新型金属酞菁及其温敏聚合物的合成和仿酶催化性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属酞菁衍生物是平面大环配合物,结构上与细胞色素P450的活性中心金属卟啉相似,是典型的金属辅酶模型。研究表明,钴、铁等金属酞菁能够催化大多数P450单加氧酶的反应,具有优良的催化活性,同时金属酞菁的中心金属离子、环外衍生基团、周围微环境等因素均会对其催化活性、选择性产生重大影响。因此,合成新型的金属酞菁系列配合物及其聚合物对于模拟细胞色素P450及应用于催化降解持久性有机污染物、绿色有机合成等领域具有重要的意义。
     目前已开发出多种金属酞菁衍生物,但普遍存在溶解性差、合成路线复杂等缺点。论文采用苯酐—尿素路线制备了四氨基钴(铁)酞菁衍生物,并通过马来酸酐修饰四氨基钴(铁)酞菁环上的氨基,首次制备了水溶性、可聚合的酞菁衍生物——2,9,16,23-四马来酰胺基钴(铁)酞菁。与常见的水溶性酞菁衍生物(四羧基酞菁、四磺酸基酞菁)相比,2,9,16,23-四马来酰胺基钴(铁)酞菁具有合成路线简单,条件温和,收率高的优点,最佳改性条件为n_(氨基酞菁)/n_(马来酸酐)=1∶5,T=60℃,Time=3h,收率可达到79.6%。产物使用IR、UV、EA、TGA等方法进行了表征。与四羧基钴酞菁相比,2,9,16,23-四马来酰胺基金属酞菁水溶性好,并可部分溶解在THF中,这是由于酞菁环侧链有大的取代基团,降低了酞菁环的缔合趋势所致。
     金属酞菁作为模拟酶催化剂主要以模拟氧化物酶、模拟过氧化氢酶、模拟过氧化物酶三种机理催化反应。本文选择两类反应:1) 2-巯基乙醇(MEA)的室温氧化反应(模拟氧化酶);(2) 过氧化氢的室温分解反应(模拟过氧化氢酶),测定了2,9,16,23-四马来酰胺基钴(铁)酞菁对上述反应的催化性能。与四羧基钴酞菁、四磺酸基钴酞菁相比,四马来酰胺基钴酞菁催化MEA氧化反应的速率常数k_5值为503.8 min~(-1),大大高于四磺酸基钴酞菁和四羧基钴酞菁的速率常数(分别为300.1min~(-1)和224.3 min~(-1)),并且该反应符合Michaelis—Menten公式,其米氏常数K_m为4.2×10~(-3) mol·L~(-1),小于四磺酸基钴酞菁(3.17×10~(-2) mol·L~(-1))和四羧基钴酞菁(5.31×10~(-2) mol·L~(-1)),表明2,9,16,23-四马来酰胺基钴酞菁对MEA的亲和力更强,MEA易与酞菁平面轴向配位,并与O_2分子生成三元配合物(RS~-—酞菁—O_2),进而加速MEA氧化反应的进程。另外,本文也考察了2,9,16,23-四马
    
    浙江大学博士学位论文
    J摄型盆属爵脊女二澎虚硬;癸泞渺功分成匆么必睽化趁老
    来酞胺基铁(钻)酞著对日202分解反应的催化性能。结果表明,2,g,16,23一四马
    来酞胺基铁酞著的催化活性高于2,9,16,23一四马来酞胺基钻酞著,这是由于日00-
    与铁酞著的配合能力高于钻酞著,该分解反应也符合Michaelis一Menten公式,
    米氏常数Km为。.0877 mol.L一1,分解速率常数场=7.g6min一,。
     由于2,9,16,23一四马来酞胺基钻(铁)酞著侧链上含有可共聚的双键基团,选
    择N一异丙基丙烯酞胺作为共聚单体,在水相中通过氧化还原引发聚合,制得了新
    型金属酞著/异丙基丙烯酞胺温敏性共聚物。不同溶剂(水、乙醇、丙酮)的共聚
    物紫外谱图表明,2,9,16,23一四马来酞胺基钻(铁)酞著己与N-异丙基丙烯酞胺发
    生共聚合反应。与聚异丙基丙烯酞胺(pNI尸A)类似,该共聚物具有温敏性,采用
    浊度法测定了共聚物的最低临界溶液温度(LCS下)以及影响LCS丁的因素。与
    尸NlpA相比,共聚物的LCS丁(34.2℃)高于均聚物(32.5℃)。作为高分子催化
    剂,本文考察了金属酞蓄/异丙基丙烯酞胺共聚物对MEA氧化反应和日20:分解反
    应的催化性能,并测定了上述反应的米氏常数和速率常数。
     由于金属酞警/异丙基丙烯酞胺共聚物具有优良的催化活性和溶解性,作为模
    拟过氧化物酶,首次应用于废水中染料的催化降解。选择了两类典型的结构染料:
    活性艳蓝KN一R(葱醒型)和活性艳红(偶氮型)X一3B,以日20:为氧化剂,在钻
     (铁)酞菩/异丙基丙烯酞胺共聚物催化下,测定了不同条件下染料的降解速率。
    结果显示,金属酞著/异丙基丙烯酞胺共聚物对于高浓度的染料废水(200mg几)
    具有优良的催化降解活性,并且铁酞菩/异丙基丙烯酞胺共聚物高于钻酞著/异丙基
    丙烯酞胺共聚物。在铁酞著/异丙基丙烯酞胺共聚物催化下,确定了两种活性染料
    催化降解的最佳条件,同时考察了电解质浓度、聚合物温敏性对于染料降解速率
    的影响。改变反应物和催化剂浓度,测定了染料的初始降解速率和动力学方程。
    对于活性染料KN一R和x一3日,其降解速率常数分别为312.91(dm,m。l一’)o84min一’和
    a37.9(dm,m。l一’)ogmin一’,远高于Fenton一Iike型催化剂。作为新型的溶解一非溶解
    催化剂,当溶液温度升至LCS丁以上时,催化剂即可从反应体系中分离出来,为
    循环使用创造了极大的便利。循环实验(n=5)显示,金属酞著/异丙基丙烯酞胺
    共聚物仍保持较高的催化活性,是一类极具应用前景的新型高分子催化剂。
     尖娜绿2,g,16,23一四马来酞胺基钻(铁)酞著;酞菩/异丙基丙烯酞胺共聚
    物;温敏性;模拟酶;2一琉基乙醇;过氧化氢;染料;降解
Metallophthalocyanine complex is a class of synthetic compounds, which consists of macrocyclic tetraazaporphyrin structure. Because of its structural similarity to the active center of cytochrome P-450, it can promote many reactions through oxidase-like, catalas-like, as well as peroxidase-like mechanism.In this dissertation, a novel series of aqueous soluble phthalocyanine were synthesized by modification of cobalt or iron tetraaminophthalocyanine with maleic anhydride. Compared with normal aqueous soluble phthalocyanines, such as cobalt terasulfo-phthalocyanine(Co-SuPc) and cobalt tetracarboxyphthalocyanine(Co-CPc), cobalt tetra(N-carbony!acrylic)aminephthalocyanine(Co-MPc) was synthesized under ambient conditions(60 ℃, DMF as solvent) and obtained higher yield(79.6%).The product was characterized by elemental analysis, FT-IR, TGA, and so on. UV-VIS spectra showed that the aggregation of the Co-MPc molecular was mostly restrained due to the bulky peripheral substitutions on the cobalt phthalocyanine rings.The catalytic activity of Co-MPc and Fe-MPc was investigated upon two kinds of reactions, which were the oxidation of 2-mercaptoethanol (MEA) and the decomposition of H2O2. The outcome stated that Co-MPc had the best catalytic activity for the oxidation of MEA and Michaelis constant (Km) was 4.2×10-3mol·L-1, much lower than Co-SuPc(3.17× 10-2 mol·L-1) and Co-CPc(5.31 ×10-2 mol·L-1). It was shown that Co-MPc had the greatest affinity with MEA than other phthalocyainines as oxidase-like enzyme. Furthermore, as a catalas-like enzyme, Fe-MPc decomposed with higher rate than Co-MPc at the same conditions. For Fe-MPc, the Michaelis constant, Km, was 0.0877 mol·L-1 and the decomposition rate constant, k3, was 7.96min-1.Because of unsaturated double bonds in the side chains of Co-MPc (or Fe-MPc), a novel thermosensitive copolymer (Co-HG, or Fe-HG) was prepared after Co-MPc (or Fe-MPc) copolymerized with N-isopropylacrylamide. The copolymer could be dissolved in most of solvents except hexane. It also revealed a lower critical solution temperature phenomenon (LCST) at 34.2℃ in water, higher than the LCST of
    
