达到最高,之后一直高于未处理组。并讨论了乙烯与多胺的相互作用及其与黄瓜性别分化的关系。
Cucumber is a unique model plant for sex expression. Studies on sex differentiation of cucumber has both practical and theoretical significance. The mechanism of sex differentiation and expression in cucumber was investigated using the androecious line (ZH-20)and full female line (GYl)as material in our study..
    Morphological analyses were conducted on differentiation and development of female and male sex organs during the floral bud initiation and sex differentiation process in cucumber, and the results showed that the development of female and male flowers could be divided into 10 stages, and the formation of cucumber unisexual flowers first underwent a hermaphoroditic stage, then developed forward maleness or femaleness. No significant morphological difference existed hi female and male flowers at stages earlier than hermaphoroditic stage (stage 5), after which the flower bud developed unisexually. The center of female floral bud is concave, then the hypogynous ovary appeared and the unisexual female flower was formed finally; while the anther of male floral bud enlarged rapidly and the unisexual male flower was formed finally.
    Development of carpel in cucumber male flower was studied by morphological, histochemical and isoenzyme electrophoretic analysis. The results showed that: (1) cell number of the carpel in male flowers increased continuously during the development of male flower, and the carpel in male flowers was abundant in RNA content; (2) the carpel in male flower at latter developmental stage was differentiated, and a placenta-like structure was formed in the carpel of male flower during anthesis, while ovule did not appear as that of mature female flower; (3) The POD and esterase isoenzyme electrophoretic profile of carpel varied with the development of male flower and SDS-PAGE analysis of carpel indicated that the carpel in male flowers at latter development stages could synthesize new proteins, which further
    
    
    
    indicated that the carpel in mature male flower was no longer at the stage of primordium. It could be deduced from the results that carpel of cucumber male flowers develops continuously in a distinct pattern with that of female flowers during sex expression process.
    A partial cDNA fragment of cucumber spermidine synthase gene was isolated by RT-PCR, and the full-length cDNA was obtained by 5 -RACE and 3 -RACE techniques. Sequences analysis showed that the size of full-length cDNA was 1398 bp which contains a 951 bp coding region encoding 317 amino acid residues. CsSPDS amino acid sequences showed high degree identity compared with known SPDS from other species. And SPDS from Coffea arabica has the highest similarity to CsSPDS. Organ-specific expression analysis indicated that the CsSPDS gene expression was predominant in rapid growing tissues such as young roots, flower buds and young leaves. The response of CsSPDS expression to the sex reversal from male to female by the application of ethephon to seedlings at 3 leaf stage was also examined, and the results showed that the CsSPDS transcript level in shoot apices decreased 2h after treatment, increased 4h after treatment, reached the peak 8h after treatment, and the CsSPDS transcript level of treatment was always higher
     than that of control. The relationship between ethylene and polyamine metabolism and its role in sex expression of cucumber were also discussed.
引文
1. Durand R and Durand B. 1984. Sexual differentiation in higher plants. Physiol. Plant, 60:267-274
    2. Irish EE and Nelson T. 1989, Sex determination in monoecious and dioecious plants. Plant Cell, 1: 737-744
    3. Malepazy, S, Niemirowicz-szczytt K. 1991. Sex determination in cucumber (cucumis sativus) as a model system for molecular biology. Plant Science, 80: 39-47
    4. Dellaporta SL, calderpm-Urrema A. 1993. Sex determination in flowering plant. Plant Cell 5:1241-1251
    5. Per1-Treves R. 1999. Male to female conversion along the cucumber shoot: approaches to studying sex genes and floral development in Cucumis sativus. In: Ainsworth CC (eds) Sex determination in plants. BIOS, Oxford, pp 189-286Robertson JD, Orrenius S, Zhivotovsky B (2000) Nuclear events
    6. 汪俏梅,曾广文.1997.苦瓜性别分化的形态学与组织化学.浙江农业大学学报,23(20):149-153
    7. Atsmon D and Galun E .1960. A morphogenetic study of staminate, pistillate and hermaphrodite flowers in Cucumis sativus L. Phytomorphology, 10:110-115.
    8. Goffinet MC. 1990. Comparative ontogeny of male and female flowers of Cucumis sativus. In: Bates DM, Robinson RW, Jeffrey C (eds) Biology and utilization of the Cucurbitaceae. Cornell University Press, New York, pp 288-304
    9. Yu JH, Wang DH et al. 2003. DNA damage in the early primordial anther with stamen arrest in the female flower of cucumber (Cucumis sativus L.).Planta ,217:888-895
    10.曹宗巽,梅慧生等.1980.赤霉素和乙烯利对菠菜性别表现的控制及其与同工酶的关系,植物生理学报,6(2):150-156
    11.钟诲文,杨中汉等.1982.根据过氧化物酶同工酶图谱鉴定银杏植株的性别.林业科学,28(1): 1-5
    12.赵云云,田汝岭等.1996.雌雄构树过氧化物酶同工酶的比较研究.首都师范大学学报(自然版),17(2):84-87
    