    Poly(N-isopropylacrylamide)(32.5℃). As a novel polymer catalyst, the catalytic activity for the oxidation of MEA and the decomposition of H2O2 was examined. This polymer catalyst served as a homogeneous catalyst of oxidation of MEA below LCST and precipitated from the solution with the steep drop of catalytic activity above LCST. The Michaelis constant of the oxidation of MEA was 0.011 mol·L-1 under the catalysis of Co-HG, and the rate constant was 289min-1. Furthermore, the kinetics of the decomposition of H2O2 was also investigated and Km was 0.1012 mol·L-1 under the catalysis of Fe-HG.Since the phthalocyanine/isopropylacrylamide copolymer had great solubility and catalytic activity, the hydrogen peroxide oxidation of dyes was studied under the catalysis of the copolymer. Two different structural dyes, C. I. Reactive Blue 19 (KN-R) and C. I. Reactive Red 2 (X-3B), were selected in the experiment. Fe-HG had higher catalytic activity than Co-HG, which may be owing to the involvement of PcFeIV=O. Effects of different parameters like initial concentrations of dye, H2O2, phthalocyanine in copolymer, pH of solution, reaction temperature and added electrolytes on the oxidation process had been studied. The results indicated that 3.19 × 10-4moI·L-1 KN-R could be most effectively degraded at a dye:Pc:H2O2 molar ratio of 1:0.031:10.9 at pH=2 and 25°C, while 0.813X 10-4mol·L-1 X-3B could be decomposed with the dye:Pc:H2O2 molar ratio of 1:0.023:10.9. A detailed investigation on the kinetics of the oxidative degradation of two dyes was carried out. The initial rates of degradation of KN-R and X-3B were RKn-r = 321.1[KN-R]0.37[Pc]0.90[H2O2]0.57 and RX-3b = 836.3 [X-3B]0.27[Pc]1.06[H2O2]0.57, respectively. Significantly, the thermosensitive copolymer could be separated easily from the dye solution when the solution temperature was above LCST. After recycling experiment for six times, the copolymer still kept most of
引文
[1] Braun A., Tchemic J. Products of the action of acetic anhydride on phthalamide". Ber Deut Chem Ges, 1907, 40: 2709.
    [2] Byrne GT, Linstead RP, Lowe, AR, Phthalocyanines. Part Ⅱ. The preparation of phthalocyanines and some metallic derivatives from o-cyanobenzamide and phthalimide. J Chem Soc, 1934: 1017-1022.
    [3] Linstead RP, Lowe AR, Phthalocyanines. Part Ⅲ. Preliminary experiments on the preparation of phthalocyanines from phthalonitrile. J Chem Soc, 1934:1022-1027.
    [4] Elvidge JA, Linstead RP, Conjugated macrocycleso The formation of tetrazaporphrins from imidines. J Chem Soc, 1955: 3536-3544.
    [5] Robertson JM, An X-ray study of the structure of the phthalocyanines. Ⅰ. The metal-free, nickel, copper and platinum compounds. J Chem Soc, 1935: 615-621.
    [6] Robertson JM, An X-ray study of the structure of the phthalocyanines. Ⅱ. Structure determination of metal-free compound. J Chem Soc, 1936:1935-1938.
    [7] Robertson JM, Woodward I, An X-ray study of the structure of the phthalocyanines. Ⅲ. Quantitative structure determination of nickel phthalocyanine. J Chem Soc, 1937: 219-230.
    [8] 沈永嘉.酞菁的合成与应用[M].北京:化学工业出版社,2000,166-183.
    [9] Leznoff CC, Lever ABP. Phthalocyanines, Properties and Application. VCH-Publishers, New York, vol.1 1989, vol.3 1989, vol.4 1996.
    [10] Altindal A, Ozturk 77, Dabak S, Bekaroglu O. Halogen sensing using thin films of crosswise-substituted phthalocyanines. Sens Actutators-B, 2001, 77(1-2): 389-394.
    [11] Zhou R, Josse F, Gopel W, Oztilrk ZZ, Bekaroglu O. Phthalocyanines as senitive material for chemical sensors. Appl Organomet Chem, 1996, 10(8): 557-577.
    [12] Goldsmith G J, Inigo AR, Xavier FP. Copper phthalocyanine as an efficient dopant in development of solar cells. Mater Res Bull, 1997, 32(5): 539-546.
    [13] Emmelius M, Pawlowski G, Vollman H. Polymeric phthalocyanines and their precurors, 14. Synthesis and analytical characterization of polymers from oxy-and arylenedioxy-bridged diphthalonitriles. Angew Chem Int Ed Engl, 1989, 28(11) : 1445-1600.
    [1
    
    [14] Basova TV, Gurek AG, Ahen V. Investigation of liquid-crystalline behavior of nickel octakisalkylthiophthalocyanines and orientation of their films. Mater Sci & Eng C, 2002, 22(1) : 99-104.
    [15] Chen Y, Wang D, Nie Y. Optical limiting of eight-β-octa-octyloxy-phthalocyanines for picosecond pulses insolution. Opt Mater, 2003, 24(3-4) : 581-587.
    [16] Lalande G, Faubert G, Cote R, Guay D, Dodelet JP, Weng LT, Bertrand P. Catalytic activity and stability of heat-treated iron phthalocyanines for the electroreduction of oxygen in polymer electrolyte fuel cells. J Power Source, 1996,61(1-2) : 227-237.
    [17] Phougat N, Vasudevan P. Electrocatalytic activity of some metal phthalocyanine compounds for oxygen reduction in phosphoric acid. J Power Source, 1997, 69(1-2) : 161-163.
    [18] Cao YC, Jiang XZ. Supported palladium phthalocyanine catalysts in hydrodechlorination. J Mol Catal A, 2002,184(1-2) : 183-189.
    [19] Iliev, VI, lleva, Al, Dimitrov, LD. Catalytic oxidation of 2-mercaptoethanol by cobalt(II)-phthalocyanine complexes intercalated in layered double hydroxides. Appl catal, 1995,126(2) : 333-340.
    [20] Grootboorn N, Nyokong, T. Iron perchlorophthalocyanine and tetrasulfophthalocyanine catalyzed oxidation of cyclohexane using hydrogen peroxide, chloroperoxybenzoic acid and tert-butylhydroperoxide as oxidants. J Mol Catal A, 2002,179(1-2) : 113-123.
    [21] Gould RD. Structure and electrical conduction properties of phthalocyanine thin films. Coord Chem Rev, 1996,156: 237-274.
    [22] Ochsner M. Photodynamic therapy of tumours: value of quantum chemical procedures for characterization of new drugs. Prediction of the electronic structure of zinc(II) phthalocyanine with special emphasis on triplet state excitation energies. Eur J Med Chem, 1996, 31(12) : 939-950.
    
    [23] Volpin ME, Vorozhtsov GN, Kaliya OL, Lukyanets EA. Phthalocyanine metal complexes in photodynamic and catalytic therapy of cancer. J Inorg Biochem. 1997, 67(1-4): 151.
    [24] Adler AD, Longo FR, Finarelli JD. A simplified synthesis for meso-tetraphenylporphyrin. J Org Chem, 1967, 32(1): 476-482.
    [25] Brach PJ, Grammatica S J, Ossanna OA, Weiberger L. Improved synthesis of metal-free phthalocyanines. J Hererocylic Chem, 1970, 7: 1403.
    [26] Heilbron IM, Irving F, Linstead RP, US. Patent 2, 153, 620 (April, 1939).
    [27] Heilbron IM, Irving F, Linstead RP. British Patent 410, 814(May, 1934).
    [28] Barrett PA, Dent CE, Linstead RP. Phthalocyanines. Ⅶ. Phthalocyanines as a coordinating group. A general investigation of metallic derivatives. J Chem Soc, 1936: 1719-1736.
    [29] Boston DR, Bailar JC. Phthalocyanine derivatives from 1,2,4,5,-tetracyanobenzene or pyromellitic dianhydride and metal salts. Inorg Chem, 1972, 11(7): 1578-1583.
    [30] Sakamoto K, Ohno E. Synthesis of cobalt phthalocyanine derivatives and their cyclic voltammograms. Dyes and pigments, 1997, 35(4): 375-386.
    [31] 李洪武,周庆复,许慧君.新型LB膜成膜材料—两亲性侧链取代酞菁的合成.有机化学,1996,16(2):160-164.
    [32] Sasmaz S, Agar E, Agar, A. Synthesis and characterization of phthalocyanines containing 4-allyl-2-methoxyphenyl moieties. Dyes and Pigments, 1999, 42(2): 117-122.
    [33] 孙建平,吴洪才,李宝铭.侧链含酞菁铜功能基的聚苯胺的制备和性能研究.高等学校化学学报,2003,24(9):1708-1711.
    [34] Marvel CS, Martin MM. Polymeric phthalocyanines. J Am Chem Soc, 1958, 80(24): 6600-6601.
    [35] Marvel CS, Rassweiler JH. Polymeric phthalocyanines. J Am Chem Soc, 1958, 80(5): 1197-1199.
    [36] Hanack M, Meng DY, Beck A, Sommerauer M. Subramanian LR.Separation of structural isomers of tetra-tert-butylphthalocyaninatonickel(II). J Chem Soc Chem Commun, 1993: 58-59.
    [3
    