    
    13.艾辛,祝莉莉等.2000.黄瓜植株性别表现与3种氧化酶同工酶的关系.武汉植物研究,18(2):184-188
    14. Bracale Ⅰ, caporali E, et al. 1991. Sex determination and differentiation in Asparagus afficinalis L. Plant Science, 80:67-77
    15. Caporali E, carboni A, et al. 1994, Development of male and female flower in Asparagus officinlis. Sex Plant Reprod, 7:239-249
    16.汪俏梅,曾广文.1998.苦瓜性别分化特异蛋白质的研究.植物学报,40(3):241-246
    17. Vergne P, Riccardi F, et al. 1993. Identification of a 32-kDa anther marker protein for androgenic response in maize, Zea Maps L. Theor Appl Genet ,86:843-850
    18.汪俏梅,曾广文.1997.高等植物性别分化的诱导信号.植物生理学通讯,33(2):147-151
    19.邵宏波,初立业.1994.高等植物的性别研究及其特点.生命科学,6(1):11-14
    20. Yamasaki S, Fujii N, et al. 2002. The ethylene-regulated expression of CS-ETR2 and CS-ERS genes in cucumber plants and their possible involvement with sex expression in flowers. Plant cell physiol, 42(5):608-616
    21. Trebitsh T, Staib JE, et al. 1997. Identificat.ion of a 1-ACC synthase gene linked to the Female (F) locus that enhanced female sex expression in cucumber. Plant Physiol, 133:987-995
    22. Kamachi S, Sekimoto H, et al. 1997. Cloning of a cDNA for a 1-amino-cyclopropane-1-carboxylate synthase that is expressed during development of flowers at the apices of cucumis sativus L, Plant cell Physiol, 38(11):1197-1206
    23. Evans PT, Malmberg R. 1989. Do polyamines have roles in plant development? Annu. Rev. Plant Physiol. Plant Mol Biol, 40:235-269
    24. Minocha SC, Minocha R. Role of polyamines in somaticembryogenesis, in: Y.P.S Bajaj, (Ed.), Biotechnology in Agriculture and Forestry, vol 30, Somatic Embryogenesis and Synthetic Seed Ⅰ, Springer-Verlag, Heidelberg, 1995, pp. 55-72
    25. Tabor CW, Tabor H. 1984. Polyamines. Annu. Rev. Biochem, 53:749-790
    26. Bouchereau A, Aziz A, et al. 1999. Polyamines and environmental challenges: recent development. Plant Sci, 140:103-125
    27. Noh EW, Minocha SC. 1994. Expression of a human Sadenosylmethionine decarboxylase
    