    [37] Kumar D, Razdan U, Gupta AD. Heat-resistant polymers from melt-processable bisimido-bisphthalonitriles. J Polym Sci A: Polym Chem, 1993, 31(3) : 797-804.
    [38] Snow AW, Griffith JR, Marullo NP. Syntheses and characterization of heteroatom-bridged metal-free phthalocyanine network polymers and model compounds. Macromolecules, 1984,17(8) :1614-1624.
    [39] Wohrle D, Schulte B. Synthesis of alkylenedioxy bridged polymeric phthalocyanines and their absorption capacities for organic solvents in comparison to other phthalocyanines. Makromol Chem, 1988,189(5) , 1167-1187.
    [40] Wohrle D, Schulte B. Synthesis and properties of (18-crown-6) -bridged phthalocyanine network polymers. Makromol Chem, 1988,189(6) : 1229-1238.
    [41] Wohrle D. Phthalocyanine polymers, in encyclopaedia of polymer science and engineering. John Wiley and Sons, New York, 1988,11: p212.
    [42] Ahsen V, Yilmazer E, Bekaroglu O. Synthesis and properties of (18-crown-6) -bridged phthalocyanine network polymers. Makromol Chem, 1988,189(11) : 2533-2543.
    [43] Ahsen V, Yilmazer E, Gul A, Bekaroglu O. Preparation of a novel polymeric copper phthalocyanine containing crown ether moieties and its alkali metal binding property. Makromol Chem Rapid Commun, 1987,8(5) : 243-246.
    [44] Romero PG, Lee YS, Kertesz M. Band structure calculation of extended poly(copper phthalocyanine) one-dimensional and two-dimensional polymers. Inorg Chem, 1988, 27(20) : 3672-3675.
    [45] Epstein A, Wildi BS. Electrical Properties of Poly-Copper Phthalocyanine. J Chem Phys, 1960, 32(1) : 324-329.
    [46] Bannehr R, Meyer D, Wohrle D. Polymer phthalocyanines and their precursors 2. The structure of polyphthalocyanines. Polym Bull, 1980, 2(12) : 841-846.
    [47] Ashida M, Ueda Y, Yanagi H, Sayo K. Preparation and characterization of thin films of monomeric and polymeric octacyanophthalocyanines. J Polym Sci A: Polym Chem, 1989, 27(12) : 3883-3893.
    
    [48] D. Wohrle, Bannehr R, B. Schumann, Jaeger N. Polymeric phthalocyanines and their precursors, 4. Optimization of electrochemical properties of polyphthalocyanine modified titanium electrodes. Angew Makromol Chem, 1983,117(1) : 103-115.
    [49] Achar BN, Fohlen GM, Parker JA, Keshavayya J. Synthesis and structural studies of metal( II) 4,9,16,23-phthalocyanine tetraamines. Polyhedron, 1987,6(6) : 1463-1467.
    [50] Achar BN, Fohlen GM, Parker JA. Phthalocyanine polymers. IV. Novel type of the thermally stable polyimides derived from metal phthalocyanine tetramines and benzophenone tetracarboxylic dianhydride. J Polym Sci A: Polym Chem Ed, 1982, 20(10) : 2773-2780.
    [51] Achar BN, Fohlen GM, Hsu MS, Parker JA. Mass spectroscopy of epoxylated novolac resin cured with phthalocyanine tetraamines. J Polym Sci A: Polym Chem Ed, 1984, 22(6) : 1471-1479.
    [52] Achar BN, Fohlen GM, Parker JA. Heat-resistant metal phthalocyanine imide copolymers. J Polym Sci A: Polym Chem, 1983,21(4) : 1025-1032.
    [53] Achar BN, Fohlen GM, Parker JA. Heat-resistant Poly(metal phthalocyanine)imide copolymers using benzenetetracarboxylic dianhydride. J Polym Sci A: Polym Chem Ed, 1985, 23(3) : 801-811.
    [54] Boyle M, Adkins JD, Snow AW, cozens RF, Brady EF. Synthesis and characterization of met-polymerizable aminophthalocyanine monomers. J Appl Polym Sci, 1995, 57(1) : 77-85.
    [55] Exsted BJ, Urban MW. Novel phthalocyanine/polyol high-solids coatings: Structure-property relationships. J Appl Polym Sci, 1993,47(11) : 2019-2035.
    [56] Achar BN, Fohlen GM, Parker JA. Phthalocyanine polymers. I .Poly[2,2'-(4,4',4",4'"-metal phthalocyanino)-5,5'-bibenzimidazoles] as new high temperature resistant polymers. J Polym Sci A: Polym Chem, 1982,20(2) : 269-275.
    [57] Osada Y, Mizumoto. Preparation and electrical properties of polymeric copper phthalocyanine thin films by plasma polymerization. J Appl Phys, 1986, 59: 1776-1779.
    [58] Brown KL, Mottola HA. Voltammetric, Chronocoulometric, and Spectroelectrochemical Studies of Electropolymerized Films Based on Cu(ll/l)-4,9,16,23-Tetraaminophthalocyanine. Langmuir, 1998,14(12) : 3411-3417.
    [5
    
    [59] Allen JR, Florido A, Young SD, Daunert S, Baachas LG. Nitrite-Selective Electrode Based on an Electropolymerized Cobalt Phthalocyanine. Elefroanalysis, 1995, 7(3) :710-713.
    [60] Jiang JH, Anthony K. The electrochemistry of platinum phthalocyanine microcrystals: I. Electrochemical behaviour in acetonitrile electrolytes, Electrochimica Acta, 2000, 45(14) : 2227-2239.
    [61] Kang TF, Shen GL, Yu RQ. Voltammetric behaviour of dopamine at nickel phthalocyanine polymer modified electrodes and analytical applications. Anal Chim Acta, 1997, 356(2-3) : 245-251.
    [62] Mckeown NB, Chambrier I, Cook MJ. Synthesis and characterisation of some 1,4,8,11,15,18,22,25-octa(alkoxymethyl)phthalocyanines; a new series of discotic liquid crystals J Chem Soc Perkin Trans 1,1991(12) : 3053-3058.
    [63] Clarkson GJ, Mckeown NB, Treacher KE. Synthesis and characterization of some novel phthalocyanines containing both oligo(ethyleneocxy) and alkyl or alkoxy side-chains: novel unsymmetrical discotic mesogens. J Chem Soc Perkin Trans 1, 1995(14) : 1817-1824.
    [64] Young JG, Onyebuagu W. Synthesis and characterization of di-disubstituted phthalocyanines. J Org Chem, 1990, 55(7) : 2155-2159.
    [65] Sastre A, Rey B, Torres T. Synthesis of Novel Unsymmetrically Substituted Push-Pull Phthalocyanines J Org Chem, 1996, 61(24) : 8591-8597.
    [66] Cook MJ. Liquid crystalline oligomeric and polymeric phthalocyanines. Adv Mater, 1995, 7(10) : 877-880.
    [67] Joyner RD, Kenney ME. Germanium phthalocyanines. J Am Chem Soc, 1960, 82(22) : 5790-5791.
    [68] Marks TJ. Electrically condutive metallomacrocyclic assemblies. Science, 1985, 227: 881-889.
    [69] Sayato, Y, Nakamuro, K, Ueno, H, Goto R. Mutagenicity of adsorbates to a copper-phthalocyanine derivative recovered from municipal river water. Mutation Research, 1990, 242(4) : 313-317.
    [7
    
    [70] Bourdelande JL, Karzazi M, Dicelio LE, Litter Ml, Tura GM, Reman ES, Vinent V. Phthalocyanines bound to insoluble polystyrene. Synthesis and properties as energy-transfer photosensitizers. J Photochem Photobiol A, 1997, 108(2-3) : 273-282.
    [71] Shirai H, Maruyama A, Kobayashi K, Hojo H. Functional metal-porphyrazine derivatives and their polymers. 4. Synthesis of poly(styrene) bonded Fe(III)-as well as Co( II ) 4,4',4",4"'-tetracarboxyphthalocyanine and their catalase-like activity. Makromol Chem, 1980,181(3) : 575-584.
    [72] Leznoff CC, Hall TW. The synthesis of a soluble, unsymmetrical phthalocyanine on a polymer support. Tetrahedron Letter, 1982,23(30) : 3023-3026.
    [73] Wohrle D, Krawczyk G. Polymeric bond porphyrines and their precursors. 13. Photoredox properties of combined moieties of porphyrine and phthalocyanine, covantly bound to polystyrene. Makromol Chem, 1986,187(11) : 2535-2544.
    [74] Oostergetel GT, Teerenstra MN, Schouten AJ. Slow structural rearrangement of a side-chain phthalocyanine methacrylate polymer at the air-water interface. Macromolecules, 1993, 26(13) : 3306-3312.
    [75] Kimura M, Nishigaki, Koyama T, Hanabusa K, Shirai H. Functional metallomacrocycles and their polymers, Part 34. Catalytic oxygenation of cyclohexene by water-soluble polymer containing manganese phthalocyanine complex. React Funct Polym, 1996, 29(2) : 85-89.
    [76] Makhseed S, Cook A, Mckeown NB. Phthalocyanine-containing polystyrenes. Chem commun, 1999:419-420.
    [77] Victoria MM, Sagrario E, Andres, E. New polythiophenes bearing electron-acceptor phthalocyanine chromophores. Telehedron Letters, 2003,44(46) : 8475-8478.
    [78] Frechet JMJ. Funtional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science, 1994,263:1710-1714.
    [79] Haemmerli SD, Leisola MSA, Sanglard D, Fiechter A. Oxidation of benzo(a)pyrene by extracellular ligninases of Phanerochaete chrysosporium. Veratryl alcohol and stability of ligninase. J Biol Chem, 1986, 261(15): 6900-6903.
    [8
    
    [80] 李东红,陈淑华.杯[6]芳烃—双金属卟啉仿P—450酶模型的研究Ⅳ.对异丙苯氧化的催化行为.化学学报,2002,60(1):139-142.
    [81] Shirai H. Odor removing materials using artificial enzymes. Journal of the Japan Society of Color Material,1994,67(9): 564-573.
    [82] Shirai H, Maruyama A, Konishi M, Hojo N. Functional metal -porphyrazine derivatives and their polymers. 5. Peroxidatic oxidation of guaiacol by Fe(Ⅲ)-3,4,3',4',3",4",3'",4"'-octacarboxyphthalocyanine(Fe-oapc) and Fe-oapc/polyelectrolyte systems. Makromol Chem, 1980, 181(5): 1003-1012.
    [83] Stansbury HA, Proops WR. Oxidation of p-nitrotoluene to 4,4'-dinitrobibenzyl and 4,4'-dinitrostibene. J Org Chem, 1961,26(10): 4162-4164.
    [84] Shirai H, Tsuiki H, Masuda E, Koyama T, Hanabusa K. Functional metallomacrocycles and their polymers. 25. Kinetics and mechanism of the biomimetic oxidation of thiol by oxygen catalyzed by homogeneous (polycarboxyphthalocyaninato) metals. J Phys Chem, 1991, 95(1): 417-423.
    [85] Schipper ETWM, Pinckaers RPM, Piet P, German AL. Synthesis and cocatalytic properties of polystyrene-lonene-Stabilized lattices. Macromolecules, 1995, 28(7): 2194-2200.
    [86] Shirai H, Maruyama A, Takano J, Kobayashi K, Hojo N. Fuctional metal-porphyrazine derivatives and their polymers, 3. Catalytic activity of Fe(Ⅲ)-octacarboxyphthalocyanine for decomposition of hydrogen peroxide. Makromol Chem, 1980, 181(3): 565-573.
    [87] 陈秋影,李东辉.四磺基铁酞菁做为过氧化物模拟酶在过氧化氢及葡萄糖测定中的应用.分析化学,1999,27(9):997-999.
    [88] Sorokin A, Meunier B. Oxidation of polycyclic aromatic hydrocarbons catalyzed by iron tetrasulfophthalocyanine FePcS: Invers isotope effects and oxygen labeling studies. Eur J Inorg Chem, 1998(9): 1269-1281.
    