    in transgenic tobacco and its effects on polyamine biosynthesis. Transgenic Res, 3:26-35
    28. Roubelakis-Angelakis KA, Tran Than Van K. 1993. Morphogenesis in Plants, Molecular Approaches. Plenum Press, New York. pp. 89-111
    29. Bastola DR, Minocha SC. 1995. Increased putrescine biosynthesis through transfer of mouse ornithine decarboxylase cDNA in carrot promotes somatic embryogenesis, Plant Physiol, 109:63-71
    30. Masgrau C, Altabella T, et al. 1997. Inducible overexpression of oat arginine decarboxylase in transgenic tobacco plants. Plant J. 11:455-473
    31. Feirer RP, Mignon G, et al. 1984. Arginine decarboxylase and polyamine required for embryogenesis in the wild carrot. Science, 223:1433-1434.
    32. Fienberg AA, Choi JH, et al. 1984. Developmental regulation of polyamine metabolism in growth metabolism in growth and differentiation of carrot cultures, Planta, 162: 532-539
    33. Robie CA, Minocha SC. 1989. Polyamines and somatic embryogenesis in carrot Ⅰ; the effects of difluoromethylornithine and difluoromethylarginine. Plant Sci, 65: 45-54
    34. Minocha SC, Papa NS, et al. 1991. Polyamines and somatic embryogenesis in carrot Ⅲ:effects of methylglyoxalbis(guanylhydrazone). Plant Cell Physiol, 32:395-402
    35. Minocha SC, Minocha R. Role of polyamines in somaticembryogenesis, in: Y.P.S Bajaj, (Ed.), Biotechnology in Agriculture and Forestry, vol 30, Somatic Embryogenesis and Synthetic Seed Ⅰ, Springer-Verlag, Heidelberg, 1995, pp. 55-72
    36.孙文全.1989.多胺代谢与园艺植物开花的关系——文献述评.园艺学报,16(3):178-184
    37.汪俏梅,曾广文.激素和多胺对苦瓜性别分化的影响,园艺学报,1997,24(1):48-52
    38.陈学好,曾广文.2002.黄瓜性别分化与内源多胺的关系.植物生理与分子生物学报,28(1):17-22
    39. Galston AW, Kaur-Sawhney R. 1990. Polyamines in plant physiology. Plant Physiol, 94:406-410
    40. Hanzawa Y, Imai A, et al. 2002. Characterization of the spermidine synthase-related
    
    gene family in Arabidopsis thaliana. FEBS Letters 527:176-180
    41. Hashimoto T, Tamaki K, et al. 1998. Molecular cloning of plant spermidine synthases. Plant Cell Physiol, 39: 73-79.
    42. Hatanaka T, Sano H, et al. 1999. Molecular cloning and characterization of coffee cDNA encoding spermidine synthase. Plant Sci, 140: 161-168
    43. Michel AJ, Furze JM, et al. 1996. Molecular cloning and functional identification of a plant ornithine decarboxylase cDNA. Biochem J, 314:241-248
    44. Bertin D, Michael J. 1997.Overexpression of arginine deearboxylase in transgenic plants, Biochem J, 34:331-337.
    45. Boissay E, Delaigue M, et al.1996. Predominent expression of a peroxidase gene in staminate flowers of Mercurialis annua. Physiol Plant, 96(2):251-257
    46. Matsunaga S, Kawano S, et al.1996, Isolation and developmental expression of male reproductive organ-specific genes in a dioecious campion, Melandrium album. Plant J, 10(4): 679-689
    47. Delong A, Calderon-Urrea, et al. 1994. Sex determination gene TASSELSEED2 of maize encode a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion. Cell, 74:757-768
    48. lebel-Hardenack S, Grant S R. 1997. Genetics of sex determination in flowering plants. Trends in Plant Sci, 2(4):130-136
    49. Coen ES, Meyerowitz EM. 1991. War of the whorls: genetic interactions controlling flower development. Nature 353:31-37
    50. Jack T et al, 1994. Arabidopsis homeotic gene APETALA3 ectopic expression: transcriptional and post-transcriptional regulation determine floral organ identity. Cell, 76:703-71
    51. Kramer EM, Irish VF. 1999. Evolution of genetic mechanisms controlling petal development. Nature, 399:144-148
    52. Jofuku KD et al. 1994. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell, 6:1211-1225
    