    [89] Sorokin A, Suzzoni-Dezard SD, Poullain D, Noel JP, Meunier B. CO_2 as the ultimate degradation product in the H_2O_2 oxidation of 2,4,6-trichlorophenol catalyzed by iron tetrasulfophthalocyanine. J Am Chem Soc, 1996, 118(31): 7410-7411.
    [90] Reusseli GA, Moye AJ, Janzen EG, Mak S, Yalaty ER. Oxidation of p-nitrotoluene and derivatives in basic solution. J Org Chem, 1967, 32(1):137-146.
    [91] Manassen. Metal complexes of porphyrin-like compounds as heterogeneous catalyst. J Catal Rev Sci Eng, 1974, 9: 223-243.
    [92] Masri, Y, Hronec, M. Dioxygen activation and homo-geneous catalytic oxidation. Stud. Surf Sci Catal, 1991, 66: 455-461.
    [93] 李华明,叶兴凯.Pd(OAc)_2/HQ/FePc催化环己烯氧化合成环己酮反应机理.应用化学,1995,12(5):20-24.
    [94] Kropf, H, Hoffmann, HD. Autoxidation von cumol in gegenwart von substituierten kupfer-phthalocyaninen und verwandter kupfer-komplexen. Tetrahedron Lett, 1967, 8(7): 659-663.
    [95] Inoue H, Kida Y, Imoto E. The catalytic action of binary metal-polyphthalocyanine complex on the oxidation of acetaldehyde, ethylene, acetal. Bull Chem Soc JPn, 1965, 38(12): 2214.
    [96] Inoue H, Kida Y, Imoto E. Organic catalysts. Ⅳ. The role of the iron as an oxidation catalyst in copper-iron-polyphthalocyanine. Bull Chem Soc JPn, 1968, 41(3): 684-691.
    [97] Spiller W, Wohrle D, Schulz-Ekloff C, Ford VMT, Schneider G, Stark J. Photo-oxidation of sodium sulfide by sulfonated phthalocyanines in oxygen-saturated aqueous solutions containing detergents or latexes. J Photochem Photobiol A: Chem, 1996, 95(2): 161-173.
    [98] Sanchez M, Chap N, Cazaux JB, Meunier, B. Metallophthalocyanines linked to organic copolymers as efficient oxidative supported catalysts. Eur J Inorg Chem 2001: 1775-1783.
    [99] Liu XM, Wang LS, Wang L, Huang JC, He CB. The effect of salt and pH on the phase-transition behaviors of temperature-sensitive copolymers based on N-isopropylacrylamide. Biomaterials, 2004,25(25) : 5659-5666.
    [1
    
    [100] Muniz EC, Geuskens G. Influence of temperature on the permeability of polyacrylamide hydrogels and semi-IPNs with poly(N-isopropylacrylamide). J Membr Sci, 2000,172(1-2) : 287-293.
    [101] Marianne, H, Wolfgang S, Curtis FW. Fast-responsive semi-interpenetrating hydrogel networks imaged with confocal fluorescence microscopy. Polymer, 2003, 44(22) : 6927-6936.
    [102] Dhara D, Chatterji PR. Swelling and deswelling pathways in non-ionic poly(N-isopropylacrylamide) hydrogels in presence of additives. Polymer, 2000, 41 (16) : 6133-6143.
    [103] Benrebouh A, Avoce D, Zhu XX.Thermo-and pH-sensitive polymers containing cholic acid derivatives. Polymer, 2001,42(9) : 4031-4038.
    [104] Gil ES, Hudson SM. Stimuli-reponsive polymers and their bioconjugates. Prog. Polym Sci, 2004, 29(12) : 1173-1222.
    [105] Schild HG, Tirrell DA. Microcalorimetric detection of lower critical solution temperatures in aqueous polymer solutions. J Phys Chem, 1990, 94(10) : 4352-4356.
    [106] Salgado RR, Licea CA, Arndt KF. Random copolymers of N-isopropylacrylamide and methacrylic acid monomers with hydrophobic spacers: pH-tunable temperature sensitive materials. Eur Polym J, 2004,40(8) : 1931-1946.
    [107] Ricardo G, Roberto FS, Welington F. Structural characterization of poly (N-isopropylacrylamide) gels and some of their copolymers with acrylamide through positron annihilation lifetime spectroscopy. Polymer, 1998, 39(16) : 3815-3819.
    [108] Yildiz B, Isik B, Kis M. Synthesis of thermoresponsive N-isopropyacrylamide-N-hydroxymethyl acrylamide hydrogel by redox polymerization. Polymer, 2001,42(6) : 2521-2529.
    [109] Ding XB, Sun ZH, Wan GX, J YY. Preparation of thermosensitive magnetic particles by dispersion polymerization. React Func Polym, 1998, 38(1) : 111-115.
    [110] Braun O, Selb J, Candau F. Synthesis in microemulsion and characterization of stimuli-responsive polyelectrolytes and polyampholytes based on N-isopropylacrylamide. Polymer, 2001, 42(21): 8499-8510.
    [1
    
    [111] Lee YM, Shim JK. Preparation of pH/temperature responsive polymer membrane by plasma polymerization and its riboflavin permeation. Polymer, 1997, 38(5): 1227-1232.
    [112] 伊敏,姜桂林,张剑波.温度敏感性共聚凝胶 PolyNIPAAm/X辐射合成和应用.北京大学学报(自然科学版),1999,35:201-208.
    [113] Hahn M, Gornitz E, Dautzenberg H. Synthesis and properties of ionically modified polymers with LCST behavior. Macromolecules, 1998, 31(17): 5616-5623.
    [114] Kuramoto N, Shishido Y. Property of thermo-sensitive and redox-active Poly(N-cyclopropylacryamide-co-vinylferrocene) & poly(N-isopropylacrylamide-covinylferrocene). Polymer, 1998, 39(3): 669-675.
    [115] Yoo MK, Sung YK, Lee YM. Effect of polymer complex formation on the clound-point of poly(N-isopropylacrylamide) in the poly(NIAAM-Co-acrylic acid):polyelectrolyte complex between poly(acrylic acid) and poly(L-lysine). Polymer, 1998, 39(16): 3703-3708.
    [116] Wang MZ, Qiang JC, Hu DD. Preparation and properties of chitosan-poly (N-isopropylacrylamide) semi-IPN hydrogel. J Polym Sci A: Polym Chem, 2000, 38(3): 474-481.
    [117] Chen GH, Hoffman AS, Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature, 1995, 373: 49-52.
    [118] 李雄伟,严昌虹,廖奇.接枝聚合物PAA-b-PIPA微球的制备及其温控释药研究.高分子学报,1994(2):156-161.
    [119] Sakuma S, Suzuki N, Sudo R. Optimized chemical structure of nanoparticles as carriers for oral delivery of salmon calcitonin. Int J Pharm, 2002, 239(1-2): 185-195.
    [120] Chen JP, Chu DH, Sun YM. Immobilization of α-smylase to temperature-responsive polymers by single or multiple point attachments. J Chem Tech Biotechnol, 1997, 69(4): 421-428.
    [121] Chen JP. Immobilization of α-chymotrypsin to a temperature-respinsive reversibly soluble-insoluble oligomer based on N-isopropylacrylamide. J Chem Tech Biotechnol, 1998, 73(2): 137-143.
    [1
    
    [122] Kato N, Oishi A, Takahashi F. Peptide synthesis catalyzed by α-chymotrypsin immobilized in the polyN-isopropylacrylamide gel. Mater Sci & Eng C, 2000, 13(1-2): 109-116.
    [123] 杨黄浩,朱庆枝,李东辉.新型pH敏感相分离高分子的制备及其在免疫分析中的应用.高等学校化学学报,2000,21(10):1498-1500.
    [124] Fong RB, Ding ZL, Hoffman AS. Affinity separation using Fv antibody fragmentg-"smart" polymer conjugate. Biotechnol Bioeng, 2002, 79(3): 271-276.
    [125] Suzuki K, Yumura T, Mizuguchi M. Poly(N-isopropylacrylamide)-grafted silica as a support of platinum colloids: preparation method, characterization, and catalytic properties in hydrogenation. J Appl Polym Sci, 2000, 77(12): 2678-2684.
    [126] Kim DJ, Heo JY, Kim KS. Formation of thermoresponsive poly(N-isopropylacrylamide)/dextran particles by atom transfer radical polymerization. Macromol Rapid Commun, 2003, 24(8): 517-521.
    [127] Zha LS, Zhang Y, Yang WL. Monodisperse temperature-sensitive microcontainers. Adv Mater, 2002, 14(15): 1090-1092.
    [128] Uguzdogan E, Kayi H, Denkbas EB. Stiuli-responsive properties of aminophenylboronic acid-carrying thermosensitive copolymer. Polym Int, 2003, 52(5): 649-657.
    [129] Zhu LY, Zhu GL, Li MZ. Thermosensitive aggregates self-assembled byan asymmetric block copolymer of dendritic polyether and poly(N-isopropylacrylamide). Eur Polym J, 2002, 38(12): 2503-2506.
    [130] 唐受印等.废水处理工程[M]北京:化学化工出版社.1998,p29.
    [131] Liu TH, Matsuurat, Sourirajon S. Effect of membrane material sand average pore sizes on reverse osmosis separation of dyes. Ind Eng Chem Prod Ros Dev, 1983, 22: 77-85.
    [132] 杨巍.美国水处理化学品市场现状与展望.工业水处理,1998,18(2):7-10.
    
    [133] Nicla M. Wastewater treatment using electrochemical oxidation of organic pollutants. Sci Technol Environ Prog, 1996, 3(1): 35-40.
    [134] Konsowa AH. Decolorization of wastewater containing direct dye by ozonation in a batch bubble column reactor. Desalination, 2003, 158(1-3): 233-240.
    [135] Xu XR, Li HB, Wang WH, Gu JD. Degradation of dyes in aqueous solutions by the Fenton process. Chemosphere, 2004, 57(7): 595-600.
    [136] Lei LC. Homogenens. catalytics wet-air oxidation for the treatment of textile wastewater. Water Environ Res, 2000, 72(2): 147-151.
    [137] Zhan HQ, Tian H. Photocatalytic Degradation of Acid Azo Dyes in TiO_2 Colloidal Suspension Ⅲ. Spectral Characterization of Excited State, Dyes and Pigments, 1998, 37(3): 249-254.
    [138] Knapp JS, Newby PS, Reece LP. Decolorization of dyes by wood-rotting basidiomycete fungi. Enzyme & microbial technology, 1995, 17(7): 664-668.
    [139] Achar BN, Fohlen GM, Parker JA, Keshavayya J. Ind J Chem, 1988, 27A: 411-416.
    [140] Weber JH, Busch DH. Complexes derived from strong field ligands. Ⅺ Ⅹ. Magnetic properties of transition metal derivatives of 4,4',4",4"'-tetrasulfophthalocyanine. Inorg Chem, 1961, 71: 469-471.
    [141] Mack J, Stillman MJ. Assignment of the optical spectra of metal phthalocyanines through spectral band deconvolution analysis and zindo calculations. Coord Chem Rev, 2001, 219: 993-1032.
    [142] Seelan S, Agashe MS, Srinivas D, Sivasanker S. Effect of peripheral substitution on spectral and catalytic properties of copper phthalocyanine complexes. J Mol Catal A, Chem 2001; 168(1-2): 61-68.
    [143] 黄金陵,彭亦如,陈耐生.金属酞菁配合物结构研究的一些谱学方法.光谱学与光谱分析,2001,21(1):1-6.
    [144] Nemykin VN, Chernii VY, Volkov SV, Bundina NI, Kaliya OL, Li VD, Lukyanets EA. Further studies on the oxidation state of iron in μ-oxo dimeric phthalocyanine complexes. J Porphyrins Phthalocyanines, 1999, 3(2): 87-98.
    