    
    53. Gustafson-Brown C. et al. 1994. Regulation of Arabidopsis floral homeotic gene APETALA1. Cell, 76:131-143
    54. Krizek BA, Meyerowitz, EM. 1996. The Arabidopsis homeotic genes APETALA3 andPISTILLATA are sufficient to provide the B classb organ identity function. Development, 112: 11-22
    55. Arabidopsis Genome Initiative .2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408: 796-815
    56. Riechmann JL et al. 2000. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105-2110
    57. Flanagan CA and Ma H. 1994. Spatially and temporally regulated expression of the MADS-box gene AGL2 in wild-type and mutant Arabidopsis flowers. Plant Mol Biol, 26:581-595
    58. Savidge B et al. 1995. Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell, 7: 721-733
    59. Mandel MA. Yanofsky MF. 1998. The Arabidopsis AGL9 MADS-box gene is expressed in young flower primordia. Sex Plant Reprod, 11:22-28
    60. Honma T , Goto K. 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature, 409: 525-529
    61. Pelaz S et al. 2001. Conversion of leaves into petals in Arabidopsis. Curt Biol, 11:182-184
    62. Huang H et al. 1996. DNA binding properties of two Arabidopsis MADS domain proteins: binding consensus and dimer formation. Plant Cell, 8:81-94
    63. Guuter Thei β en, Heinz Saedler. 2001. Nature, 409:469-471
    64. Grant, S, Hunkirchen B, et al. 1994. Development differences between male and female folwers in the dioecious plant silene latifolia. Plant J, 6(4): 471-480
    65. Sherry RA, Eckard KJ, et al. 1993. Flower development in dioecious Spinacia oleracea(chenopodiaceae).American Jour of Bot, 80:283-291
    66.郭尧君.2001.蛋白质电泳技术[M].北京.科学出版社
    
    
    67. Steck G, Leuthard P, et al. 1980. Detection of Basic proteins and low molecular weight peptides in polycrylamide gels by formaldehyde fixation. Anal Biochem,,107:21-24
    68. Franken AA. 1970. Sex characteristics and inheritance of sex in Asparagus. Euphytica, 19:277-287
    69. Friedlander M. 1977. Sexual differentiation in cucumber: Abscisic acid and gibberellic acid contents of various sex genotypes. Plant and Cell Physiol, 18: 681-691.
    70.汪俏梅,曾广文.1996.赤霉酸和矮壮素对苦瓜性别表现的影响,浙江农业大学学报.22(5):541-546
    71.汪俏梅,曾广文.1997.苦瓜性别分化的激素调控.浙江农业大学学报,23(5):551-556
    72.汪俏梅,曾广文.1997.苦瓜性别分化的形态学与组织化学.浙江农业大学学报,23(20):149-153
    73.杨玲玲、陈敏等.1999.黄瓜雄花发育过程中心皮原基形态、代谢及基因表达特征的研究.科学通报,44(23):2509-2513
    74. O'Gara M, McCloy K, et al. 1995. Structure-based sequence alignment of three AdoMet-dependent DNA methyltransferases. Gene, 157:135 138.
    75. Walden R, Cordeiro A, et al. 1997. Polyamines: small molecules triggering pathways in plant growth and development. Plant Physiol, 113:1009-1013
    76. Lee SH, Park KY. 1991. Compensatory aspects of the biosynthesis of sperminde in tobacco in suspension culture. Plant Cell Physiol, 32:523-531
    77. Icekson I, Goldlust A, et al. 1985. Influence of ethylene on S-adenosylmethionine decarboxylase activity in etiolated pea seedlings, J Plant Physiol, 119:335-346
    78. Kumar A, Altabella T, et al. 1997. Recent advances in polyamine research. Trends Plant Sci, 2:124 130.
    79. Pegg AE. 1988. Polyamine metabolism and its importance in neoplastic growth and as a target for chemotherapy. Cancer Res, 48:759-774
    80. Yamanoha B, Cohen SS. 1985. S-adenosylmethionine decarboxylase and spermidine synthase from Chinese cabbage. Plant physiol,75:784-790
    
    
    81. Tiburcio AF, Kaur-Sawhney R, et al. 1991. Spermidine biosynthesis as affected by osmotic stress in oat leaves. Plant Growth Regul, 13:103-109
    82. Bagga S, Rochford J, et al. 1997. Putrescine aminopropyltransferase is responsible for biosynthesis of spermidine, spermine, and multiple uncommon polymines in osmotic stress-tolerant alfalfa. Plant Physiol, 114:445-454
    83. Kater MM, Franken J, et al. 2001. Sex determination in the monoecious species cucumber is confined to specific floral whorls. Plant Cell, 13:451 493
    84. Calderon-Urrea A, Dellaporta SL. 1999. Cell death and cell protection genes determine the fate of pistils in maize. Development, 30:1463 1464
    85.杨洪强,接玉玲.1996.多胺与果树生长发育的关系.山东农业大学学报,27(4):514-519
    86.朱大恒,韩锦峰等.1993.多胺与植物激素的关系.河南农业大学学报,27(1):10-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700