    [145] 宋旭锋,纪红兵,周贤太,余远斌.钴酞菁催化氧气氧化邻硝基甲苯制取邻硝基苯甲酸.精细化工,2004,21(6):474-476.
    [146] Sorokin A, Seris JL, Meunier B. Efficient oxidative dechlorination and aromatic ring cleavage of chlorinated phenols catalyzed by iron sulfophthalocyanine. Science, 268: 1163-1166.
    [147] Fisher H, Schuulz-Ekloff G, Wohrle D. Oxidation of aqueous sulfide solutions by dioxygen Part Ⅰ:autoxidation reaction, them Eng Technol, 1997, 20: 462-468.
    [148] Michaelis L, Menten ML. Die kinetic der invertinwirkung. Biochem Z, 1913, 49: 333-369.
    [149] King E, Altman CJ. A schematic method of deriving the rate laws for enzyme-catalyzed reactions. J Phys Chem, 1956, 60(10): 1375-1378.
    [150] Brouwer WM, Piet P, German AL. Autoxidation of thiols with cobalt(Ⅱ) phthalocyanine tetra(sodium sulfonate) attached to poly(vinylamine) Part4. Influence of base density within the polymeric ligand. J Mol Catal, 1985, 29(3): 335-345.
    [151] N. Nath, A. Chilkoti. Smart surfaces using stimuli responsive polymers. Adv Mater 2002, 14(17): 1243-1247.
    [152] Hoshino J. Properties of amylase immobilized on a new reversibly soluble-insoluble polymer and its application to repeated hydrolysis of soluble starch. Chem Eng Pn, 1992. 25(5): 569-574.
    [153] 黄月文,罗宣干,卓仁禧.蜗牛酶在聚(N—异丙基丙烯酰胺)中的固定化及应用.功能高分子学报,1996,9(4):523-531.
    [154] Chen CW, Akashi M. Temperature-responsive catalytic activity of poly(N-isopropylacylamide)-protected Au/Pt bimetallic nanoparticles in aqueous solutions. Polym Adv Technol, 1999, 10(1-2): 127-133.
    [155] Kimura M, Nishigaki T, Koyama T, Hanabusa K, Shirai H. Functional metallomacrocycles and their polymers. Part 31. Autoxidation of thiol by temperature-sensitive polymer catalyst containing cobalt(Ⅱ) phthalocyanine complex. Reactive Polymers, 1994, 23: 195-200.
    
    [156] Boutris C, Chatzi EG, Kiparissides C. Characterization of the LCST behaviour of aqueous poly(N-isopropylacrylamide) solutions by thermal and cloud point techniques. Polymer, 1997, 38(10): 2567-2570.
    [157] Li YZ, He N, Wang XQ, Chang WB, C, YX. Mimicry of peroxidase by immobilization of hemin on N-isopropylacryamide-based hydrogel. Analyst, 1998, 123: 359-364.
    [158] 程云,周启星,马奇英,王颖慧.染料废水处理技术的研究与进展.环境污染治理技术与设备,2003,4(6):56-60.
    [159] Gaigneaux EM, Maggi R, Ruiz P, Delmon B. Epoxidation of cyclohexene by iron and cobalt phthalocyanines, study of the side reactions. J Mol Catal A: Chem, 1996, 109(1): 67-74.
    [160] Sorokin A, Meunier, B. Efficient H_2O_2 oxidation of chlorinated phenols catalyzed by supported iron phthalocyanine. J Chem Soc Chem Commun, 1994: 1799.
    [161] 《最新染料使用大全》编写组[编].最新染料使用大全[M].中国纺织出版社,1996,p378-386.
    [162] 金咸穰.染整工艺实验[M].中国纺织出版社,1987,p66.
    [163] Dutta K, Bhattacharjee S, Chaudhuri B, Mukhopadhyay S. Chemical oxidation of C.I. Reactive Red 2 using Fenton-like reactions. J Environ Monit, 2002, 4: 754-760.
    [164] 国家标准GB11914-89.
    [165] Ying Y, Zhuang YY, Wang ZH. Adsorption of Water-Soluble Dye onto Functionalized Resin. J Colloid Interface Sci, 2001, 242(2): 288-293.
    [166] Xu YM, Lu HQ. Degradation of the dye X-3B by UV/Fe(Ⅲ)-generated hydroxyl radicals in aqueous solution, J Photochem Photobiol. A: Chem, 2000, 136(1-2): 73-77.
    [167] Ichinohe T, Miyasaka H, Isoda A, Kimura M, Hanabusa K, Shirai H. Functional metallomacrocycles and their polymers, Part 37. Oxidative decomposition of 2,4,6-trichlorophenol by polymer-bound phthalocyanines. React Func Polym, 2000, 43(1-2): 63-70.
    [168] Xie Y, Chen F, He JJ, Zhao JC, Wang H. Photoassisted degradation of dyes in the presence of Fe~(3+) and H_2O_2 under visible irradiation. J Photochem Photobiol. A: Chem, 2000,136(3) : 235-240.
    [1
    
    [169] Muruganandham M, Swaminathan M. Decolourisation of Reactive Orange 4 by Fenton and photo-Fenton oxidation technology. Dyes and Pigments, 2004, 63(3) : 315-321.
    [170] Kiwi J, Lopez A, Nadtochenko V. Mechanism and kinetics of the OH-radical intervention during Fenton oxidation in the presence of a significant amount of radical scavenger(Cl-). Environ Sci Technol, 2000, 34(11) : 2162-2168.
    [171] Dutta K, Mukhopadhyay S, Bhattacharjee S, Chaudhuri B. Chemical oxidation of methylene blue using a Fenton-like reaction. J Harzard Mater B, 2001, 84: 57-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700